
Mainframe Operating
Systems “Boot Camp”

The General Purpose Computer and Interrupts

Robert Rannie
Milica Kozomara

Northern Illinois University - DeKalb, IL
Texas Instruments - Dallas, TX

Part 1
Session #2895
SHARE 112 in Austin, March 2009

1

About this Series

These sessions are derived from the System Programming course at
NIU. This course makes extensive use of the ASSIST program (John R.
Mashey, The Pennsylvania State University) and the extension of ASSIST
to create ASSIST-V, An Environmental Simulator for IBM 360 Systems
Software Development (Charles E. Hughes & Charles E. Pfleeger,
University of Tennessee).

Both of these programs are available in the public domain. Thanks to
Michael Stack they may be found at:

 http://www.kcats.org/assist/ and http://www.kcats.org/assist-v/

2

• Student Operating System (SOS) and other
assignments

• Assist-V emulation environment

• Comparative programs: emulation & MVS

• XDAP/EXCP Channel Program:
MVS DASD

About this Series

3

Our Agenda for the Week

#2895 - Part 1: The General Purpose Computer and
! ! ! Interrupts

#2896 - Part 2: From IPL to Running Programs

#2897 - Part 3: SVCs and More SVCs

#2898 - Part 4: Program Interrupts
! ! ! (You Want An Exit With That?)

#2899 - Part 5: FLIH: I/O INTERRUPTS

#2894 - Mainframe Operating System Boot Camp:
! ! ! Highlights

4

“Tell ‘em what you’re gonna tell ‘em”

• Basic Instruction Fetch (BIF) Loop

• The Interrupt Process

• The Software Phase of Interrupt Processing

5

Basic Instruction Fetch (BIF) loop

• Operates in a loop

• Depends on / is controlled by PSW

• Acquires and processes every instruction to
be executed by CPU

• Handles interrupts (if any) prior to every
instruction fetch

• Consists of 6 steps

6

Basic Instruction Fetch (BIF) loop

1. While (“processable” interrupts pending)

2. ! {
! Process highest priority Interrupt
! }

3. Proceed to Step 2

Step 1 of 6 (Top of the Loop)

Note: To better introduce the BIF loop, we begin by
assuming there are no Interrupts to be processed and we
review the other parts of the loop.

7

1. Obtain address of
instruction to be fetched
from PSW

2. Determine length of
instruction:

• Examine first two
bits pointed to by
PSW (Op. Code)

Step 2 of 6 (Instruction Fetch)

Basic Instruction Fetch (BIF) loop

bits 0 & 1 of
instruction

length of
instruction

0 0 2 bytes

0 1, 1 0 4 bytes

1 1 6 bytes

8

• Example 1 - Add

• PSW points to instruction at X’000004’

• We know machine code: 5A50C080

Step 2 of 6 (Instruction Fetch)

Basic Instruction Fetch (BIF) loop

9

• Example 1 - Add

• Op. Code X‘5A’ = B’01011010’

• Implied length?

bits 0 & 1 of instruction length of instruction

0 0 2 bytes

0 1, 1 0 4 bytes

1 1 6 bytes

Basic Instruction Fetch (BIF) loop

Step 2 of 6 (Instruction Fetch)

10

• Example 2 - 80 byte buffer

• PSW points to “bogus” instruction at
X’000016’

• 80CL1’ ‘ = X’40404040...’

Basic Instruction Fetch (BIF) loop

Step 2 of 6 (Instruction Fetch)

11

• Example 2 - 80 byte buffer

• “Op. Code” X’40’ = B’01000000’

• Implied Length?

Basic Instruction Fetch (BIF) loop

Step 2 of 6 (Instruction Fetch)

bits 0 & 1 of instruction length of instruction

0 0 2 bytes

0 1, 1 0 4 bytes

1 1 6 bytes

12

Basic Instruction Fetch (BIF) loop

Step 2 of 6 (Instruction Fetch)

• Example 2 - 80 byte buffer

• X’40404040’ = STH 4,64(0,4)

• Will be considered “valid” code

• No SOC1 - may be executed

• Debugging Problem - It’s all just bytes

13

1. Set Instruction Length Code (CODE) in PSW

2. Increment address in PSW accordingly
(2/4/6)

Basic Instruction Fetch (BIF) loop

Step 3 of 6 (Set up ILC, Update PSW Address)

bits 0 & 1 of ILC in PSW bytes (just fetched)

0 0 n/a

0 1 2 bytes

1 0 4 bytes

1 1 6 bytes

14

Step 4 of 6 (Branching?)

