

High Level Assembler for MVS & VM & VSE IBM

Programmer’s Guide
Release 5

 SC26-4941-04

High Level Assembler for MVS & VM & VSE IBM

Programmer’s Guide
Release 5

 SC26-4941-04

 Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 422.

Fifth Edition (June 2004)

This edition applies to IBM High Level Assembler for MVS & VM & VSE, Release 5, Program Number 5696-234 and to any
subsequent releases until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the
product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:

 IBM Corporation
 J87/D325

555 Bailey Avenue
SAN JOSE, CA 95141-1003
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1982, 2004. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this Manual . xi
Who Should Use this Manual . xi
Programming Interface Information . xi
Organization of this Manual . xi
IBM High Level Assembler for MVS & VM & VSE Publications xiv

Publications . xiv
Softcopy Publications . xv
The High Level Assembler web site . xv

| Using LookAt to look up Message Explanations xv
Related Publications . xvi
Syntax Notation . xvi

Summary of Changes . xix

Part 1. Understanding and Using the Assembler . 1

Chapter 1. Introduction . 5
Requirements . 5

System Requirements . 5
Machine Requirements . 5
Storage Requirements . 6

Compatibility . 7
Assembler Language Support . 7
Migration Considerations . 7

Chapter 2. Using the Assembler Listing . 8
High Level Assembler Option Summary . 9
External Symbol Dictionary (ESD) . 13
Source and Object . 16
Relocation Dictionary (RLD) . 23
Ordinary Symbol and Literal Cross Reference 24
Unreferenced Symbols Defined in CSECTs . 27
Macro and Copy Code Source Summary . 27
Macro and Copy Code Cross Reference . 28
DSECT Cross Reference . 32
USING Map . 33
General Purpose Register Cross Reference . 34
Diagnostic Cross Reference and Assembler Summary 35

Chapter 3. Controlling Your Assembly with Options 41
The Sources of Assembler Options . 41

Precedence of Assembler Options . 41
Fixed Installation Default Options . 42
*PROCESS OVERRIDE Statement Options 42
ASMAOPT Options . 42
Invocation Options . 42
*Process Statement Options . 43
Default Options . 44
Invoking the Assembler Dynamically . 44

 Copyright IBM Corp. 1982, 2004 iii

 Contents

Coding Rules . 44
Assembler Options . 45

ADATA . 45
ALIGN . 46
ASA (MVS and CMS) . 46
BATCH . 47
CODEPAGE . 47
COMPAT . 48
DBCS . 49
DECK . 50
DISK (CMS) . 50
DXREF . 50
ERASE (CMS) . 51
ESD . 51
EXIT . 52
FLAG . 55
FOLD . 58
GOFF (MVS and CMS) . 58
INFO . 60
LANGUAGE . 60
LIBMAC . 61
LINECOUNT . 62
LIST . 62

| MACHINE . 63
MXREF . 65
OBJECT . 66
OPTABLE . 66
PCONTROL . 68
PESTOP . 70
PRINT (CMS) . 70
PROFILE . 70
RA2 . 71
RENT . 72
RLD . 72
RXREF . 73

| SECTALGN . 73
SEG (CMS) . 73
SIZE . 74

| SUPRWARN . 76
SYSPARM . 76
TERM . 77
TEST . 78
THREAD . 78
TRANSLATE . 79

| TYPECHECK . 79
USING . 80
XOBJECT (MVS and CMS) . 83
XREF . 83

Chapter 4. Providing User Exits . 85
Exit Types . 85
Specifying User Exits . 86
Loading User Exits . 87
Calling User Exits . 88

iv HLASM V1R5 Programmer’s Guide

 Contents

Exit Parameter List . 88
Request Info Pointer . 90
Buffer Pointer . 97
Error Buffer Pointer . 97
Exit-Specific Information Pointer . 97
DCB Pointer . 97

Static Assembler Information Pointer . 98
HLASM VRM . 98
PTF Level . 98
System ID . 98

| Numeric Version . 98
Error Handling . 99
Exit-Specific Information Block . 99

Member Name . 101
Member Type . 101
Data Set Name . 101
Volume Serial . 101
Relative Record Number . 102
Absolute Record Number . 103
Linecount . 103
Current Page Number . 103

SOURCE Exit Processing . 104
OPEN . 104
CLOSE . 104
READ . 104
PROCESS . 105

LIBRARY Exit Processing . 106
OPEN . 106
CLOSE . 107
READ . 107
PROCESS MACRO or PROCESS COPY . 108
FIND MACRO or FIND COPY . 108
END OF MEMBER . 110

LISTING Exit Processing . 112
OPEN . 113
CLOSE . 114
WRITE . 114
PROCESS . 114

OBJECT (MVS and CMS) and PUNCH Exit Processing 116
OPEN . 117
CLOSE . 118
WRITE . 118
PROCESS . 118

ADATA Exit Processing . 120
OPEN . 120
CLOSE . 121

| WRITE . 121
PROCESS . 121

TERM Exit Processing . 122
OPEN . 123
CLOSE . 124
WRITE . 124
PROCESS . 124

Sample User Exits . 125

 Contents v

 Contents

User Exit Coding Example . 125

Chapter 5. Providing External Functions . 144
External Function Processing . 144
Linkage Conventions . 145
External Function Parameter List . 145

Request Information List . 148
Pointer to User Work Area . 150

| Pointer to Static Assembler Information . 150
Pointer to Msg Buffer . 150
Pointer to Return String (SETCF) . 150
Pointer to Parm String n (SETCF) . 151

Chapter 6. Diagnosing Assembly Errors . 152
Assembly Error Diagnostic Messages . 152
MNOTE Statements . 154
Suppression of Error Messages and MNOTE Statements 156
Reference Information for Statements in Error 156
Abnormal Assembly Termination . 157
MHELP—Macro Trace Facility . 157

Part 2. Developing Assembler Programs on MVS . 159

Chapter 7. Assembling Your Program on MVS 161
Input to the Assembler . 161
Output from the Assembler . 161
Invoking the Assembler on MVS . 161
Invoking the Assembler on TSO . 163
Invoking the Assembler Dynamically . 164
Batch Assembling . 166
Input and Output Data Sets . 167

Specifying the Source Data Set: SYSIN . 169
Specifying the Option File: ASMAOPT . 170
Specifying Macro and Copy Code Libraries: SYSLIB 170
Specifying the Listing Data Set: SYSPRINT 170
Directing Assembler Messages to Your Terminal: SYSTERM 170
Specifying Object Code Data Sets: SYSLIN and SYSPUNCH 171
Specifying the Associated Data Data Set: SYSADATA 171

Return Codes . 171

Chapter 8. Linking and Running Your Program on MVS 172
The Program Management Binder . 172
The Loader . 174
Creating a Load Module . 174

Creating a Load Module on MVS . 174
Creating a Load Module on TSO . 175

Input to the Binder . 175
Data Sets for Binder Processing . 176
Additional Object Modules as Input . 177

Output from the Binder . 178
Binder Processing Options . 178
Specifying Binder Options Through JCL . 179
Specifying Binder Options Using the TSO LINK Command 180

vi HLASM V1R5 Programmer’s Guide

 Contents

AMODE and RMODE Attributes . 180
Overriding the Defaults . 181
Detecting Binder Errors . 181

Running Your Assembled Program . 181
Running Your Assembled Program in Batch 181
Running Your Assembled Program on TSO 181

Chapter 9. MVS System Services and Programming Considerations . . . 183
Adding Definitions to a Macro Library . 183
Using Cataloged Procedures . 184

Cataloged Procedure for Assembly (ASMAC) 184
Cataloged Procedure for Assembly and Link (ASMACL) 186
Cataloged Procedure for Assembly, Link, and Run (ASMACLG) 188
Cataloged Procedure for Assembly and Run (ASMACG) 190
Overriding Statements in Cataloged Procedures 191
Examples of Cataloged Procedures . 192

Operating System Programming Conventions . 194
Saving and Restoring General Register Contents 194
Ending Program Execution . 195
Accessing Execution Parameters . 195

| Object Program Linkage . 196
Modifying Program Modules . 196

Part 3. Developing Assembler Programs on CMS . 199

Chapter 10. Assembling Your Program on CMS 200
Input to the Assembler . 200
Output from the Assembler . 200
Accessing the Assembler . 200
Invoking the Assembler on CMS . 201
Batch Assembling . 202
Controlling Your Assembly . 202
Input and Output Files . 203

Specifying the Source File: SYSIN . 205
Specifying the Option File: ASMAOPT . 207
Specifying Macro and Copy Code Libraries: SYSLIB 207
Specifying the Listing File: SYSPRINT . 207
Directing Assembler Messages to Your Terminal: SYSTERM 208
Specifying Object Code Files: SYSLIN and SYSPUNCH 208
Specifying the Associated Data File: SYSADATA 208

Return Codes . 208
Diagnostic Messages Written by CMS . 209

Chapter 11. Running Your Program on CMS 210
Using the CMS LOAD and START Commands 210
Using the CMS GENMOD Command . 210
Using the CMS LKED and OSRUN Commands 211
Using the CMS Batch Facility . 212

Chapter 12. CMS System Services and Programming Considerations . . 213
Using Macros . 213

Assembler Macros Supported by CMS . 213
Adding Definitions to a Macro Library . 213

 Contents vii

 Contents

Operating System Programming Conventions . 213
Saving and Restoring General Register Contents 213
Ending Program Execution . 214
Passing Parameters to Your Assembler Language Program 215

Part 4. Developing Assembler Programs on VSE . 217

Chapter 13. Assembling Your Program on VSE 218
Input to the Assembler . 218
Output from the Assembler . 218
Invoking the Assembler in Batch . 218
Invoking the Assembler on ICCF . 220
Invoking the Assembler Dynamically . 222
Batch Assembling . 222
Controlling Your Assembly . 223
Input and Output Files . 224

Specifying the Source File: SYSIPT . 226
Specifying Macro and Copy Code Libraries: LIBDEF Job Control Statement 226
Specifying the Listing File: SYSLST . 227
Directing Assembler Messages to Your Console Log: SYSLOG 227
Specifying Object Code Files: SYSLNK and SYSPCH 227
Specifying the Associated Data File: SYSADAT 228

Return Codes . 228

Chapter 14. Link-Editing and Running Your Program on VSE 229
The Linkage Editor . 229
Creating a Phase . 229
Input to the Linkage Editor . 230

Inputting Object Modules . 230
Files for Linkage Editor Processing . 230
Inputting additional Object Modules . 231
Linkage Editor Control Statements . 231

Output from the Linkage Editor . 232
Running your Assembled Program . 233

Chapter 15. VSE System Services and Programming Considerations . . . 234
Adding Definitions to a Macro Library . 234
Processing E-Decks . 234
Operating System Programming Conventions . 235

Saving and Restoring General Register Contents 235
Ending Program Execution . 236
Accessing Execution Parameters . 236

Appendixes . 237

Appendix A. Earlier Assembler Compatibility and Migration 240
Comparison of Instruction Set and Assembler Instructions 240
Comparison of Macro and Conditional Assembly Statements 243
Comparison of Macro and Conditional Assembly 246
Comparison of Language Features . 249
Comparison of Assembler Options . 252
Comparison of Assembler Listing . 254

viii HLASM V1R5 Programmer’s Guide

 Contents

Comparison of Diagnostic Features . 256
Other Assembler Differences . 258

Appendix B. Cross-System Portability Considerations 259
| Using Machine Instructions . 259

Using System Macros . 259
Migrating Object Programs . 259

Appendix C. Object Deck Output . 261
ESD Record Format . 261
TXT Record Format . 263
RLD Record Format . 263
END Record Format . 264
SYM Record Format . 265

Appendix D. Associated Data File Output . 268
Record Types . 270
ADATA Record Layouts . 275
Common Header Section . 276
Job Identification Record—X'0000' . 277
ADATA Identification Record—X'0001' . 279
ADATA Compilation Unit Start/End Record—X'0002' 279

| Output File Information Record—X'000A' . 279
| Options File Information—X'000B' . 283

Options Record—X'0010' . 284
External Symbol Dictionary Record—X'0020' 289
Source Analysis Record—X'0030' . 290
Source Error Record—X'0032' . 293
DC/DS Record—X'0034' . 294
DC Extension Record—X'0035' . 302
DC extension record . 302
Machine Instruction Record—X'0036' . 302
Relocation Dictionary Record—X'0040' . 302
Symbol Record—X'0042' . 303

| Symbol and Literal Cross Reference Record—X'0044' 304
Register Cross Reference Record—X'0045' . 305
Library Record—X'0060' . 306
Library Member and Macro Cross Reference Record—X'0062' 307
User-supplied Information Record—X'0070' . 308
USING Map Record—X'0080' . 308
Statistics Record—X'0090' . 309

