Robert Rannie Northern lllinois University - DeKalb, IL

Milica Kozomara Texas Instruments - Dallas, TX
Our Agenda for the Week
#2895 - Part |:The General Purpose Computer and
Interrupts
Malnframe Opera—tlng #2896 - Part 2: From IPL to Running Programs
Systems “Boot Cam P” #2897 - Part 3: SVCs and More SVCs

#2898 - Part 4: Program Interrupts
(You Want An Exit With That?)

Pa rt 2 #2899 - Part 5: FLIH: /O INTERRUPTS

From IPL to Running Programs

#2894 - Mainframe Operating System Boot Camp:
Session #2896 Highlights
SHARE 112 in Austin, March 2009

“Tell ‘em what you’re gonna tell ‘em” What you Need to RUN a Program

Just a Few Good Routines and Control Blocks (CBs)

® What you need to RUN a program ® Initial Program Load (IPL)

® The Initial Program Load (IPL) ® Dispatching

® The Dispatcher e SVC-FLIH

® SVC First Level Interrupt Handlers (FLIHs) ¢ SVC 8 (Loader)
® The Master Scheduler ® SVC | (Wait)

® Master Scheduler

What you Need to RUN a Program

Set up the Following Routines and CBs
® PSA (“Low Core”)
® The CVT (Memory label =‘MYCVT’)
® Other Routines & CBs (in SOS-A)

® Dynamic memory area stack (CB100s), Size
X100’

® TCBs & RBs (In dynamic memory areas

What you Need to RUN a Program

Required Initialization

IPL PSW
X0

Restart New PSW

X8

External Old PSW

IPL CCWI
X8

X20"

Supervisor Call Old PSW

Restart Old PSW

X128

Program Check Old PSW

IPL CCW2
X0

X'30"

Machine Check Old PSW

X'58'

External New PSW

AMYeVT) |

X'38'

Input/Output Old PSW

X'60’

Supervisor Call New PSW

X'40'

Channel Status Word

X'68'

Program Check New PSW

X'48

CAW A(MYCVT)

X170

Machine Check New PSW

X'50"

CLoCcK Trace Info

X'78

Input/Output New PSW

® Four 64 byte save areas

One for each, EX, SV, PC, and 1O

® 4P0 at ‘TCBWORDS’ - DSECT is IEATCBP

What you Need to RUN a Program

Typical Locations
e X'1200 MYCVT
e X'1300° SVCTABLE
e X'1800’ Dispatcher
e X'I1CO0’ IPL Program
e X’2000’ 5 FLIH (One for each Interrupt type)

What you Need to RUN a Program

Typical Locations

o X’6000’ Location for SVC Modules

® SVGs I, 3,and 8 in Instructor Supplied

Macro Library:
'WAITS', 'EXIT' & 'LOADERX'

e X’E200’ Master Scheduler (MS)

e X'FOOQ’ Pool of CB100s

What you Need to RUN a Program

IPL Program
The IPL process consists of
® |/O Phase - loads OS into memory
® PSW Loading Phase - load current PSW

At this point it as if you are at the top of the
BIF loop

The Initial Program Load (IPL)

* PROGRAM LOGIC:

* I
* STEP 1 : Establish addressibility P
* STEP 2 : Change the clock L
* STEP 3 : Turn on ASSIST-V Trace Facility P
* G
d M
* STEP 4a: Set protection key to each 2K of memory

* I
* 4b: Test PCOPSW for S@CS5 at the expected address P
* IF (not SOC5 |l not at expected location) L
* force 'quick stop' P
* OTHERWISE, G
* obtain the highest available machine byte and M
* store it in CVTMZ0Q

* I
* STEP 4c: Print CVTMZ0@ value P
* L
* P
* STEP 5 : Chain (B10@ blocks G
* M
* STEP 6 : Init and chain one TCB and RB for each

* NIP/MS and WAIT I
*

o

STEP 7 : Transfer control to dispatcher

What you Need to RUN a Program

3 Ways to a New Current PSW

® Via an Interrupt
® Via Load PSW Instruction (LPSW)

® Via Initial Program Load (IPL) process

The Initial Program Load (IPL)

Establish Addressability

ORG FIRST4K+X'1C0Q' INITIAL PROGRAM LOAD:

*

* STEP 1: Establish addressibility
*

USING IPLPGM,12 HELLO? Problem putting it here?
* No base register, must be created
IPLPGM BALR 12,0 Load near location into R12