Basic Instruction Fetch (BIF) loop

• Not covered in this session

15

Step 5 of 6 (Executing the Instruction)

Basic Instruction Fetch (BIF) loop

• Probably most common place for Program
Check Interrupt

• Confirms earlier point about PSW address
field:

If instruction fails where will PSW likely point?

16

Please Note: The test for any pending interrupts will be made
following processing of each instruction AND interrupt. It will
therefore be made prior to the fetching and execution of
EVERY instruction processed by the CPU.

Step 6 of 6 (Return to the Top of the BIF Loop)

Basic Instruction Fetch (BIF) loop

17

Basic Instruction Fetch (BIF) loop

• Let us now consider the BIF loop with
Interrupt Processing:

• Remember test for pending interrupts at
top of BIF loop?

• Let’s now assume there are pending
interrupts to be processed

18

The Interrupt Process

Name of
Interrupt

Example of this type of interrupt

External Signal from an external processor. Expiration of a time
period.

Supervisor Call The executing program has issued an SVC X’xx’
instruction (X’0Axx’).

Program Check The executing program has caused a program
interruption (X’xxxx’).

Machine Check The executing program has encountered a hardware
failure.

Input/ Output An I/O operation has completed some portion(s) of its
operation.

Restart A switch on the processor has been activated.

Types of Interrupts (6)

19

• Composed of Hardware Component and
Software Component

• Hardware Component

• 4 steps “hardwired” into CPU

• Not programmable

• First X’80’ bytes of memory

• Known as PSW swap

The Interrupt Process

20

The Interrupt Process

• Low Core

• Memory location 0 - X’7F’

• First 4K

21

1. Current PSW is stored into appropriate old
PSW location

2. Interrupt Code (IC) is stored into appropriate
‘low core’ location

• BC Mode: A(OLD PSW) + 2

• Other Modes: refer to green card
for fixed storage location

The Four-Step Hardware Phase

The Interrupt Process

22

The Four-Step Hardware Phase

The Interrupt Process

3. If I/O interrupt - store Channel Status Word
into X’40’

4. Load current PSW from appropriate new
PSW location

23

First X’80’ Bytes of Memory

X’18’ External Old PSW

X’20’ Supervisor Call Old PSW

X’28’ Program Check Old PSW

X’30’ Machine Check Old PSW

X’38’ Input/Output Old PSW

X’40’ Channel Status Word

X’48’ CAW A(MYCVT)

X’50’ CLOCK Trace Info

X’0’
IPL PSW

Restart New PSW

X’8’
IPL CCW1

Restart Old PSW

X’10’
IPL CCW2

A(MYCVT)

X’58’ External New PSW

X’60’ Supervisor Call New PSW

X’68’ Program Check New PSW

X’70’ Machine Check New PSW

X’78’ Input/Output New PSW

The Interrupt Process

24

First Level Interrupt Handlers (FLIH)

The Interrupt Process

• New PSWs (normally) contain A(FLIH)

• FLIH - set of instructions for handling the
interrupt

• An FLIH for each interrupt type supported by
CPU

25

First Level Interrupt Handlers (FLIH)

The Interrupt Process

• FLIH PSWs:

• Masks - disabled for I/O and External

• SVC, Restart and Program Check can’t be
disabled

• Machine Check and Program Mask
Interrupts Enabled

• Key = 0; Supervisor State; Wait/Run = Run

26

To Process or Not?

The Interrupt Process

• “Masks” in PSW indicate whether or not to
process a particular “class” of interrupts

• Mask Bit = 1 - Allow/Accept Interrupts

• referred to as “Masked On” / “Enabled”

• Mask Bit = 0 - Don’t Allow/Accept
Interrupts

• referred to as “Masked Off” / “Disabled”

27

Channel Masks E PSW key c m w p Interruption Code

0 7 8 12 16 31

ILC CC
Program

mask
Instruction Address

32 34 36 40 63

I/O Channels

External Mask

Machine Check Mask

Program Masks - S0C 8,A,D,E

To Process or Not?

The Interrupt Process

• Masks in PSW

28

• Handling sequence, from high priority (1) to
low priority (7)

To Process or Not?

1. Exigent Machine Check 5. External

2. Supervisor Call 6. I/O

3. Program Check 7. Restart

4. Repressible Machine Check

Note: After the processing of each one of the pending interrupts we return to the
top of the BIF loop for a new evaluation of all pending Interrupt.

The Interrupt Process

29

To Process or Not?