Appendix E. Sample Program . 313

Appendix F. MHELP Sample Macro Trace and Dump 328

Appendix G. High Level Assembler Messages 336
Message Code Format . 336
Message Descriptions . 337
Assembly Error Diagnostic Messages . 339

Message Not Known . 341
Messages . 342

Abnormal Assembly Termination Messages . 380
ASMAHL Command Error Messages (CMS) . 385

 Contents ix

 Contents

Appendix H. User Interface Macros . 389

Appendix I. Sample ADATA User Exits (MVS and CMS) 390
Sample ASMAXADT User Exit to Filter Records 390

| Sample ASMAXADC User Exit to Control Record Output 396
| Sample ASMAXADR User Exit to Reformat Records 398

Appendix J. Sample LISTING User Exit (MVS and CMS) 401

Appendix K. Sample SOURCE User Exit (MVS and CMS) 403

Appendix L. How to Generate a Translation Table 404

Appendix M. How to Generate a Unicode Translation Table 406

| Appendix N. TYPECHECK Assembler Option 411
| Extensions to the DC, DS, and EQU Assembler Instructions 411
| Type Checking Behavior for REGISTER . 413
| Access Register Type Checking . 414
| General Rregister Type Checking . 415
| Control Register Type Checking . 418
| Floating-Point Register Type Checking . 419
| Type Checking Behavior for MAGNITUDE . 420

Notices . 422
Trademarks . 422

Glossary . 424

Bibliography . 429
High Level Assembler Publications . 429
Toolkit Feature Publications . 429
Related Publications (Architecture) . 429
Related Publications for MVS . 429
Related Publications for VM . 430
Related Publications for VSE . 430

Index . 431

x HLASM V1R5 Programmer’s Guide

 Organization of this Manual

About this Manual

This manual describes how to use the IBM High Level Assembler for MVS & VM &
VSE licensed program, hereafter referred to as High Level Assembler, or simply the
assembler. It is intended to help you assemble, link, and run your High Level
Assembler programs. It is meant to be used in conjunction with the HLASM
Language Reference.

Throughout this book, we use these indicators to identify platform-specific
information:

� Prefix the text with platform-specific text (for example, “Under CMS...”)

� Add parenthetical qualifications (for example, “(CMS only)”)

� Bracket the text with icons. The following are some of the icons that we use:

 Informs you of information specific to MVS

 Informs you of information specific to CMS

 Informs you of information specific to VSE

| MVS is used in this manual to refer to Multiple Virtual Storage/Enterprise Systems
| Architecture (MVS/ESA), to OS/390, and to z/OS.

| CMS is used in this manual to refer to Conversational Monitor System on z/VM.

| VSE is used in this manual to refer to Virtual Storage Extended/Enterprise Systems
| Architecture (VSE/ESA), and z/VSE.

Who Should Use this Manual
The HLASM V1R5 Programmer's Guide is for application programmers coding in
the High Level Assembler language. To use this manual, you should be familiar
with the basic concepts and facilities of your operating system.

Programming Interface Information
This manual is intended to help the customer create application programs. This
manual documents General-Use Programming Interface and Associated Guidance
Information provided by IBM High Level Assembler for MVS & VM & VSE.

General-use programming interfaces allow the customer to write programs that
obtain the services of IBM High Level Assembler for MVS & VM & VSE.

Organization of this Manual
This manual is organized as follows:

Part 1. Understanding and Using the Assembler

� Chapter 1, Introduction, describes High Level Assembler, and defines the
environmental requirements for using the assembler.

 Copyright IBM Corp. 1982, 2004 xi

 Organization of this Manual

� Chapter 2, Using the Assembler Listing, describes the content and
format of the assembler listing.

� Chapter 3, Controlling your Assembly with Options, describes the
assembler options that you can use to control the assembly of your
program.

� Chapter 4, Providing User Exits, describes how you can provide user
exits to compliment the assembler's data-set processing.

� Chapter 5, Providing External Functions, describes how to provide
user-supplied routines in conditional assembly instructions to set the value
of SET symbols.

� Chapter 6, Diagnosing Assembly Errors, describes the purpose and
format of error messages, MNOTEs, and the MHELP trace facility.

Part 2. Developing Assembler Programs on MVS

� Chapter 7, Assembling your Program on MVS, describes the different
methods of assembling your program on MVS, including invoking the
assembler with job control statements, invoking the assembler on TSO/E,
invoking the assembler dynamically, and batch assembling.

� Chapter 8, Linking and Running your Program on MVS, describes
linking, creating load modules, input and output for the linkage editor and
binder, detecting linking errors, and running your program on MVS.

� Chapter 9, MVS System Services and Programming Considerations,
describes the MVS system services that you can use to maintain macro
definitions in a macro library, and the cataloged procedures that are
provided to help you assemble, link-edit, and run your program on MVS.
This chapter also discusses programming topics such as standard entry
and exit procedures.

Part 3. Developing Assembler Programs on CMS

� Chapter 10, Assembling your Program on CMS, describes how to invoke
the assembler on CMS.

� Chapter 11, Running your Program on CMS, describes how to load and
run your program on CMS.

� Chapter 12, CMS System Services and Programming Considerations,
describes the CMS system services that you can use to maintain members
in a macro library. It also discusses programming topics such as standard
entry and exit procedures.

Part 4. Developing Assembler Programs on VSE

� Chapter 13, Assembling your Program on VSE, describes how to invoke
the assembler on VSE.

� Chapter 14, Link-Editing and Running your Program on VSE, describes
link-editing, creating load modules, input and output for the linkage editor,
detecting link-edit errors, and running your program on VSE.

� Chapter 15, VSE System Services and Programming Considerations,
describes the VSE system services that you can use to maintain macro
definitions in a macro library, and the cataloged procedures that are
provided to help you assemble, link-edit, and run your program on VSE.

xii HLASM V1R5 Programmer’s Guide

 Organization of this Manual

This chapter also discusses programming topics such as standard entry
and exit procedures.

 Appendixes

� Appendix A, Previous Assembler Compatibility and Migration, provides
a comparison of High Level Assembler and Assembler H Version 2, and
High Level Assembler and the DOS/VSE Assembler.

� Appendix B, Cross-System Portability Considerations, contains
information that helps you prepare your program for running under a
different operating system.

� Appendix C, Object Deck Output, describes the format of the object
module generated by the assembler.

� Appendix D, Associated Data File Output, describes the format of the
associated data file records generated by the assembler.

� Appendix E, Sample Program, provides a sample program that
demonstrates many of the assembler language features.

� Appendix F, MHELP Sample Macro Trace and Dump, provides a sample
program listing which shows the primary functions of MHELP.

� Appendix G, High Level Assembler Messages, describes the error
diagnostic messages, abnormal termination messages, and CMS command
error messages issued by the assembler.

� Appendix H, User Interface Macros, lists the macros that are provided as
Programming Interfaces with High Level Assembler.

� Appendix I, Sample ADATA User Exits, provides a description of the
sample ADATA user exits supplied with High Level Assembler.

� Appendix J, Sample LISTING User Exit, provides a description of the
sample LISTING user exit supplied with High Level Assembler.

� Appendix K, Sample SOURCE User Exit, provides a description of the
sample SOURCE user exit supplied with High Level Assembler to read
variable length input files.

� Appendix L, How to Generate a Translation Table, provides instructions
for generating a translation table to convert the characters contained in
character data constants and literals.

Glossary defines the terms used in this manual.

Bibliography lists the IBM Publications referred to within this manual.

 About this Manual xiii

 IBM High Level Assembler for MVS & VM & VSE Publications

IBM High Level Assembler for MVS & VM & VSE Publications
High Level Assembler runs on MVS, VM and VSE. These publications are
described in this section.

 Publications
The books in the High Level Assembler library are shown in Figure 1. This figure
shows which books can help you with specific tasks, such as application
programming.

HLASM V1R5 General Information
Introduces you to the High Level Assembler product by describing what
it does and which of your data processing needs it can fill. It is
designed to help you evaluate High Level Assembler for your data
processing operation and to plan for its use.

HLASM V1R5 Installation and Customization Guide
Contains the information you need to install and customize, and
diagnose failures in, the High Level Assembler product.

The diagnosis section of the book helps users determine if a correction
for a similar failure has been documented previously. For problems not
documented previously, the book helps users to prepare an APAR. This
section is for users who suspect that High Level Assembler is not
working correctly because of some defect.

Figure 1. IBM High Level Assembler for MVS & VM & VSE Publications

Task Publication Order Number

Evaluation and Planning HLASM V1R5 General
Information

GC26-4943

Installation and
Customization

HLASM V1R5 Installation
and Customization Guide

SC26-3494

HLASM V1R5
Programmer's Guide

SC26-4941

HLASM V1R5 Toolkit
Feature Installation Guide

GC26-8711

Application
Programming

HLASM V1R5
Programmer's Guide

SC26-4941

HLASM V1R5 Language
Reference

SC26-4940

HLASM V1R5 General
Information

GC26-4943

HLASM V1R5 Toolkit
Feature User's Guide

GC26-8710

HLASM V1R5 Toolkit
Feature Interactive Debug
Facility User's Guide

GC26-8709

Diagnosis HLASM V1R5 Installation
and Customization Guide

SC26-3494

Warranty HLASM V1R5 Licensed
Program Specifications

GC26-4944

xiv HLASM V1R5 Programmer’s Guide

 IBM High Level Assembler for MVS & VM & VSE Publications

HLASM V1R5 Language Reference
Presents the rules for writing assembler language source programs to
be assembled using High Level Assembler.

HLASM V1R5 Licensed Program Specifications
Contains a product description and product warranty information for High
Level Assembler.

HLASM V1R5 Programmer's Guide
Describes how to assemble, debug, and run High Level Assembler
programs.

HLASM V1R5 Toolkit Feature Installation Guide
Contains the information you need to install and customize, and
diagnose failures in, the High Level Assembler Toolkit Feature.

HLASM V1R5 Toolkit Feature User's Guide
Describes how to use the High Level Assembler Toolkit Feature.

HLASM V1R5 Toolkit Feature Debug Reference Summary
Contains a reference summary of the High Level Assembler Interactive
Debug Facility.

HLASM V1R5 Toolkit Feature Interactive Debug Facility User's Guide
Describes how to use the High Level Assembler Interactive Debug
Facility.

 Softcopy Publications
The High Level Assembler publications are available in the following softcopy
formats:

� z/OS V1Rx Collection, SK3T-4269
� z/OS V1Rx and Software Products DVD Collection, SK3T-4271
� z/VM Collection, SK2T-2067
� VSE Collection, SK2T-0060

The High Level Assembler web site
The High Level Assembler web site, at

| http://www.ibm.com/software/awdtools/hlasm

provides access to all HLASM publications, in downloadable or directly viewable
PDF and BookMaster formats.

The web site also provides access to other information relevant to High Level
Assembler.

| Using LookAt to look up Message Explanations
| LookAt is an online facility that lets you look up explanations for most of the IBM
| messages you encounter, as well as for some system abends and codes. Using
| LookAt to find information is faster than a conventional search because in most
| cases LookAt goes directly to the message explanation.

| You can use LookAt from the following locations to find IBM message explanations
| for z/OS elements and features, z/VM, VSE/ESA, and Clusters for AIX and
| Linux:

 About this Manual xv

| � The Internet. You can access IBM message explanations directly from the
| LookAt Web site at http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

| � Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e
| systems to access IBM message explanations, using LookAt from a TSO/E
| command line (for example, TSO/E prompt, ISPF, or z/OS UNIX System
| Services running OMVS).

| � Your Microsoft Windows workstation. You can install code to access IBM
| message explanations on the z/OS Collection (SK3T-4269), using LookAt from
| a Microsoft Windows command prompt (also known as the DOS command
| line).

| � Your wireless handheld device. You can use the LookAt Mobile Edition with a
| handheld device that has wireless access and an Internet browser (for
| example, Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or
| Opera for Linux handheld devices). Link to the LookAt Mobile Edition from the
| LookAt Web site.

| You can obtain code to install LookAt on your host system or Microsoft Windows
| workstation from a disk on your z/OS Collection (SK3T-4269), or from the LookAt
| Web site (click Download, and select the platform, release, collection, and location
| that suit your needs). More information is available in the LOOKAT.ME files
| available during the download process.

 Related Publications
See “Bibliography” on page 429 for a list of publications that supply information you
might need while using High Level Assembler.

 Syntax Notation
Throughout this book, syntax descriptions use the structure defined below.

� Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The ��── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next
line.

The �─── symbol indicates that a statement is continued from the previous line.

The ──�� indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the �───
symbol and end with the ───� symbol.

� Keywords appear in uppercase letters (for example, ASPACE) or upper and
lower case (for example, PATHFile). They must be spelled exactly as shown.
Lower case letters are optional (for example, you could enter the PATHFile
keyword as PATHF, PATHFI, PATHFIL or PATHFILE).

Variables appear in all lowercase letters in a special typeface (for example,
integer). They represent user-supplied names or values.

� If punctuation marks, parentheses, or such symbols are shown, they must be
entered as part of the syntax.

xvi HLASM V1R5 Programmer’s Guide

� Required items appear on the horizontal line (the main path).

��──INSTRUCTION──required item───────────────────────────────────────��

� Optional items appear below the main path. If the item is optional and is the
default, the item appears above the main path.

 ┌ ┐─default item──
��──INSTRUCTION─ ──┼ ┼─────────────── ──────────────────────────────────��
 └ ┘─optional item─

� When you can choose from two or more items, they appear vertically in a
stack.

If you must choose one of the items, one item of the stack appears on the
main path.

��──INSTRUCTION─ ──┬ ┬─required choice1─ ───────────────────────────────��
 └ ┘─required choice2─

If choosing one of the items is optional, the whole stack appears below the
main path.

��──INSTRUCTION─ ──┬ ┬────────────────── ───────────────────────────────��
 ├ ┤─optional choice1─
 └ ┘─optional choice2─

� An arrow returning to the left above the main line indicates an item that can be
repeated. When the repeat arrow contains a separator character, such as a
comma, you must separate items with the separator character.

 ┌ ┐─,───────────────
��──INSTRUCTION─ ───

┴─repeatable item─ ────────────────────────────────��

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items, or repeat a single choice.

The following example shows how the syntax is used.

 Format

 �A� �B� �C�

 ┌ ┐─,───────
��─ ──┬ ┬─────────────── ─INSTRUCTION─ ───

┴─┤ �1� ├─ ─��

 └ ┘ ─optional item─

�1�:
├─ ──┬ ┬─operand choice1─── ─┤
 ├ ┤─operand choice2───(1)

 └ ┘─operand choice3───

Note:
1 operand choice2 and operand choice3 must not be specified together

�A� The item is optional, and can be coded or not.

�B� The INSTRUCTION key word must be specified and coded as shown.

 About this Manual xvii

�C� The item referred to by �1� is a required operand. Allowable choices for
this operand are given in the fragment of the syntax diagram shown
below �1� at the bottom of the diagram. The operand can also be
repeated. That is, more than one choice can be specified, with each
choice separated by a comma.

xviii HLASM V1R5 Programmer’s Guide

Summary of Changes

Date of Publication June 2004

Form of Publication Fifth Edition, SC26-4941-04

New options

 � SECTALGN

 � SUPRWARN

 � TYPECHECK

Changed Assembler instructions

 � CNOP

– New alignment value

 � ORG

– New operands to align on any boundary

 � DC/DS

– New LQ type to align on quadword boundary
– Programmer type added

 � EQU

Two new operands:

 – Assembler type
 – Programmer type

Changed assembler statements

� Parts with text:

– Support PART and PRIORITY attributes on the CATTR statement, for MVS
and CMS.

– Output appropriate GOFF ESD records for PART and CLASS

AMODE

� ANY64 operand added

Pathname support

� Report the path name of any HFS file which is provided as input to, or output
from, the assembler.

Unified Opcode table

� A single opcode table is provided, encompassing the previous separate opcode
tables.

ADATA enhancements

The following enhancements are made to ADATA:

� Revised layout of the ADATA records.

 Copyright IBM Corp. 1982, 2004 xix

� The ADATA Exit processing is changed such that it mirrors the processing of
other exits.

� GOFF ESD and RLD information is provided.

� The maximum record length is increased.

Miscellany

� The ASCII translation table is upgraded.

� Support provided for Relative Immediate instructions which reference one or
more external symbols.

� The Relocation Dictionary section of the assembler listing is reformatted.

� A numeric assembler version identifier is introduced.

� Additional diagnostic messages are provided.

� Enhancements to the external function parameter list.

� Enhancements to the Assembler Summary listing.

� A new exit call - REINIT.

� The SYSUT1 (in VSE, IJSYS03) utility file is removed. The assembler runs
entirely in main storage. The file is still accepted in JCL for compatibility.

� New limit of 1024 for SETC and parameter string lengths.

� Enhancements to internal conditional assembly functions.

xx HLASM V1R5 Programmer’s Guide

 Part 1. Understanding and Using the Assembler

Part 1. Understanding and Using the Assembler

Chapter 1. Introduction . 5
Requirements . 5

System Requirements . 5
Machine Requirements . 5
Storage Requirements . 6

Compatibility . 7
Assembler Language Support . 7
Migration Considerations . 7

Chapter 2. Using the Assembler Listing . 8
High Level Assembler Option Summary . 9
External Symbol Dictionary (ESD) . 13
Source and Object . 16
Relocation Dictionary (RLD) . 23
Ordinary Symbol and Literal Cross Reference 24
Unreferenced Symbols Defined in CSECTs . 27
Macro and Copy Code Source Summary . 27
Macro and Copy Code Cross Reference . 28

Effects of LIBMAC and PCONTROL(MCALL) Options 30
DSECT Cross Reference . 32
USING Map . 33
General Purpose Register Cross Reference . 34
Diagnostic Cross Reference and Assembler Summary 35

Chapter 3. Controlling Your Assembly with Options 41
The Sources of Assembler Options . 41

Precedence of Assembler Options . 41
Fixed Installation Default Options . 42
*PROCESS OVERRIDE Statement Options 42
ASMAOPT Options . 42
Invocation Options . 42
*Process Statement Options . 43
Default Options . 44
Invoking the Assembler Dynamically . 44
Coding Rules . 44

Assembler Options . 45
ADATA . 45
ALIGN . 46
ASA (MVS and CMS) . 46
BATCH . 47
CODEPAGE . 47
COMPAT . 48
DBCS . 49
DECK . 50
DISK (CMS) . 50
DXREF . 50
ERASE (CMS) . 51
ESD . 51
EXIT . 52
FLAG . 55

 Copyright IBM Corp. 1982, 2004 1

 Part 1. Understanding and Using the Assembler

FOLD . 58
GOFF (MVS and CMS) . 58
INFO . 60
LANGUAGE . 60
LIBMAC . 61
LINECOUNT . 62
LIST . 62

| MACHINE . 63
MXREF . 65
OBJECT . 66
OPTABLE . 66
PCONTROL . 68
PESTOP . 70
PRINT (CMS) . 70
PROFILE . 70
RA2 . 71
RENT . 72
RLD . 72
RXREF . 73

| SECTALGN . 73
SEG (CMS) . 73
SIZE . 74

| SUPRWARN . 76
SYSPARM . 76
TERM . 77
TEST . 78
THREAD . 78
TRANSLATE . 79

| TYPECHECK . 79
USING . 80
XOBJECT (MVS and CMS) . 83
XREF . 83

Chapter 4. Providing User Exits . 85
Exit Types . 85
Specifying User Exits . 86
Loading User Exits . 87
Calling User Exits . 88
Exit Parameter List . 88

Request Info Pointer . 90
Parameter List Version . 90
Exit Type . 90
Request Type . 90
Options . 91
EXITCTLn . 92
Return Code . 92
Reason Code . 93
Buffer Length . 95
Error Buffer Length . 96
Error Severity . 96
User-Defined Field . 96
Common User Field . 97

Buffer Pointer . 97
Error Buffer Pointer . 97

2 HLASM V1R5 Programmer’s Guide

 Part 1. Understanding and Using the Assembler

Exit-Specific Information Pointer . 97
DCB Pointer . 97

Static Assembler Information Pointer . 98
HLASM VRM . 98
PTF Level . 98
System ID . 98

| Numeric Version . 98
Error Handling . 99
Exit-Specific Information Block . 99

Member Name . 101
Member Type . 101
Data Set Name . 101
Volume Serial . 101
Relative Record Number . 102
Absolute Record Number . 103
Linecount . 103
Current Page Number . 103

SOURCE Exit Processing . 104
OPEN . 104
CLOSE . 104
READ . 104
PROCESS . 105

LIBRARY Exit Processing . 106
OPEN . 106
CLOSE . 107
READ . 107
PROCESS MACRO or PROCESS COPY . 108
FIND MACRO or FIND COPY . 108
END OF MEMBER . 110

LISTING Exit Processing . 112
OPEN . 113
CLOSE . 114
WRITE . 114
PROCESS . 114

OBJECT (MVS and CMS) and PUNCH Exit Processing 116
OPEN . 117
CLOSE . 118
WRITE . 118
PROCESS . 118

ADATA Exit Processing . 120
OPEN . 120
CLOSE . 121

| WRITE . 121
PROCESS . 121

TERM Exit Processing . 122
OPEN . 123
CLOSE . 124
WRITE . 124
PROCESS . 124

Sample User Exits . 125
User Exit Coding Example . 125

Chapter 5. Providing External Functions . 144
External Function Processing . 144

 Part 1. Understanding and Using the Assembler 3

 Part 1. Understanding and Using the Assembler

Linkage Conventions . 145
External Function Parameter List . 145

Request Information List . 148
Parameter List Version . 148
Function Type . 148
Number of Parameters . 148
Return Code . 148
Flag Byte . 148
Reserved . 149
Msg Length . 149
Msg Severity . 149
Return Value (SETAF) . 149
Parm Value n (SETAF) . 149
Return String Length (SETCF) . 149
Parm String n Length (SETCF) . 150

Pointer to User Work Area . 150
| Pointer to Static Assembler Information . 150

Pointer to Msg Buffer . 150
Pointer to Return String (SETCF) . 150
Pointer to Parm String n (SETCF) . 151

Chapter 6. Diagnosing Assembly Errors . 152
Assembly Error Diagnostic Messages . 152
MNOTE Statements . 154
Suppression of Error Messages and MNOTE Statements 156
Reference Information for Statements in Error 156
Abnormal Assembly Termination . 157
MHELP—Macro Trace Facility . 157

4 HLASM V1R5 Programmer’s Guide

 Requirements

 Chapter 1. Introduction

IBM High Level Assembler for MVS & VM & VSE is an IBM licensed program that
can be used to assemble assembler language programs that use the following
machine instructions:

 System/370
System/370 Extended Architecture (370-XA)
Enterprise Systems Architecture/370 (ESA/370)
Enterprise Systems Architecture/390 (ESA/390)

| z/Architecture machine instructions

 Requirements
This section describes the operating systems, the processors, and the amount of
storage required to run High Level Assembler.

 System Requirements
High Level Assembler runs under the operating systems listed below. Unless
otherwise stated, the assembler also operates under subsequent versions,
releases, and modification levels of these systems:

| OS/390 Version 2 Release 10.0 (5647-A01)
| VM/ESA Version 3 Release 1.0 (5654-A17)
| VSE/ESA Version 2 Release 6 (5690-VSE)
| z/OS Version 1 Release 2.0 (5694-A01)

High Level Assembler supports the operation codes available with the following
mode processors:

Extended Architecture (370-XA)
Enterprise Systems Architecture/370 (ESA/370)
Enterprise Systems Architecture/390 (ESA/390)

| z/Architecture

 Machine Requirements
For assembling High Level Assembler programs: Programs written using High

| Level Assembler can be assembled, including use of the z/Architecture processor
| machine instructions, the Extended Architecture mode processor machine

instructions, and Enterprise System Architecture mode processor machine
instructions, on all System/370 family and its follow-on machines supporting the
following operating systems:

| z/OS
| z/VM

 OS/390
 VM/ESA
 VSE/ESA

You might require an operating system-specific macro library to assemble programs
that run under that operating system, depending on macro usage.

 Copyright IBM Corp. 1982, 2004 5

 Requirements

For running High Level Assembler programs: A generated object program
| using z/Architecture, Extended Architecture (370-XA), Enterprise Systems

Architecture/370 (ESA/370), Enterprise Systems Architecture/390 (ESA/390),
Enterprise Systems/9000 (ES/9000) or Vector instructions can be run only on an
applicable processor under an operating system that provides the necessary
architecture support for the instructions used.

Tape device: High Level Assembler is distributed on one of the following:

Standard labeled 9-track magnetic tape written at 6250 bpi
3480 tape cartridge
4mm DAT cartridge

An appropriate tape device is required for installation.

