Problems
1. Convert the following binary numbers to their decimal
representations:
(a) 11
(b) 1101
(c) 111011
(d) 0101
2. Convert the following hexadecimal numbers to their
decimal representations:
(a) 11
(b) A1
(c) CEF
(d) BA9
3. Convert the following decimal numbers to their
hexadecimal and binary representations:
(a) 11
(b) 4000
(c) 42
(d) 4095
4. Do the binary arithmetic:
(a) 10110 + 01101
(b) 11001 + 00101
(c) 10110 - 01101
(d) 11111 - 01011
5. Do the hexadecimal arithmetic:
(a) 82CD + 1982
(b) E2C + A31
(c) FB28 - 3254
(d) E2C - A31
6. The integers in the following computations are indicated
in hexadecimal, but represent 32-bit two's complement binary numbers.
Perform the operations and indicate if overflow occurs and why. (If
overflow occurs the result is invalid, but show it anyway.)
(a) BBCA270C (b) E3BA265F (c) E9B20F5D
+ AE223464 + E045B9A9 - FE605C8D
---------- ---------- ----------
(d) 5FCA5243 (e) 80000000 (f) 6D4AFBC0
- AE223464 + 7FFFFFFF - F89ABCDE
---------- ---------- ----------
7. Assume that:
R0 contains 0007F144
R1 contains 00000028
R7 contains EC088840
Here are some expressions which may be D(X,B) addresses. If they
are valid, calculate the values, and if they are not valid, explain
why not:
(a) 56(,1)
(b) 0(0,1,7)
(c) 1(7,0)
(d) 11(1,7)
Solutions
1. (a) 3 (b) 13 (c) 59 (d) 5 2. (a) 17 (b) 161 (c) 3311 (d) 2985 3. (a) B (hex) and 1011 (binary) (b) FA0 (hex) and 1111 1010 0000 (binary) (c) 2A (hex) and 10 1010 (binary) (d) FFF (hex) and 1111 1111 1111 (binary) 4. (a) 100011 (b) 11110 (c) 1001 (d) 10100 5. (a) 9C4F (b) 185D (c) C8D4 (d) 3FB 6. (a) 69EC5B70 overflow (b) C3FFE008 (c) EB51B2D0 (d) B1A81DDF overflow (e) FFFFFFFF (f) 74B03EE2 7. (a) 00000060 (b) not valid (c) EC088841 (d) EC088873