External Remain Pending

Supervisor Call N/A Cannot be masked off

Program Check N/A (for those which cannot be masked off)

Program Mask Masked off are lost Applies to 8, A, D, E

Machine Check Depends on nature of machine check

I/O Remain Pending

Restart N/A Cannot be masked off

The Interrupt Process

• “Disposition” of interrupts which occur while
corresponding type is masked off

30

The Interrupt Process

To Process or Not?

• New Concepts

• PSW state => “Don’t run”, i.e. “Wait”

• Privileged Instruction

• Results in SOC2

• Typically not encountered by
Application Programmers

31

Beyond the PSW Swap: the “Essence” of a Program

The Software Phase of Interrupt Processing

• What is the “Essence” of a Program?

• Registers

• PSW

• Memory

32

Role of the First Level Interrupt Handler

The Software Phase of Interrupt Processing

• Duties:

1. Save the Essence of the Interrupted
Program

2. Direct execution to appropriate module

3. Direct execution to code to restore
Program from Essence

33

Fundamental Control Blocks (CBs)

The Software Phase of Interrupt Processing

• CBs involved in Essence saving

• Communication Vector Table (CVT)

• Task Control Block (TCB)

• Request Block (RB)

34

Fundamental Control Blocks (CBs)

The Software Phase of Interrupt Processing

• Only 1 CVT

• Address stored at X’10’ and X’4C’

• TCB and RB for each unit of work

• created in dynamically allocated memory

• CVT, TCB and RB defined in DSECTs provided
by IBM/RPR

• Some points about SOS

35

Characteristics of Principal Control Blocks

Control Block DSECT Name Location

Communication Vector Table CVT Low Core

TCB Pointer also ‘TCBWORDS’ IEATCB Low Core

Task Control Block TCB Dynamic

Request Block RB Dynamic

The Software Phase of Interrupt Processing

36

Control Block Linkage

MYCVT+0 A(TCBWORDS)

TCBWORDS+4 A(current TCB)

TCB+0 A(RB)

TCB+X’30’ A(TCBGRS)

RB+X’10’ A(RBOPSW)

The Software Phase of Interrupt Processing

37

• Register usage convention established for FLIH
of SVCs

• Establish Addressability

How the FLIH Saves the Essence

The Software Phase of Interrupt Processing

38

How the FLIH Saves the Essence

The Software Phase of Interrupt Processing

39

After Saving the Essence

The Software Phase of Interrupt Processing

• FLIH transfers control to appropriate O/S
module

• Control returns to FLIH (normally)

• FLIH restores program Essence

40

How to Restore the Essence

The Software Phase of Interrupt Processing

• Reverse the process.

• Assume R3 contains A(CVT)

41

A Small Problem

The Software Phase of Interrupt Processing

• R3, R4, and R5 must be used to address CVT,
TCB and RB:

• What happened to original program
values?

• Stored in save area, maybe?

• Then what about original value of
base register used to address that
save area?

42

Answer: Low Core!

The Software Phase of Interrupt Processing

• Why GPR 0 is ignored in D(X,B) and D(B):

• Built-in feature

• No register needed to address first 4K
(0 through X’FFF’)

• Now we have:

43

Utilizing Low Core

The Software Phase of Interrupt Processing

• Any label in first 4K can be addressed implicitly

• Generated machine code uses GPR 0 as base

• Contents of GPR 0 ignored

• Only displacement is used

• Largest displacement is X’FFF’ = 4095

44

Utilizing Low Core

The Software Phase of Interrupt Processing

45

Utilizing Low Core

The Software Phase of Interrupt Processing

• No problem reloading FPRs from TCBFRS and GPRs
from TCBGRS

• Problem:

• Addressability of RBOPSW is lost (R5 altered)

• Can’t perform LPSW

• Solution:

• Move RBOPSW to Low Core location before
destroying R5

46

Utilizing Low Core

The Software Phase of Interrupt Processing

The hardware feature that ignores the contents of GPR zero
in address calculations enables the saving of Registers and
restoring of PSWs that is ESSENTIAL to the operation of the
GPC!

• That’s why GPR zero is ignored in D(X,B) and D(B)
addressing!

Systems Programmers must understand the logic of
Interrupts on the GPC!

47

Part 2: From IPL to Running Programs

Sneak Preview

• What you need to RUN a program: (Basic O/S)

• Initial Program Load (IPL)

• Dispatcher

• SVC-FLIH

• SVC 1 (Wait), SVC 8 (Loader)

• Master Scheduler

48

Questions

www.cs.niu.edu/~rrannie

rrannie@cs.niu.edu

m-kozomara@ti.com

49