Double-byte data: Double-byte data can be displayed, entered, or both, in their
national language representation on the following:

IBM 3800-8 system printer
IBM 3200 system printer
IBM 3820 remote printer
IBM PS/55 family as an IBM 3270 terminal

 Storage Requirements
| Virtual storage: High Level Assembler requires a minimum of 610K bytes of main

storage. 410K bytes of storage are required for High Level Assembler load
modules. The rest of the storage allocated to the assembler is used for assembler
working storage.

Auxiliary storage space: Depending on the assembler options used, auxiliary
storage space might be required for the following data sets:

 System input
Macro instruction library—either system or private or both

 Print output
Object module output
Associated data output

Library space: The space requirements for the High Level Assembler load
modules (or phases) and procedures are provided in the HLASM Installation and
Customization Guide.

Installation: Please refer to HLASM Installation and Customization Guide for
installation requirements.

6 HLASM V1R5 Programmer’s Guide

 Compatibility

 Compatibility
This section describes source program compatibility and migration issues that you
need to consider before using High Level Assembler.

Assembler Language Support
The assembler language supported by High Level Assembler has functional
extensions to the languages supported by Assembler H Version 2 and the
DOS/VSE Assembler. High Level Assembler uses the same language syntax,
function, operation, and structure as these earlier assemblers. The functions
provided by the Assembler H Version 2 macro facility are all provided by High Level
Assembler.

 Migration Considerations
Source Programs: Migration from High Level Assembler Release 1, High Level

| Assembler Release 2, High Level Assembler Release 3, High Level Assembler
| Release 4, Assembler H Version 2 or DOS/VSE Assembler to High Level
| Assembler Release 5, requires an analysis of existing assembler language

programs to ensure that they do not contain macro instructions with names that
| conflict with the High Level Assembler Release 5 symbolic operation codes, or SET
| symbols with names that conflict with the names of High Level Assembler Release
| 5 system variable symbols.

With the exception of these possible conflicts, and with appropriate High Level
Assembler option values, assembler language source programs written for High
Level Assembler Release 1, High Level Assembler Release 2, High Level

| Assembler Release 3, High Level Assembler Release 4, Assembler H Version 2 or
the DOS/VSE Assembler, that assemble without warning or error diagnostic

| messages, should assemble correctly using High Level Assembler Release 5.

| Object Programs: Object programs generated by High Level Assembler Release
| 5 in any one of the supported operating systems can be migrated to any other of

the supported operating systems for execution.

The object programs being migrated must be link-edited in the target operating
system environment before execution.

You should be aware of the differences in the code generated by system macros in
the supported operating systems. Operational facilities available on the source
operating system but not available on the target operating system should not be
specified for any program which is required to be compatible, either during
assembly or link-edit.

 Chapter 1. Introduction 7

 Using the Assembler Listing

Chapter 2. Using the Assembler Listing

This chapter tells you how to interpret the printed listing produced by the
assembler. The listing is obtained only if the option LIST is in effect. Parts of the
listing can be suppressed by using other options; for information on the listing
options, refer to Chapter 3, “Controlling Your Assembly with Options” on page 41.

The High Level Assembler listing consists of up to twelve sections, ordered as
follows:

� High Level Assembler Option Summary
� External Symbol Dictionary (ESD)
� Source and Object
� Relocation Dictionary (RLD)
� Ordinary Symbol and Literal Cross Reference
� Unreferenced Symbols Defined in CSECTs
� Macro and Copy Code Source Summary
� Macro and Copy Code Cross Reference
� DSECT Cross Reference

 � USING Map
� General Purpose Register Cross Reference
� Diagnostic Cross Reference and Assembler Summary

The following assembler options are used to control the format, and which sections
to produce, of the assembler listing:

ASA (MVS and CMS) Allows you to use American National Standard printer
control characters, instead of machine printer control characters.

DXREF Produces the DSECT Cross Reference section.

ESD Produces the External Symbol Dictionary section.

EXIT(PRTEXIT(mod3))
Allows you to supply a listing exit to replace or complement the
assembler's listing output processing.

LANGUAGE
Produces error diagnostic messages in the following languages:

� English mixed case (EN)
 � English uppercase (UE)
 � German (DE)
 � Japanese (JP)
 � Spanish (ES)

When you select either of the English languages, the assembler listing
headings are produced in the same case as the diagnostic messages.

When you select either the German language or the Spanish language,
the assembler listing headings are produced in mixed case English.

When you select the Japanese language, the assembler listing headings
are produced in uppercase English.

The assembler uses the installation default language for messages
produced in CMS by the ASMAHL command.

8 Copyright IBM Corp. 1982, 2004

 High Level Assembler Option Summary

LINECOUNT
Allows you to specify how many lines should be printed on each page.

LIST Controls the format of the Source and Object section of the listing.
NOLIST suppresses the entire listing.

MXREF Produces one, or both, of the Macro and Copy Code Source Summary
and Macro and Copy Code Cross Reference sections.

PCONTROL
Controls which statements are printed in the listing, and overrides some
PRINT instructions.

RLD Produces the Relocation Dictionary section.

RXREF Produces the General Purpose Register Cross Reference section.

USING(MAP)
Produces the Using Map section.

XREF Produces one, or both, of the Ordinary Symbol and Literal Cross
Reference and the Unreferenced Symbols Defined in CSECTs sections.

The following additional options can be specified when you run the assembler on
CMS:

LINECOUN
An abbreviation of the LINECOUNT option.

PRINT The assembler listing is written to the virtual printer instead of to a disk
file.

The sections in the listing are described on the following pages.

High Level Assembler Option Summary
High Level Assembler provides a summary of the options current for the assembly,
including:

� A list of the overriding parameters specified in the ASMAOPT file (MVS and
CMS) or library member ASMAOPT.USER (VSE).

� A list of the overriding parameters specified when the assembler was called

� The options specified on *PROCESS statements

� In-line error diagnostic messages for any overriding parameters and
*PROCESS statements in error

You cannot suppress the option summary unless you suppress the entire listing, or
you supply a user exit to control which lines are printed.

On MVS and CMS, High Level Assembler provides a sample LISTING exit that
allows you to suppress the option summary or print it at the end of the listing. See
Appendix J, “Sample LISTING User Exit (MVS and CMS)” on page 401.

Figure 2 shows an example of the High Level Assembler Option Summary. The
example includes assembler options that have been specified in the following
option sources:

 � ASMAOPT file

 Chapter 2. Using the Assembler Listing 9

 High Level Assembler Option Summary

 � Invocation parameters

� PROCESS statements including an example specifying the OVERRIDE
keyword.

The example shows a number of error diagnostic messages relating to the conflicts
and errors in the options specified.

10 HLASM V1R5 Programmer’s Guide

 High Level Assembler Option Summary

High Level Assembler Option Summary Page 1

 �1� �2�
 HLASM R5.� 2��4/�6/11 17.48

 � Overriding ASMAOPT Parameters - sysparm(thisisatestsysparm),rxref

 Overriding Parameters- NOOBJECT,language(en),size(4meg),xref(short,unrefs),nomxref,norxref,adata,noadata

 Process Statements- OVERRIDE(ADATA,MXREF(full))

 ALIGN

 noDBCS

 MXREF(FULL),nolibmac

 FLAG(�)

 noFOLD,LANGUAGE(ue)

 NORA2

 NODBCS

 XREF(FULL)

 �3�
�� ASMA4��W Error in invocation parameter - size(4meg)

�� ASMA438N Attempt to override ASMAOPT parameter. Option norxref ignored.

�� ASMA425N Option conflict in invocation parameters. noadata overrides an earlier setting.

�� ASMA423N Option ADATA, in a �PROCESS OVERRIDE statement conflicts with invocation or default option. Option is not

permitted in a �PROCESS statement and has been ignored.

�� ASMA422N Option LANGUAGE(ue) is not valid in a �PROCESS statement.

�� ASMA437N Attempt to override invocation parameter in a �PROCESS statement. Suboption FULL of XREF option ignored.

Options for this Assembly

 �4�
 3 NOADATA

 5 ALIGN

 NOASA

 BATCH

 CODEPAGE(�47C)

 NOCOMPAT

 5 NODBCS

 NODECK

 DXREF

 ESD

 NOEXIT

 5 FLAG(�,ALIGN,CONT,EXLITW,NOIMPLEN,NOPAGE�,PUSH,RECORD,NOSUBSTR,USING�)

 5 NOFOLD

 NOGOFF

 NOINFO

 3 LANGUAGE(EN)

 5 NOLIBMAC

 LINECOUNT(6�)

 LIST(121)

| MACHINE(,NOLIST)

 1 MXREF(FULL)

 3 NOOBJECT

 OPTABLE(UNI,NOLIST)

 NOPCONTROL

 NOPESTOP

 NOPROFILE

 5 NORA2

 NORENT

 RLD

 2 RXREF

| SECTALGN(8)

 SIZE(MAX)

| NOSUPRWARN

 2 SYSPARM(thisisatestsysparm)

 NOTERM

1 High Level Assembler Option Summary Page 2

- HLASM R5.� 2��4/�6/11 17.48

� NOTEST

 THREAD

 NOTRANSLATE

| TYPECHECK(MAGNITUDE,REGISTER)

 USING(NOLIMIT,MAP,WARN(15))

 3 XREF(SHORT,UNREFS)

 �5�
No Overriding DD Names

1 External Symbol Dictionary Page 3

-Symbol Type Id Address Length Owner Id Flags Alias-of HLASM R5.� 2��4/�6/11 17.48

�A SD �������1 �������� �������� ��

1 Page 4

Active Usings: None

� Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 �6�
� 1 �PROCESS OVERRIDE(ADATA,MXREF(full))

2 �PROCESS ALIGN

3 �PROCESS noDBCS

4 �PROCESS MXREF(FULL),nolibmac

5 �PROCESS FLAG(�)

6 �PROCESS noFOLD,LANGUAGE(ue)

7 �PROCESS NORA2

8 �PROCESS NODBCS

9 �PROCESS XREF(FULL)

 ������ ����� ����� 1� A CSECT

R:F ����� 11 USING �,15

Figure 2. Option Summary Including Options Specified on *PROCESS Statements

 Chapter 2. Using the Assembler Listing 11

 High Level Assembler Option Summary

The highlighted numbers in the example are:

�1� The product description. Shown on each page of the assembler listing. (You
can use the TITLE instruction to generate individual headings for each page of
the source and object program listing.)

�2� The date and the time of the assembly.

�3� Error diagnostic messages for overriding parameters and *PROCESS
statements. These immediately follow the list of *PROCESS statement
options. The error diagnostic messages are:

ASMA400W - The value specified as the size option is not valid. The valid
option is SIZE(4M).

ASMA438N - The option RXREF is specified in the ASMAOPT file and the
conflicting option NORXREF is specified as an invocation parameter.
The ASMAOPT options have precedence over the invocation
parameters and the NORXREF option is ignored.

ASMA425N - The ADATA option specified as an invocation parameter
overrides the option NOADATA which was also specified as an
invocation parameter. When conflicting options are received from the
same source, the last occurrence takes precedence.

ASMA423N - The option ADATA has been specified in a *PROCESS
statement with the OVERRIDE option. The option cannot be set by a
*PROCESS statement, and the option conflicts with an invocation or
default option. This message is printed when an option that cannot be
set by a *PROCESS statement (See “*Process Statement Options” on
page 43) is included in a *PROCESS OVERRIDE statement and the
option conflicts with an invocation or default option. If the option does
not conflict with the invocation or default option no message is printed.

ASMA422N - The option LANGUAGE is not permitted in a *PROCESS
statement.

ASMA437N - The option XREF(FULL) which is specified in the last
*PROCESS statement conflicts with the option NORXREF which is
specified as an invocation parameter. The option XREF(FULL) is
ignored.

�4� A flag beside each option indicates the source of the option. This table shows
the sources:

Figure 3. Flags used in the Option Summary

Flag Meaning

1 The option came from a *PROCESS OVERRIDE statement.

2 The option came from the ASMAOPT options file (MVS and CMS) or
ASMAOPT.USER library member (VSE).

3 The option came from the invocation parameters.

4 The permanent job control options set by the VSE command STDOPT.

5 The option came from a *PROCESS statement.

(space) The option came from the installation defaults.

12 HLASM V1R5 Programmer’s Guide

 External Symbol Dictionary

�5� On MVS and CMS, if the assembler has been called by a program and any
standard (default) ddnames have been overridden, both the default ddnames
and the overriding ddnames are listed. Otherwise, this statement appears:

No Overriding DD Names

�6� The *PROCESS statements are written as comment statements in the Source
and Object section of the listing.

See “ Precedence of Assembler Options” on page 41.