BCTR 12,0 'back up' R12

BCTR 12,0 to ACIPLPGM)

The Initial Program Load (IPL)

Set Storage Key on all Blocks of Memory

* STEP 4a: Set protection key to each 2K of memory
*

SR 2,2 R2 <- A(lowest storage addr) aka F'Q'
* and protect key into rightmost byte
*

SSK 2,2 set protection byte of @(,R2) to X'00'

XOPC 4 turn off trace for now

B POINTHER jump into the loop

*

IPLOOP SSK 2,2 protection byte next block to X'@0'
POINTHER LA 2,X'800'(,2) point RZ to next 2K block
B IPLOOP repeat for all available memory

NOTE:

The loop 'terminates' as a program
check interrupt (S@C5), at which
point the PCNPSW will BR to AFTERLOP

FTERLOP MVC ~ PCNPSW+5(3),ADPCFLIH+1 SET instruction address of
PSNPSW to the appropriate
1st level interrupt handler

X0PC 2 turn trace back on

X KD K K K X K K K

The Initial Program Load (IPL)

SSK - Set Storage Key
e SSK X'igigighh’ X’igaddress’
(bytes “ig” are ignored)

® 8 bits of 'hh' are: 0-3 = key, 4 = fetch
protection

The Initial Program Load (IPL)

Set Highest Available Machine Byte

STEP 4b: Test old PSW for SOC5 at the expected address
IF (not S@C5 || not at expected location)
force 'quick stop'

*
*
*
*
*
*
*

OTHERWISE,
obtain the highest available machine byte and
store it in CVTMZ0O

CLI PCOPSW+3,X'@5"
BNE IPLO119

Test PCOPSW for SQCS
If not, force quick stop

LA 3,POINTHER GET A(POINTHER)

CLM 3,X'7',PCOPSW+5 Compare to address in old PSW

BNE IPLO119 If interrupt was not at SSK instr,
force quick stop
SUCCESS? Finish Step 4b

BCTR 2,0 get highest available machine byte
L 3,76 Get addressability of CVT
USING CVT,3 and apply CVT DSECT

ST 2,CVTMZ00 Store the value in CVTMZ0O

14
The Initial Program Load (IPL)
Acquire 4 CBs
* STEP 6: Init and chain one TCB and RB for each NIP/MS and WAIT
*
*
* Allocate a CB1@@ for this TCB
GETCB100
* GET CB for TCB
LR 9,10 9 <-- A(TCB)
*
* GET CB to use as RB
GETCB100
* 10 <-- A(RB)
16

The Initial Program Load (IPL)

Fields to Define in the TCBs

TCBRB A(RB)

TCBTCB

A(Next TCB on the chain or 0)

TCBBACK

A(Previous TCB on the chain or 0)

The Initial Program Load (IPL)

The TCB Chain (no RBs yet)

TCBTCB
h

[tcers [TCB-MS

TCBRB

PO

TCB - Wait

TCBBACK

TCBGRS

TCBFRS

The Initial Program Load (IPL)

Fields to Define in the RBs

bit O set to | for a PRB

RBFLGS3 bit 0 set to O for an SVRB
X'FF0401 190F AL3(MS) for MS RB
RBOPSW | XrEs01 190F AL3(LEVELABN) for WAIT RB
Byte 0 is RBWCF and it must be zero
RBLINK Bytes |-3 are address portion:

for a PRB, this will be the AL3(TCB)

The Initial Program Load (IPL)

The TCB Chain with RBs

PRB - MS |

| RBWCF =0 [«

RBOPSW

PRB - Wait | | RBWCF =

RBOPSW

PO

0 [€ TCBRB TCB - Wait

TceRe | TCB - MS
h TCBTCB

TCBBACK

TCBGRS

TCBFRS

The Initial Program Load (IPL)

Fields to Define in the CVT (MYCVT)

CVTTCBP A(‘TCB-Words’) DSECT = IEATCBP
PSATOLD IEATCBP+4 (set by Dispatcher)
CVTSVCTA | A(SVCTABLE)

CVTHEAD | A(ISTTCBIN CHAIN) (set by IPL)

CVTCIOOH | A(CBIOOHDR) Header Address for CB100 CBs
CVTODS A(Dispatcher)

CVTEXIT SVC 3 An instruction (!)
CVTBRET BCR 15,14 An instruction (!)