External Symbol Dictionary (ESD)
This section of the listing contains the external symbol dictionary information

| passed to the linkage editor or loader, or z/OS MVS Program Management Binder,
in the object module.

This section helps you find references between modules in a multimodule program.
The ESD may be particularly helpful in debugging the running of large programs
constructed from several modules.

| The ESD entries describe the control sections, external references, classes, parts
| and entry points in the assembled program. There are nine types of ESD entries
| (SD, ED, LD, ER, PC, PR, CM, XD, and WX).Figure 4 shows the ESD entries

when you specify the NOGOFF option. Figure 5 on page 14 shows the ESD
entries when you specify the GOFF option. For each of the different types of ESD
entries, an X indicates which of the fields have values.

Figure 4. Types of ESD Entries when NOGOFF Option Specified

SYMBOL TYPE ID ADDR LENGTH| Owner
| ID

FLAGS

X SD X X X X

X LD X X

X ER X

PC X X X X

X CM X X X X

X XD X X X

X WX X

 Chapter 2. Using the Assembler Listing 13

 External Symbol Dictionary

Figure 6 is an example of the External Symbol Dictionary generated with the GOFF
assembler option, and is followed by a description of its contents.

Note: This sample is intended to show the various fields and possible values and
is not meant to be an actual listing.

Figure 5. Types of ESD Entries when GOFF Option Specified

SYMBOL TYPE ID ADDR LENGTH| Owner
| ID

FLAGS

X SD X X1

X ED X X X X X

X LD X X X X

| X| PR| X| X| X| X| X

X ER X X

X CM X X X X

X XD X X X

X WX X X

Note:

1. Only if the SD ESDID entry is associated with CM ESDID entry.

SAMP�1 External Symbol Dictionary Page 2

�1� �2� �3� �4� �5� �6� �7� �8�
| Symbol Type Id Address Length Owner Id Flags Alias-of HLASM R5.� 2��4/�6/11 17.48

SAMP�1 SD �������1

B_PRV ED �������2 �������1

B_TEXT ED �������3 �������� ������E� �������1 ��

SAMP�1 LD �������4 �������� �������3 ��

ENTRY1 LD �������5 �������� �������3 ��

KL_INST SD �������6

B_PRV ED �������7 �������6

B_TEXT ED �������8 �������� �������� �������6 ��

KL_INST CM �������9 �������� �������8 ��

 SD �������A

B_PRV ED �������B �������A

B_TEXT ED �������C ������E� �������� �������A ��

Date���1 ER �������D �������A RCNVDATE

RCNVTIME ER �������E �������A

Figure 6. External Symbol Dictionary Listing

�1� The name of every external dummy section, control section, entry point,
| external symbol, part, and class. If the external dummy section, control
| section, entry point, part or external symbol has a corresponding ALIAS

instruction, the symbol shows the operand of the ALIAS instruction.

When you specify the GOFF assembler option on MVS or CMS, the
assembler generates two ED entries, the first with a symbol name of B_PRV
and the second with a symbol name of B_TEXT.

�2� The type designator for the entry, as shown in the table:

SD Control section definition. The symbol appeared in the name field of a
START, CSECT, or RSECT instruction.

| When you specify the GOFF assembler option, on MVS or CMS, the
| assembler will generate an SD entry type for the symbol which
| appears in the field name of a COM instruction.

14 HLASM V1R5 Programmer’s Guide

 External Symbol Dictionary

LD Label definition. The symbol appeared as the operand of an ENTRY
statement.

When you specify the GOFF assembler option, on MVS or CMS, the
assembler generates an entry type of LD for each CSECT and
RSECT name.

ER External reference. The symbol appeared as the operand of an
EXTRN statement, or appeared as an operand of a V-type address
constant.

PC Unnamed control section definition (private code). A CSECT, RSECT,
or START statement that commences a control section that does not
have a symbol in the name field, or a control section that is
commenced (by any instruction which affects the location counter)
before a CSECT, RSECT, or START.

When you specify the GOFF assembler option, on MVS or CMS, the
| assembler does not generate an LD entry for a private code section.

For private code, the assembler creates an SD entry type with a blank
name.

| PR Part definition. The symbol appeared in the PART parameter of a
| CATTR statement.

CM Common control section definition. The symbol appeared in the name
field of a COM statement.

XD External dummy section. The symbol appeared in the name field of a
DXD statement or the operand of a Q-type address constant.

The external dummy section is also called a pseudo register in the
applicable Linkage Editor and Loader manual, and the z/OS DFSMS
Program Management manual.

WX Weak external reference. The symbol appeared as an operand in a
WXTRN statement.

ED Element definition (one for each class). The symbol appeared as an
operand in a CATTR statement.

When you specify the NOGOFF assembler option, on MVS or CMS,
the assembler does not generate an entry type of ED.

For further information, refer to the z/OS DFSMS Program
Management manual.

�3� The external symbol dictionary identification number (ESDID). The number
is a unique 8-digit hexadecimal number identifying the entry.

�4� The address of the symbol (in hexadecimal notation) for SD- and LD-type
| entries, and spaces for ER- and WX-type entries. For PC- PR- and CM-type
| entries, it indicates the beginning address of the control section. For

XD-type entries, it indicates the alignment with a number one less than the
number of bytes in the unit of alignment. For example, 7 indicates
doubleword alignment.

�5� The assembled length, in bytes, of the section, element, or DXD (in
hexadecimal notation).

�6� The ESDID of the control section in which the LD ID is the ESDID of the
following, depending on the type:

 Chapter 2. Using the Assembler Listing 15

 Source and Object

LD The control section in which the label is defined.

ED The control section to which this element belongs.

CM The control section in which the common control section is
defined.

ER The control section in which the external reference was declared.

| PR The class to which this part belongs.

�7� For SD-, PC-, and CM-type entries, this field contains the following flags:

Bit 2: � = use the RMODE bit (5)

1 = RMODE is 64

Bit 3: � = use the AMODE bits (6-7)

1 = AMODE is 64

Bit 4: � = Section is not an RSECT

1 = Section is an RSECT

Bit 5: � = RMODE is 24

1 = RMODE is 31

Bits 6-7: �� = AMODE is 24

�1 = AMODE is 24

1� = AMODE is 31

11 = AMODE is ANY

�8� When symbol �1� is defined in an ALIAS instruction, this field shows the
name of the external dummy section, control section, entry point, part or
external symbol of which symbol �1� is an alias.

Source and Object
This section of the listing documents the source statements of the module and the
resulting object code.

This section is the most useful part of the listing because it gives you a copy of all
the statements in your source program (except listing control statements) exactly as
they are entered into the machine. You can use it to find simple coding errors, and
to locate and correct errors detected by the assembler. By using this section with
the Ordinary Symbol and Literal Cross Reference section, you can check that your
branches and data references are in order. The location counter values and the
object code listed for each statement help you locate any errors in a storage dump.
Finally, you can use this part of the listing to check that your macro instructions
have been expanded properly.

On MVS and CMS, the assembler can produce two formats of the Source and
Object section: a 121-character format and a 133-character format. To select one,
you must specify either the LIST(121) assembler option or the LIST(133) assembler
option. Both sections show the source statements of the module, and the object
code of the assembled statements.

The 133-character format shows the location counter, and the first and second
operand addresses (ADDR1 and ADDR2) as 8-byte fields in support of 31-bit
addresses. This format is required when producing the generalized object format
data set (see “GOFF (MVS and CMS)” on page 58). The 133-character format also
contains the first eight characters of the macro name in the identification-sequence
field for statements generated by macros. Figure 7 on page 17 shows an example

16 HLASM V1R5 Programmer’s Guide

 Source and Object

of the Source and Object section of the listing. This section shows the source
statements of the module, and the object code of the assembled statements.

High Level Assembler lets you write your program, and print the assembler listing
headings, in mixed-case. Diagnostic messages are printed in the language you
specify in the LANGUAGE assembler option described in “LANGUAGE” on
page 60.

Figure 7 shows an example of the Source and Object section in 121-character
format, and in mixed-case.

�1� �2�
SAMP�1 Sample Listing Description Page 3

Active Usings: None

 �3� �4� �5� �6� �7� �8� �9�
 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

������ ����� ���E� 2 Samp�1 Csect

 22 Entry1 SAMPMAC Parm1=YES ����23��

������ 18CF 23+Entry1 LR 12,15 �1-SAMPM

 24+ ENTRY Entry1 �1-SAMPM

 �12�
 R:C ����� 25+ USING Entry1,12 Ordinary Using �1-SAMPM

�����2 ���� ���� ����� 26+ LA Savearea,1� �1-SAMPM

�1�� �� ASMA�44E Undefined symbol - Savearea
�1�� �� ASMA�29E Incorrect register specification - Savearea
�11� �� ASMA435I Record 6 in SAMP�1 MACLIB A1(SAMPMAC) on volume: EAR191

�����6 5�D� A��4 ����4 27+ ST 13,4(,1�) �1-SAMPM

�����A 5�A� D��8 ����8 28+ ST 1�,8(,13) �1-SAMPM

�����E 18DA 29+ LR 13,1� �1-SAMPM

R:A35 ���1� 3�+ USING �,1�,3,5 Ordinary Using,Multiple Base �1-SAMPM

�� ASMA3�3W Multiple address resolutions may result from this USING and the USING on statement number 25

�13� �� ASMA435I Record 1� in SAMP�1 MACLIB A1(SAMPMAC) on volume: EAR191

 �14�
31+ DROP 1�,3,5 Drop Multiple Registers �1-SAMPM

 32 COPY SAMPLE ����24��

33=� Line from member SAMPLE

C �2A ����� ���2A 34 Using IHADCB,INDCB Establish DCB addressability ����25��

 C �7A ����� ���7A 35 ODCB Using IHADCB,OUTDCB ����26��

 36 push using ����27��

 �15�
R:2 ����� 37 PlistIn Using Plist,2 Establish Plist addressability ����28��

R:3 ����� 38 PlistOut Using Plist,3 ����29��

SAMP�1 Sample Listing Description Page 4

| �16� Active Usings (1):Entry1,R12 IHADCB(X'FD6'),R12+X'2A' PlistIn.plist,R2 PlistOut.plist,R3

| ODCB.IHADCB(X'F86'),R12+X'7A'

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

����1� 1851 4� ?Branch LR R5,R1 Save Plist pointer ����31��

�� ASMA147E Symbol too long, or first character not a letter - ?Branch

�� ASMA435I Record 3� in SAMP�1 ASSEMBLE A1 on volume: EAR191

����12 582� 5��� ����� 41 L R2,�(,R5) R2 = address of request list ����32��

����16 47F� C�22 ���22 42 B Open ����33��

 697 End ���551��

����D� �������1 698 =f'1'

����D4 �������� 699 =V(RCNVDATE)

����D8 �������� 7�� =V(RCNVTIME)

����DC �������2 7�1 =f'2'

Figure 7. Source and Object Listing Section—121 Format

�1� The deck identification, if any, consisting of 1–8 characters. It is obtained
from the name field of the first named TITLE statement. The assembler
prints the deck identification and date on every page of the listing except the
Options Summary.

�2� The information taken from the operand field of a TITLE statement.

 Chapter 2. Using the Assembler Listing 17

 Source and Object

�3� Location field. This is the value of the location counter that represents the
assembled address (in hexadecimal notation) of the object code.

� For ORG statements, the value of the location counter before the ORG
is placed in the location column, and the value of the location counter
after the ORG is placed in the Addr2 field.

� If the END statement contains an operand, the operand value (requested
entry point) appears in the location field.

� In the case of LOCTR, COM, CSECT, RSECT, and DSECT statements,
the location field contains the current address of these control sections.

� In the case of EXTRN, WXTRN, ENTRY, and DXD instructions, the
location field and object code field are blank.

� For LTORG statements, the location field contains the location assigned
to the literal pool.

If, at the time of the page eject, the current control section being assembled
is a COM section, the heading line starts with C-LOC. If, at the time of the
page eject, the current control section being assembled is a DSECT, the
heading line starts with D-LOC. If, at the time of the page eject, the current
control section being assembled is an RSECT, the heading line starts with
R-LOC.

�4� The object code produced by the source statement. The entries, which are
shown left-justified and in hexadecimal notation, are machine instructions or
assembled constants. Machine instructions are printed in full with a space
inserted after every 4 digits (2 bytes). Only the first 8 bytes of a constant
appears in the listing if PRINT NODATA is in effect, unless the statement
has continuation records. The whole constant appears if PRINT DATA is in
effect. (See the PRINT assembler instruction in the HLASM Language
Reference.)

This field also shows the base registers for ordinary USING instructions, and
the base register and displacement for dependent USING instructions. See
�12� and �15� for more details.

�5� Effective addresses (each the result of adding a base register value and a
displacement value):

� The field headed Addr1 contains the effective address for the first
operand of an instruction (if applicable). It may also contain the
following:

– For a USING instruction, the Addr1 field contains the value of the
first operand.

– For a CSECT, START, LOCTR, or RSECT instruction, the Addr1
field contains the start address of the control section.

– For an ORG instruction, the Addr1 field contains the value of the
location counter before the ORG.

– For an EQU instruction, the Addr1 field contains the value assigned.

� The field headed Addr2 contains the effective address of the last
operand of any instruction referencing storage.

– For a USING instruction, the Addr2 field contains the value of the
second operand.

18 HLASM V1R5 Programmer’s Guide

 Source and Object

– For a CSECT, START, LOCTR, or RSECT instruction, the Addr2
field contains the end address of the control section.

– For an ORG instruction, the Addr2 field contains the next address as
specified by the operand field.

– For an EQU instruction, the Addr2 field contains the length assigned.

If the assembler option LIST(121) is in effect, both address fields contain 6
digits; however, if the high-order digit is 0, it is not printed. If the assembler
option LIST (133) is in effect, both address fields contain 8 digits. For
USING and EQU instructions, the Addr2 field may contain up to 8 digits.

�6� The statement number. The column following the statement number may
contain the following values:

� A plus sign (+) indicates that the statement was generated as the result
of macro call processing.

� An unnumbered statement with a plus sign (+) is the result of open code
substitution.

� A minus sign (−) indicates that the statement was read by a preceding
AREAD instruction.

� An equals sign (=) indicates that the statement was included by a COPY
instruction.

� A greater-than sign (>) indicates that the statement was generated as
the result of a preceding AINSERT instruction. If the statement is read
by an AREAD instruction, this will take precedence and a minus sign will
be printed.

�7� The source program statement. The following items apply to this section of
the listing:

� Source statements are listed, including those brought into the program
by the COPY assembler instruction, and including macro definitions
submitted with the main program for assembly. Listing control
instructions are not printed, except for PRINT, which is printed unless the
NOPRINT operand is specified.

� Macro definitions obtained from a library are not listed, unless the macro
definition is included in the source program by means of a COPY
statement, or the LIBMAC assembler option was specified.

� The statements generated as the result of a macro instruction follow the
macro instruction in the listing, unless PRINT NOGEN is in effect. If
PRINT GEN is in effect and PRINT NOMSOURCE is specified, the
printing of the source statements generated during macro processing
and conditional assembly substitution is suppressed, without suppressing
the printing of the generated object code of the statements. If PRINT
MCALL is in effect, nested macro instructions including all parameters
are printed. When the PRINT NOGEN instruction is in effect, the
assembler prints one of the following on the same line as the macro call
or model statement:

– The object code for the first instruction generated
– The first 8 bytes of generated data from a DC instruction

When the assembler forces alignment of an instruction or data constant,
it generates zeros in the object code and prints only the generated

 Chapter 2. Using the Assembler Listing 19

 Source and Object

object code in the listing. When you use the PRINT NOGEN instruction
the generated zeros are not printed.

Diagnostic Messages and Generated Data: If the next line to print
after a macro call or model statement is a diagnostic message, the
generated data is not shown.

� Assembler and machine instruction statements in the source program
that contain variable symbols are listed twice: first, as they appear in the
source input, and second, with values substituted for the variable
symbols. See Figure 8 for an example of this.

� All error diagnostic messages appear in line except those suppressed by
the FLAG option. Chapter 6, “Diagnosing Assembly Errors” on
page 152 describes how error messages and MNOTEs are handled.

� Literals that have not been assigned locations by LTORG statements
appear in the listing following the END statement. Literals are identified
by the equal sign (=) preceding them.

� Whenever possible, a generated statement is printed in the same format
as the corresponding macro definition (model) statement. The starting
columns of the operation, operand, and comments fields are preserved,
unless they are displaced by field substitution, as shown in Figure 8.

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

1 &A SETC 'abcdefghijklmnop' ����1���

 2 &A LA 4,1 Comment ����2���

������ 414� ���1 ����1 +abcdefghijklmnop LA 4,1 X����2���

 + Comment

3 &b SETC 'abc' ����3���

 4 &b LA 4,1 Comment ����4���

�����4 414� ���1 ����1 +abc LA 4,1 Comment ����4���

Figure 8. Source and Object Listing Section

It is possible for a generated statement to occupy ten or more continuation lines on
the listing. In this way, generated statements are unlike source statements, which
are restricted to nine continuation lines.

�8� The release level of High Level Assembler.

�9� The date and time at the start of the assembly.

�1�� The error diagnostic messages immediately follow the source statement in
error. Many error diagnostic messages include the segment of the statement
that is in error. You can use the FLAG assembler option to control the level
of diagnostic messages displayed in your listing.

�11� The informational message, ASMA435I, that describes the origin of the
source statement in error. This message is only printed when you specify the
FLAG(RECORD) assembler option.

| If the input data set containing the source in error is a USS file, message
| ASMA435I may continue over more than one print line. If the inclusion of the
| path name in the message causes the message to be more than 255 bytes
| in length, the message is truncated.

20 HLASM V1R5 Programmer’s Guide

 Source and Object

| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

| �����4 581� ���1 ����1 6 l 1,1

| �� ASMA3�9W Operand 1 resolved to a displacement with no base register

| �� ASMA�33I Storage alignment for 1 unfavorable

| �� ASMA435I Record 6 in /u/carland/assembler/source/dataset.which/has/a.very/longname/thus/causing/this/message/tobe/prin

| ted/OVER/more/than/one/line/ on volume:

| Figure 9. Example showing truncation of long ASMA435I message

�12� The Addr1 and Addr2 columns show the first and second operand addresses
in the USING instructions. The base registers on an ordinary USING
instruction are printed, right justified in the object code columns, preceded by
the characters “R:”.

�13� The informational message, ASMA435I, that describes the origin of the
source statement in error. Conditional assembly statements and comment
statements contribute to the record count of macro definitions, as suggested
by the record number which is greater than the number of generated
statements.

�14� The identification-sequence field from the source statement. For a
macro-generated statement, this field contains information identifying the
origin of the statement. The first two columns define the level of the macro
call, where a level of �1 indicates statements generated by the macro
specified within the source code, and higher level numbers indicate
statements generated from macros invoked from within a macro.

For a library macro call, the last five columns contain the first five characters
of the macro name. For a macro whose definition is in the source program
(including one read by a COPY statement or by the LIBMAC assembler
option), the last five characters contain the line number of the model
statement in the definition from which the generated statement is derived.
This information can be an important diagnostic aid in analyzing output
resulting from macro calls within macro calls.

�15� The Addr1 and Addr2 columns show the first and second operand addresses
in the USING instructions. The resolved base displacement for a dependent
USING instruction is printed in the object code columns, as register
displacement, where register is shown as a hexadecimal value.

| �16� The current USING PUSH level is printed after the heading and before the
| first active USING. If the USING PUSH level is zero, it is not shown.

If PRINT UHEAD or PCONTROL(UHEAD) has been specified, a summary of
current active USINGs is printed on up to four heading lines, following the
TITLE line on each page of the source and object section. The USINGs
listed are those current at the end of the assembly of the last statement on
the previous page of the listing, with the following exceptions:

� The USINGs summary shows the effect of the USING instruction when:

– It is the first statement in the source input data set, or
– It is the first statement on the new page

� The USINGs summary shows the effect of the DROP instruction when:

– It is the first statement in the source input data set, or
– It is the first statement on the new page

Current active USINGs include USINGs that are temporarily overridden. In
the following example the USING for base register 12 temporarily overrides

 Chapter 2. Using the Assembler Listing 21

 Source and Object

the USING for base register 10. After the DROP instruction, the base
register for BASE1 reverts to register 10.

 USING BASE1,1�

USING BASE1,12 Temporarily overrides register 1�

LA 1,BASE1 Uses base register 12

 DROP 12

LA 1,BASE1 Uses base register 1�

The summary of active USINGs heading lines have the format:

Active Usings (n): label.sectname+offset(range),registers

where:

n Is the current PUSH level. If the PUSH level is zero, it is not
| shown. If no USING statements are active, the heading appears
| as Active Usings: None.

label Is the label name specified for a Labeled USING. If the USING is
not labeled, this field is omitted.

sectname Is the section name used to resolve the USING. The section
name is listed as (PC) if the section is an unnamed CSECT,
(COM) if the section is unnamed COMMON, and (DSECT) if the
section is an unnamed DSECT.

offset Is the offset from the specified section that is used to resolve the
USING. This field is omitted if it is zero.

| (range) Is the number of bytes addressed by this base register for
| instructions with 12-bit displacement fields. It is only shown if the
| default value (X'1000') is not used.

registers Is the register or registers specified on the USING statement.

For dependent USINGs, the register is printed as register+offset
where register is the register used to resolve the address from
the corresponding ordinary USING, and offset is the offset from
the register to the address specified in the dependent USING.

If there are more active USINGs than can fit into four lines, the summary is
truncated, and the character string 'MORE ...' is appended to the last line.

In Figure 10, the USINGs at statements 25 and 30 are ordinary USINGs.
The USING at statement 45 is a dependent USING, and that at statement 46
is a labeled dependant USING. The USINGs at statements 48 and 49 are
labeled USINGs.

Figure 10 also shows an example of the Source and Object section when the same
assembly is run with assembler option LIST(133), and is followed by a description
of differences with respect to Figure 7 on page 17:

22 HLASM V1R5 Programmer’s Guide

 Relocation Dictionary

SAMP�1 Sample Listing Description Page 3

Active Usings: None

 �1�
Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

�������� �������� ������E� 2 Samp�1 Csect

 22 Entry1 SAMPMAC Parm1=YES ����23��

�������� 18CF 23+Entry1 LR 12,15 �1-SAMPMAC

 24+ ENTRY Entry1 �1-SAMPMAC

 �2�
 R:C �������� 25+ USING Entry1,12 Ordinary Using �1-SAMPMAC

�������2 ���� ���� �������� 26+ LA Savearea,1� �1-SAMPMAC

�� ASMA�44E Undefined symbol - Savearea

�� ASMA�29E Incorrect register specification - Savearea

�� ASMA435I Record 6 in SAMP�1 MACLIB A1(SAMPMAC) on volume: EAR191

�������6 5�D� A��4 �������4 27+ ST 13,4(,1�) �1-SAMPMAC

�������A 5�A� D��8 �������8 28+ ST 1�,8(,13) �1-SAMPMAC

�������E 18DA 29+ LR 13,1� �1-SAMPMAC

 �3�

R:A35 ������1� 3�+ USING �,1�,3,5 Ordinary Using,Multiple Base �1-SAMPMAC

�� ASMA3�3W Multiple address resolutions may result from this USING and the USING on statement number 25

�� ASMA435I Record 1� in SAMP�1 MACLIB A1(SAMPMAC) on volume: EAR191

31+ DROP 1�,3,5 Drop Multiple Registers �1-SAMPMAC

 32 COPY SAMPLE ����24��

33=� Line from member SAMPLE

C �2A �������� ������2A 34 Using IHADCB,INDCB Establish DCB addressability ����25��

C �7A �������� ������7A 35 ODCB Using IHADCB,OUTDCB ����26��

 36 push using ����27��

R:2 �������� 37 PlistIn Using Plist,2 Establish Plist addressability ����28��

R:3 �������� 38 PlistOut Using Plist,3 ����29��

SAMP�1 Sample Listing Description Page 4

| Active Usings (1):Entry1,R12 IHADCB(X'FD6'),R12+X'2A' PlistIn.plist,R2 PlistOut.plist,R3

| ODCB.IHADCB(X'F86'),R12+X'7A'

Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

������1� 1851 4� ?Branch LR R5,R1 Save Plist pointer ����31��

�� ASMA147E Symbol too long, or first character not a letter - ?Branch

�� ASMA435I Record 3� in SAMP�1 ASSEMBLE A1 on volume: EAR191

������12 582� 5��� �������� 41 L R2,�(,R5) R2 = address of request list ����32��

������16 47F� C�22 ������22 42 B Open ����33��

 697 End ���551��

������D� �������1 698 =f'1'

������D4 �������� 699 =V(RCNVDATE)

������D8 �������� 7�� =V(RCNVTIME)

������DC �������2 7�1 =f'2'

Figure 10. Source and Object Listing Section—133 Format

�1� The Addr1 and Addr2 columns show 8-character operand addresses.

�2� The assembled address of the object code occupies 8 characters.

�3� The first 8 characters of the macro name are shown in the
identification-sequence field.