The Initial Program Load (IPL)

Fields to Define in the CVT (MYCVT)

® Build TCB chain for Dispatching

® Point CVTHEAD to MS-TCB

® Chain TCBs

® Down from MS-TCB viaTCBTCB
(lowest TCBTCB = 0)

e Up from Wait-TCB via TCBBACK
(highest TCBBACK = 0)

The Initial Program Load (IPL)

The TCB Chain with RBs and CVTHEAD

PRB-Ms |

CVTHEAD

—

A

| RBWCF = 0

| RBOPSW

TCBRB TCB - MS
TCBTCB Fo'

PRB - Wait | | RBWCF = 0

A

| RBOPSW

{Tcers [TCB - Wait
: PO TCBBAC

TCBGRS

TCBFRS

21

* STEP 7: Set to system mode and transfer control to dispatcher

*

The Initial Program Load (IPL)

IPL Basics Have Been Accomplished

IC 11, IPLUCBKE

LA 8,X'800' Get A(region_

SSK 11,8 Set protection byte for 2K

MVI LEVELFLG,C'S'
MVI TYP1FLAG,C'Q’
MVI ~ IPLPSW+1,25

Indicate system mode
Set Type 1 to zero

DROP 12 END base R12 range

Get Key and Fetch Protect Byte

Put 'safety net' (X'0119') at A(Q)

L 12,CVTODS

Load address of dispatcher from CVT
BR 12 Transfer control to DISPATCHer

DROP 3 END CVT addressability

22

23

24

The Dispatcher

Basic Functions
® Enter Dispatcher with
e RI2 - A(beginning of Dispatcher)
e R3 -A(MYCVT)

The Dispatcher

Basic Functions

® Dispatcher ‘runs’ down the chain of TCBs
searching each TCB for:

I. Non-zero A(TCB)
If A(TCB) == 0, then abend

2. Non-zero A(RB) in TCB
If A(RB) == 0, do Job End Code

3. If RBWCF == 0, Do Dispatch!

25
The Dispatcher
* STEP 1 : Establish addressability of DISPATCH with R12
*
DISPATCH DS OH Begin DISPATCH
USING DISPATCH,12 Establish addressability
-
* STEP 2 : Establish addressability of CVT, TCB and RB
-
USING CVT,3 Establish addressability of CVT
USING TCB,4 Establish addressability of TCB
USING RB,S Establish addressability of RB
-
* STEP 3 : Find task ready to be dispatched
-
L 4,CVTHEAD R4 - ACTCB)
DOLOOP LTR 4,4 Make sure ACTCB) is not zero
BZ DISPO119 Abend if A(TCB) is zero
*
L 5,TCBRB Get A(associated RB)
LTR 5,5 If this T(Bs RB has been 'killed'
BZ DJOBEND go to job end code
.
CLI RBWCF,X'00" If RBWCF is zero
BZ DODISP This task must be dispatched
- Otherwise,
L 4,TCBTCB Get next TCB in the chain
DOLOOP and Repeat the process
ERRRR QR RRRRQRRRRE
DISP@119 XOPC 25 Assist-V: Force Abend to end simulation
27

26

The Dispatcher

Dispatch Code

DODISP DS OH Perform the Dispatching
* At this point R3 - ACCVT)
* R4 - ACTCB)
* RS - ACRB)
*
L 3,000,3) R3 now points to TCBWORDS
ST 4,4(0,3) Store ACTCB) into TCBWORDS+4
*
LD @,TCBFRS Load all
LD 2,TCBFRS+8 floating point
LD 4,TCBFRS+16 registers from
LD 6,TCBFRS+24 TCBFRS

MVC LOWPSW(8),RBOPSW Move PSW of this task into low core
MVC TCBTDISP(4),TIMER Store time of Dispatcher in TCB

LM 0,15, TCBGRS Load all GPRs from TCBGRS
LPSW LOWPSW and Dispatch this task

28

The Dispatcher

Job End Code
® Not until we introduce SVC 3 in Part 3
e Why!?
® Our objective is to get a user's job running

® Thus we require SVCs | & 8 within the
Master Scheduler

® First we discuss SVC-FLIH in greater detail

SVC First Level Interrupt Handler

Register Convention of SVC FLIHs

R3 | A(MYCVT)

R4 | A(TCB)

R5 | A(RB)

Ré6 | A(SVC Routine/Module)

R12 | Base register, if needed
A(dispatcher) for return

29

SVC First Level Interrupt Handler

Role of the First Level Interrupt Handler

® Duties

I. Save the Essence of the Interrupted Program
2. Direct execution to appropriate module

3. Direct execution to code to restore Program
from Essence

31

30

SVC First Level Interrupt Handler

Register Convention of SVC FLIHs

GPRs 13, 15,0, |
Input Parameter registers

GPRs 15,0, |
Output/Return Parameter registers

SVC Routines may use (store into) the area
designated by GPR13, but they will not modify
GPR13

32

SVC First Level Interrupt Handler

SVCTable

® Pointed to by CVTSVCTA
® Each entry is 8 bytes in length

AL4(SVC000)
AL4(SVC008)
AL4(SVC255)

33

SVC First Level Interrupt Handler

SVC | (Wait)
® |nput Parameters:
® RO - Number of events
e RI - A(Event Control Block)

® SVC | may increment RBWCF in RB of the
issuing program

e SVC | with SVC 2 uses ECB to control the
‘running’ of a program

SVC First Level Interrupt Handler
The Code

L 9,CVTSVCTA
LH 8,SVCOLD+2
SLL 8,3

LA 8,0(09,8)

Get A(CSVC Table)

Get SVC Number from old PSW
Multiply by 8

Point to table entry

L 6,0(,8) Get A(module): SVC Table
BALR 14,6 to module, return on R14

ST 15, TCBGRS+(15*4) RETURNED R15 -> TCBGRS
STM 0,1,TCBGRS RETURNED R1 & RO -> TCBGRS

L 12,CVT@DS Get A(dispatcher)
BR 12 Go to Dispatcher

35

SVC First Level Interrupt Handler

SVC | (Wait)
e Suffice it to say:

® Issue SVC | when bit | of the ECB is '0'
(the issuing program STOPs!)

® Issue SVC | when bit | of the ECBis'l'
(the issuing program keeps running)

34

36

SVC First Level Interrupt Handler

SVC 8 (Loader)

® |nput Parameters:
® RO - Load Address
® RI - Available Memory

SVC First Level Interrupt Handler

SVC 8 (Loader)

® Output Parameters:

® RO - Entry Point Address (EPA) of
executable load module

® R| -Actual size of loaded program

® R|5 - Return Code
Typical: 0=0OK 4,8,..=Not OK

37

The Master Scheduler

Entry into MS

® Recall:
® |PL branches into Dispatcher

® Dispatcher ‘dispatches’ (LPSW) MS TCB/
RB to begin execution of Master Scheduler
at MS-EPA

38

The Master Scheduler

Program Logic
e STEPO

® Assemble Master Scheduler Resident Data
Area (MSDA)

® A(first 4K user program region)

e SSK Byte

® Pad Byte

e Set MS-ECB (MECB) to X'7F,C’ECP’

39

40

The Master Scheduler

Program Logic

— STEP | (EPA)
SVC | with RO=1 & RI=A(MECB)

RECALL: if MECB bit 1=0,SVC | increments MS-RBWCF by |
(MS not Dispatchable)
if MECB bit I=1,SVC | doesn’t change MSRBWCF
(MS remains Dispatchable)

— WHILE (MS is Dispatchable)
— Dispatch the MS

41

The Master Scheduler

Program Logic
e STEP2 & STEP 3
® pad (MVCL) 4K region with pad byte

® issue SSKs to set protect key for two 2K
portions of region

The Master Scheduler

Operation
® The MS reads a record from the input file
® If End of File (EOF) is found, SOS has finished

® |f there are records in the input file
MS will prepare to run the job
(first record of each job contains 'Parm Field')

43

42

The Master Scheduler

Program Logic
e STEP 4 & STEP 5

® move 'Parm Field' into a Parm Area at
highest location in the 4K region

® establish next lower 72 bytes as |18
fullword save area for the user

44

The Master Scheduler The Master Scheduler

User Program Region Before SVC 8 Program Logic
RO - X’00A000’ e STEP 6

Unused areas in 4K region _ . -
g e RI| =amount of available space remaining

in 4K user region

72 byte Save Area ® RO =A(start of 4K region)
X'88’ byte Parm.Area with Header

X’00B000’ ® issue SVC 8 to read object module records
from input
RI - Avail Memory from A to Z ® convert them into an executable load
module in the region
The Master Scheduler The Master Scheduler
Program Logic User Program Region After SVC 8
® Upon return from the SVC 8 RO - X'00A000"