Relocation Dictionary (RLD)
This section of the listing describes the relocation dictionary information passed to

| the linkage editor or loader, or z/OS binder, in the object module.

The entries describe the address constants in the assembled program that are
affected by relocation. This section helps you find relocatable constants in your
program.

 Chapter 2. Using the Assembler Listing 23

 Ordinary Symbol and Literal Cross Reference

| TSSC��4 Relocation Dictionary Page 6

| �1� �2� �3� �4� �5�
| Pos.Id Rel.Id Address Type Action HLASM R5.� 2��4/�6/11 17.48

| �������3 �������2 �������� J 4 ST

| �������3 �������5 ������1C RI 2 +

| �������3 �������5 ������2� A 4 +

| �������3 �������5 ������26 RI 2 +

| �������3 �������6 ������5A RI 4 -

| �������3 �������6 ������6� A 4 -

| �������3 �������7 ������5A RI 4 +

| �������3 �������7 ������6� A 4 +

| �������3 �������2 �������� J 4 ST

| Figure 11. Relocation Dictionary (RLD) Listing

| �1� The external symbol directory ID (in hexadecimal notation) of the element or
| part within which this address constant resides.

| �2� The external symbol directory ID (in hexadecimal notation) of the element or
| part which will be used as the basis for relocation.

| �3� The assembled address (in hexadecimal notation) of the field where the
| address constant is stored.

| �4� The type and length of the address constant. The type may contain the
| following values:

| A A-type address constant
| V V-type address constant
| Q Q-type address constant
| J J-type address constant or CXD instruction
| R R-type address constant
| RI Relative Immediate offset

| �5� The relocation action which may contain the following values:

| + The relocation operand is added to the address constant
| − The relocation operand is subtracted from the address constant
| ST The relocation operand overwrites the address constant

Ordinary Symbol and Literal Cross Reference
This section of the listing concerns symbols and literals that are defined and used
in the program.

24 HLASM V1R5 Programmer’s Guide

 Ordinary Symbol and Literal Cross Reference

| Ordinary Symbol and Literal Cross Reference Page 2�

| �1� �2� �3� �4� �5� �6� �7� �8� �9� �1��
| Symbol Length Value Id R Type Asm Program Defn References HLASM R5.� 2��4/�6/11 17.48

| DCBBIT� 1 ������8� FFFFFFFF A U 68 1�1 1�9 122 146 179 181 182 184 2�7 21� 23� 234

| 344

| DCBBIT1 1 ������4� FFFFFFFF A U 69 1�2 11� 124 147 148 157 163 179 181 183 184 212

| 234 252 253 254 289 29� 344

| DCBBIT2 1 ������2� FFFFFFFF A U 7� 1�3 111 125 126 127 147 148 152 158 163 179 18�

| 235 236 257 258 259 293 294 345

| DCBBIT3 1 ������1� FFFFFFFF A U 71 1�4 125 127 128 147 16� 186 217 235 238 261 262

| 298 345

| DCBBIT4 1 �������8 FFFFFFFF A U 72 112 161 162 163 187 218 24� 245 246 266 267 3�1

| 3�5 346

| DCBBIT5 1 �������4 FFFFFFFF A U 73 113 168 19� 191 22� 24� 242 243 246 27� 272 273

| 3�9 31� 311 346

| DCBBIT6 1 �������2 FFFFFFFF A U 74 1�5 169 17� 173 19� 192 221 277 278 279 28� 314

| 317 347

| DCBBIT7 1 �������1 FFFFFFFF A U 75 1�6 169 171 173 194 225 282 283 32� 321 323 324

| Entry1 2 �������� �������3 I 23 24 25U

| IHADCB 1 �������� FFFFFFFF J 56 34U 35U 83 132 2�3 328 335 353

| INDCB 2 ������2A �������3 H H 46 34U

| Open 2 ������22 �������3 H H 366 42B

| OUTDCB 2 ������7A �������3 H H 48 35U

| plist 1 �������� FFFFFFFE J 36� 37U 38U

| RCNVDATE 1 �������� �������D T 699 699

| RCNVTIME 1 �������� �������E T 7�� 7��

| r1 1 �������1 �������3 A U 369 4�

| r2 1 �������2 �������3 A U 37� 41M

| r5 1 �������5 �������3 A U 373 4�M 41

| Samp�1 1 �������� �������3 J 2 2� 45 47 356 363 365

| Savearea ���UNDEFINED��� �������� A U 26

| =f'1' 4 ������D� �������3 F 698 396

| =f'2' 4 ������DC �������3 F 7�1 4��

| =V(RCNVDATE)

| 4 ������D4 �������3 V 699 397

| =V(RCNVTIME)

| 4 ������D8 �������3 V 7�� 399

| Figure 12. Ordinary Symbol and Literal Cross Reference

�1� Shows each symbol or literal. Symbols are shown in the form in which they
are defined, either in the name entry of a machine or assembler instruction, or
in the operand of an EXTRN or WXTRN instruction. Symbols defined using
mixed-case letters are shown in mixed-case letters, unless the FOLD
assembler option was specified.

If a symbol name is used as a literal more than once in a program, and the
form of the symbol name is coded differently, for example =V(symbol) and
=V(SYMBOL), and the symbol is not defined in the program, the symbol is listed
in the form of the first reference. In the following example the assembler lists
the symbol name as inPUT, because the third statement is the first occurrence
of the symbol, and the symbol was not previously defined.

test csect

 using �,15

 la 1,=v(inPUT) third statement

 la 1,=v(INPUT)

 end

In the following example the assembler lists the symbol name inPUT, because
the third statement defines inPUT as an external symbol. The assembler also
lists the symbol name INput, because the fifth statement defines INput as an
ordinary symbol.

 Chapter 2. Using the Assembler Listing 25

 Ordinary Symbol and Literal Cross Reference

test csect

 using �,15

 la 1,=v(inPUT) third statement

 la 1,=v(INPUT)

 INput dc cl4' ' fifth statement

 END

�2� Shows, in decimal notation, the byte length of the field represented by the
symbol. This field is blank for labeled USINGs (see symbol WA).

| �3� Shows the hexadecimal address assigned to the symbol or literal, or the
| hexadecimal value to which the symbol is equated. This field is blank for

labeled USING symbols.

�4� For symbols and literals defined in an executable control section or a dummy
section, this field shows the external symbol dictionary ID (ESDID) assigned to
the ESD entry for the control section in which the symbol or literal is defined.
For external symbols, this field indicates the ESDID assigned to ESD entry for
this symbol. For symbols defined in a dummy control section, this field
indicates the control section ID assigned to the control section. For symbols
defined using the EQU statement, if the operand contains a relocatable
expression, this field shows the external symbol dictionary ID of the relocatable
expression. Otherwise, it contains the current control section ID.

�5� Column title R is an abbreviation for “Relocatability Type”. Symbols fl12nd
and WA are absolute symbols and are flagged “A” in the R column. Symbol jix

is the result of a complex relocatable expression and is flagged “C” in the R
column. Symbol IOerror is simply relocatable and is not flagged.

�6� Indicates the type attribute of the symbol or literal. Refer to the HLASM V1R5
Language Reference manual for details.

| �7� Indicates the assembler type of the symbol. Refer to the HLASM V1R5
| Language Reference manual for details.

| �8� Indicates the program type of the symbol. Refer to the HLASM V1R5
| Language Reference manual for details.

�9� Is the statement number in which the symbol or literal was defined.

�1�� Shows the statement numbers of the statements in which the symbol or literal
appears as an operand. Additional indicators are suffixed to statement
numbers as follows:

B The statement contains a branch instruction, and the relocatable
symbol is used as the branch-target operand address.

D The statement contains a DROP instruction, and the symbol is used in
the instruction operand.

M The instruction causes the contents of a register represented by an
absolute symbol, or a storage location represented by one or more
relocatable symbols, to be modified.

U The statement contains a USING instruction, and the symbol is used in
one of the instruction operands.

X The statement contains an EX machine instruction, and the symbol in
the second operand is the symbolic address of the target instruction.

In the case of a duplicate symbol this column contains the message:

����DUPLICATE����

26 HLASM V1R5 Programmer’s Guide

 Macro and Copy Code Source Summary

A symbol name may appear in the cross reference section as both an external
symbol name and an ordinary symbol name. In this situation there is no
duplication.

The following notes apply to the cross reference section:

Notes:

1. Cross reference entries for symbols used in a literal refer to the assembled
literal in the literal pool. Look up the literals in the cross reference to find
where the symbols are used.

2. A PRINT OFF listing control instruction does not affect the production of the
cross reference section of the listing.

3. In the case of an undefined symbol, the columns Length (�2�) and Value (�3�)
contain the message:

����UNDEFINED����

Unreferenced Symbols Defined in CSECTs
This section of the listing shows symbols that have been defined in CSECTs but
not referenced. This helps you remove unnecessary data definitions, and reduce
the size of your program. The list of symbols are shown in symbol name order. To
obtain this section of the listing, you need to specify the XREF(UNREFS)
assembler option.

SAMP�1 Unreferenced Symbols Defined in CSECTs Page 19

 �1� �2�
 Defn Symbol HLASM R5.� 2��4/�6/11 17.48

 47 ODCB

 49 PlistIn

 5� PlistOut

 7 R�

 1� R3

 16 Unreferenced_Long_Symbol

Figure 13. Unreferenced Symbols Defined in CSECTS

�1� The statement number that defines the symbol.

�2� The name of the symbol.

Macro and Copy Code Source Summary
This section of the listing shows the names of the macro libraries from which the
assembler read macros or copy code members, and the names of the macros and
copy code members that were read from each library. This section is useful for
checking that you have included the correct version of a macro or copy code
member.

SAMP�1 Macro and Copy Code Source Summary Page 27

 �1� �2� �3� �4�
 Con Source Volume Members HLASM R5.� 2��4/�6/11 17.48

L1 SAMP�1 MACLIB A1 FAL191 SAMPLE SAMPMAC

 L2 OSMACRO MACLIB S2 MNT19� DCBD IHBERMAC

Figure 14. Macro and Copy Code Source Summary

 Chapter 2. Using the Assembler Listing 27

 Macro and Copy Code Cross Reference

�1� Contains a number representing the concatenation order of macro and copy
code libraries. (This number is not shown when the Source �2� is “PRIMARY
INPUT”.) The number is prefixed with “L” which indicates Library. The
concatenation value is cross-referenced in the Macro and Copy Code Cross

| Reference section. If the name is more than 44 characters in length, the path
| name of the library is truncated. The truncated path name is suffixed with an
| ellipsis to indicate that it has been truncated.

�2� Shows either the name of each library from which the assembler reads a
macro or a copy code member or, for in-line macros, the words “PRIMARY
INPUT”.

�3� Shows the volume serial number of the volume on which the library resides.

�4� Shows the names of the macros or copy members that were retrieved from the
library.

You can suppress this section of the listing by specifying the NOMXREF assembler
option.

LIBRARY User Exit: If a LIBRARY user exit has been specified for the assembly,
and the exit opens the library data set, the exit can return the name of the library to
the assembler. In this case the Macro and Copy Code Source Summary lists the
library names returned by the user exit.

Macro and Copy Code Cross Reference
This section of the listing shows the names of macros and copy code members and
the statements where the macro or copy code member was called. You can use
the assembler option MXREF(XREF) or MXREF(FULL) to generate this section of
the listing.

SAMP�1 Macro and Copy Code Cross Reference Page 28

�1� �2� �3� �4� �5�
Macro Con Called By Defn References HLASM R5.� 2��4/�6/11 17.48

A PRIMARY INPUT 826 971, 973, 998

AINSERT_TEST_MACRO

 PRIMARY INPUT 3 16

AL PRIMARY INPUT 873 981, 983

DCBD L3 PRIMARY INPUT - 113

IHBERMAC L3 DCBD - 113

L PRIMARY INPUT 816 966, 968

MAC1 PRIMARY INPUT 28 36

N PRIMARY INPUT 933 991

O PRIMARY INPUT 953 993

SAMPLE L1 PRIMARY INPUT - 85C �6�
SAMPMAC L1 PRIMARY INPUT - 64

SAVE L3 PRIMARY INPUT - 42

SL PRIMARY INPUT 883 986, 988

ST PRIMARY INPUT 836 976, 978

TYPCHKRX PRIMARY INPUT 745 775, 845, 892

X PRIMARY INPUT 943 996

XIT1 L1 PRIMARY INPUT - 3�C

XIT2 L2 PRIMARY INPUT - 32C

XIT3 L1 PRIMARY INPUT - 34C

Figure 15. Macro and Copy Code Cross Reference

�1� The macro or copy code member name.