Loaded program is here

EPA—> Unused areas in 4K region

| 72 byte Save Area
X’88’ byte Parm.Area with Header

® test RC (in R15) for successful load

® retrieve Entry Point Address of the loaded
program from RO

X’00B00O

RI - Length of loaded program (A - X’00A000’)

47 48

The Master Scheduler The Master Scheduler

Program Logic User PSW

e STEP7 X'FFk501190F, AL3(EPA)

® |/O mask enabled ‘FF’

o |f (successful load) obtain and initialize ® Protect key no longer '0', now a non-zero value, k, from MSDA field
TCB/RB pair ® State Bit now set to | indicating 'Problem State'
. . . ® A(EPA) of loaded program (returned in RO from SVC 8)
(IUSt like in IPL) ® The user program gets dispatched -
It can issue SVCs and is I/O-External interrupt enabled
Channel Masks |E[PSW key | c |m|w|p Interruption Code

0 78 12 16

ILC [CC Program Instruction Address
mask

32 34 36 40

49
The Master Scheduler The Master Scheduler
User TCB & RB Dispatching User Program
® Some GPRs in the user TCBGRS field must be
set
= < TCBRB -
| Pre RBWCF = 0 Q TCB - User e RI -A(Parm Area)
XFFk501 190F, AL3(EPA) | ‘E @ e RI5 - EPA (must be in R15 AND PSW)
— e RI4-A(CVTEXIT) =AMYCVT+X'50")

® R|3 -A(OS provided Save Area)

51

The Master Scheduler

Program Logic (Continued)
e STEP 8
® [SOS] generate job start message
® Assist-V XPRNT now, SVC 0 later
e STEP9
® update fields in MSDA for future jobs

® increment the CUrent numbeR of
Initiators (CURI)

53

The Master Scheduler

TCB Chain with User TCB CVTHEAD
PRB-Ms | [RewcF = of—— Tcers | TCB - MS
RBOPSW | TceTCc Fo'
e PBmm o
PRB - User [rewcr = of TCBRB | TCB - User (.I
| X'FFk501190F, AL3(EPA) TCBTCB TCBBACK
ez Pem =
PRB - Wait | | RBWCF = 0] TCBRB | TCB - Wait (.I
RBOPSW | FO TCBBACK

TCBGRS
TCBFRS

The Master Scheduler

Program Logic (Continued)
e STEP 10
® Chain user TCB just after MS-TCB
e STEP I

® Not until we get to multiprogramming

55

54

The Master Scheduler

Dispatching User Program

® With three TCBs in the chain, Dispatcher picks
first one: MS-TCB

® To dispatch User-TCB, MS-TCB must be made
non-dispatchable

® To do this:
® Set MECB to 0
® |Issue SVC | against MECB

56

The Master Scheduler

Program Logic (Continued)

e STEP |2 (bottom of MS Loop)

e set MECB to 0 (XC)

® branch to SVC | instruction at top of MS

Loop

The Master Scheduler

Dispatching User Program

® |[ssuing SVC | with zero MECB makes MS-TCB
non-dispatchable

e SVC | increments RBWCF (MS RB now
waiting on | task)

® With MS-TCB non-dispatchable dispatcher
now picks User-TCB

The Master Scheduler

TCB Chain with User TCB

CVTHEAD

—

57

PRB-Ms | [Rewcr = fe— Tcers | TCB-MS
RBOPSW r TCBTCB Fo'
[PrE - User [rewcr =0 TCBRB | TCB - User
| XFrks01 1907, AL3(EPA) = TCBTCB TCBBAC
PRB - Wait | | RBWCF = 0] TCBRB | TCB - Wait (.I
RBOPSW | FO TCBBAC

TCBGRS

TCBFRS

The Master Scheduler

Hooray! The Program is Running

58

59

60

Sneak Preview

Part 3: SVCs and More SVCs
SVC Types: Enabled or Disabled
Scheduling and Dispatching the SVRB
SVC 3 - RB ‘Killer’
The ‘valve’ (SVC | & SVC 2)
SVC 8 - Loader
SVC 13 - ABEND

61

Questions

rrannie@cs.niu.edu
m-kozomara@ti.com
www.cs.niu.edu/~rrannie

62