28 HLASM V1R5 Programmer’s Guide

 Macro and Copy Code Cross Reference

�2� Shows the value representing the input source concatenation, as listed in the
Macro and Copy Code Source Summary (refer to Figure 14 on page 27) and
under the sub-heading “Datasets Allocated for this Assembly” in the Diagnostic
Cross Reference and Assembler Summary (refer to Figure 24 on page 36).

�3� Shows either the name of the macro that calls this macro or copy code
member, or the words “PRIMARY INPUT” indicating the macro or copy code
member was called directly from the primary input source. If you use the
COPY instruction to copy a macro definition, then references to the macro are
shown as called by “PRIMARY INPUT”.

�4� Either:

� The statement number for macros defined in the primary input file,
or
� A dash (–) indicating the macro or copy code member was retrieved from a

library.

�5� The statement number that contains the macro call or COPY instruction.

Lookahead Processing: If a COPY instruction is encountered during
lookahead, this is the number of the statement that causes lookahead
processing to commence.

PCONTROL(MCALL) Assembler Option: If you specify the
PCONTROL(MCALL) assembler option, and you copy a macro definition from
an inner macro, the number shown against the copied member is one less
than the statement number containing the inner macro call instruction. See
“Effects of LIBMAC and PCONTROL(MCALL) Options” on page 30 for
examples of assemblies using different combinations of the LIBMAC and
PCONTROL(MCALL) options.

�6� Statement numbers have a suffix of “C” when the reference is to a member
named on a COPY instruction.

Figure 16 shows the format of the Macro and Copy Code Cross Reference when
you specify the assembler option, LIBMAC.

SAMP�1 Macro and Copy Code Cross Reference Page 81

Macro Con Called By Defn References HLASM R5.� 2��4/�6/11 17.48

 �1�
A PRIMARY INPUT 3667 3812, 3814, 3839

AINSERT_TEST_MACRO

 PRIMARY INPUT 3 16

AL PRIMARY INPUT 3714 3822, 3824

DCBD L3 PRIMARY INPUT 224X 2329

IHBERMAC L3 DCBD 2331X 2954

L PRIMARY INPUT 3657 38�7, 38�9

MAC1 PRIMARY INPUT 28 36

N PRIMARY INPUT 3774 3832

O PRIMARY INPUT 3794 3834

SAMPLE L1 PRIMARY INPUT - 195C

SAMPMAC L1 PRIMARY INPUT 153X 174

SAVE L3 PRIMARY INPUT 43X 13�

SL PRIMARY INPUT 3724 3827, 3829

ST PRIMARY INPUT 3677 3817, 3819

TYPCHKRX PRIMARY INPUT 3586 3616, 3686, 3733

X PRIMARY INPUT 3784 3837

XIT1 L1 PRIMARY INPUT - 3�C

XIT2 L2 PRIMARY INPUT - 32C

XIT3 L1 PRIMARY INPUT - 34C

Figure 16. Macro and Copy Code Cross Reference—with LIBMAC Option

 Chapter 2. Using the Assembler Listing 29

 Macro and Copy Code Cross Reference

�1� The “X” flag indicates the macro was read from a macro library and
imbedded in the input source program immediately preceding the invocation
of that macro. For example, in Figure 16, you can see that SAMPMAC was
called by the PRIMARY INPUT stream from LIBRARY L1, at statement number
174, after being imbedded in the input stream at statement number 153. See
“Effects of LIBMAC and PCONTROL(MCALL) Options” for examples of
assemblies using different combinations of the LIBMAC and
PCONTROL(MCALL) options.

You can suppress this section of the listing by specifying the NOMXREF assembler
option.

Effects of LIBMAC and PCONTROL(MCALL) Options
When you specify different combinations of the LIBMAC and PCONTROL(MCALL)
assembler options to assemble the same source program, the definition statement
and reference statement numbers can be different in each assembly listing.

The example that follows shows how these options affect the output from an
assembly of the same source program. The source program is coded as follows:

 MACOUTER

 END

The assembly of this program uses the following library members:

MACOUTER: A macro definition that issues a call to macro MACINNER.

MACINNER: A macro definition that copies member COPYCODE.

COPYCODE: A member containing an MNOTE instruction.

The following four figures illustrate the effects of using the various combinations of
the LIBMAC and PCONTROL(MCALL) assembler options.

Figure 17 shows the output when you specify the LIBMAC and
PCONTROL(MCALL) options.

 Page 2

Active Usings: None

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 1 MACRO ����1���

 2 MACOUTER ����2���

 3 MACINNER ����3���

 4 MEND ����4���

 5 MACOUTER ����1���

 6 MACRO ����1���

 7 MACINNER ����2���

 8 COPY COPYCODE ����3���

9 MNOTE �,'MNOTE FROM MEMBER COPYCODE' ����1���

 ┌────────────────────────────┐ 1� MEND ����4���

│ This line produced because ├────�11+ MACINNER �1-����3

│ PCONTROL(MCALL) specified │ 12+�,MNOTE FROM MEMBER COPYCODE �2-����8

 └────────────────────────────┘ 13 END ����2���

Macro and Copy Code Source Summary Page 3

 Con Source Volume Members HLASM R5.� 2��4/�6/11 17.48

L1 TEST MACLIB A1 ADISK COPYCODE MACINNER MACOUTER

Macro and Copy Code Cross Reference Page 4

Macro Con Called By Defn References HLASM R5.� 2��4/�6/11 17.48

COPYCODE L1 MACINNER - 8C

MACINNER L1 MACOUTER 7X 11

MACOUTER L1 PRIMARY INPUT 2X 5

Figure 17. Assembly with LIBMAC and PCONTROL(MCALL) Options

30 HLASM V1R5 Programmer’s Guide

 Macro and Copy Code Cross Reference

Figure 18 on page 31 shows the output when you specify the LIBMAC and
NOPCONTROL options.

 Page 2

Active Usings: None

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 1 MACRO ����1���

 2 MACOUTER ����2���

 3 MACINNER ����3���

 4 MEND ����4���

 5 MACOUTER ����1���

 6 MACRO ����1���

 7 MACINNER ����2���

 8 COPY COPYCODE ����3���

9 MNOTE �,'MNOTE FROM MEMBER COPYCODE' ����1���

 1� MEND ����4���

11+�,MNOTE FROM MEMBER COPYCODE �2-����8

 12 END ����2���

Macro and Copy Code Source Summary Page 3

 Con Source Volume Members HLASM R5.� 2��4/�6/11 17.48

L1 TEST MACLIB A1 ADISK COPYCODE MACINNER MACOUTER

Macro and Copy Code Cross Reference Page 4

Macro Con Called By Defn References HLASM R5.� 2��4/�6/11 17.48

COPYCODE L1 MACINNER - 8C

MACINNER L1 MACOUTER 7X 1�

MACOUTER L1 PRIMARY INPUT 2X 5

Figure 18. Assembly with LIBMAC and NOPCONTROL Options

Figure 19 shows the output when you specify the NOLIBMAC and
PCONTROL(MCALL) options.

 Page 2

Active Usings: None

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 ┌────────────────────────────┐ 1 MACOUTER ����1���

│ This line produced because ├────�2+ MACINNER �1-MACOU

│ PCONTROL(MCALL) specified │ 3+�,MNOTE FROM MEMBER COPYCODE �2-MACIN

 └────────────────────────────┘ 4 END ����2���

Macro and Copy Code Source Summary Page 3

 Con Source Volume Members HLASM R5.� 2��4/�6/11 17.48

L1 TEST MACLIB A1 ADISK COPYCODE MACINNER MACOUTER

Macro and Copy Code Cross Reference Page 4

Macro Con Called By Defn References HLASM R5.� 2��4/�6/11 17.48

COPYCODE L1 MACINNER - 1C

MACINNER L1 MACOUTER - 2

MACOUTER L1 PRIMARY INPUT - 1

Figure 19. Assembly with NOLIBMAC and PCONTROL(MCALL) Options

Figure 20 on page 32 shows the output when you specify the NOLIBMAC and
NOPCONTROL options.

 Chapter 2. Using the Assembler Listing 31

 DSECT Cross Reference

 Page 2

Active Usings: None

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 1 MACOUTER ����1���

2+�,MNOTE FROM MEMBER COPYCODE �2-MACIN

 3 END ����2���

Macro and Copy Code Source Summary Page 3

 Con Source Volume Members HLASM R5.� 2��4/�6/11 17.48

L1 TEST MACLIB A1 ADISK COPYCODE MACINNER MACOUTER

Macro and Copy Code Cross Reference Page 4

Macro Con Called By Defn References HLASM R5.� 2��4/�6/11 17.48

COPYCODE L1 MACINNER - 1C

MACINNER L1 MACOUTER - 1

MACOUTER L1 PRIMARY INPUT - 1

Figure 20. Assembly with NOLIBMAC and NOPCONTROL Options

DSECT Cross Reference
This section of the listing shows the names of all internal or external dummy
sections defined in the program, and the number of the statement where the
definition of the dummy section began.

Dsect Cross Reference Page 26

 �1� �2� �3� �4�
Dsect Length Id Defn HLASM R5.� 2��4/�6/11 17.48

AXPRIL ������3C FFFFFFFD 655

AXPSIL �����41� FFFFFFFC 771

AXPXITP ������14 FFFFFFFE 641

IHADCB ������6� FFFFFFFB 799

Statement

 ������5� FFFFFFFA 137�

WORKAREA �����1A8 FFFFFFFF 595

Figure 21. DSECT Cross Reference

�1� Shows the name of each dummy section defined in your program.

�2� Shows, in hexadecimal notation, the assembled byte length of the dummy
section.

�3� For external dummy sections, this field indicates the external symbol dictionary
ID assigned to the ESD entry for the external dummy section. For internal
dummy sections, this field indicates the control section ID assigned to the
dummy control section. You can use this field in conjunction with the ID field
in the Ordinary Symbol and Literal Cross Reference (see Figure 12 on
page 25) to relate symbols to a specific section.

�4� Shows the number of the statement where the definition of the dummy section
began.

You can suppress this section of the listing by specifying the NODXREF assembler
option.

32 HLASM V1R5 Programmer’s Guide

 USING Map

 USING Map
This section of the listing shows a summary of the USING, DROP, PUSH USING,
and POP USING instructions used in your program.

 Using Map Page 27

 HLASM R5.� 2��4/�6/11 17.48

 �1� �2� �3� �4� �5� �6� �7� �8� �9� �1�� �11� �12�
 Stmt -----Location----- Action ----------------Using----------------- Reg Max Last Label and Using Text

 Count Id Type Value Range Id Disp Stmt

17� �������� �������1 USING ORDINARY �������� ����1��� �������1 15 �2A 171 asmaxinv,r15

175 ������3� �������1 DROP 15 r15

185 ������34 �������1 USING ORDINARY �������� ����1��� �������1 12 ��� asmaxinv,r12

186 ������34 �������1 USING ORDINARY �������� ����1��� FFFFFFFD 7 �34 5�8 axpril,r�7

187 ������34 �������1 USING ORDINARY �������� ����1��� FFFFFFFA 8 �48 464 Statement,r�8

188 ������34 �������1 USING ORDINARY �������� ����1��� FFFFFFFC 1� 4�4 474 axpsil,r1�

189 ������34 �������1 USING ORDINARY �������� ����1��� FFFFFFFB 11 �52 465 ihadcb,r11

19� ������34 �������1 USING ORDINARY �������� ����1��� �������1 12 589 519 asmaxinv,r12

2�2 ������4E �������1 USING LABELED �������� ����1��� FFFFFFFF 1 ��� WA.WorkArea,r�1

2�3 ������4E �������1 USING LAB+DEPND +�����14A �����EB6 FFFFFFFB 1 local.ihadcb,WA.mydcb

2�4 ������4E �������1 PUSH

2�5 ������54 �������1 DROP 1 local

212 ������6A �������1 POP 1 WA

213 ������6A �������1 USING ORDINARY �������� ����1��� FFFFFFFF 13 14A 527 WorkArea,r13

214 ������6A �������1 USING ORDINARY �������� ����1���

Figure 22. USING Map

�1� Shows the number of the statement that contains the USING, DROP, PUSH
USING, or POP USING instruction.

�2� Shows the value of the location counter when the USING, DROP, PUSH
USING, or POP USING statement was encountered.

�3� Shows the value of the ESDID of the current section when the USING,
DROP, PUSH USING or POP USING statement was encountered.

�4� Shows whether the instruction was a USING, DROP, PUSH, or POP
instruction.

�5� For USING instructions, this field indicates whether the USING is an ordinary
USING, a labeled USING, a dependent USING, or a labeled dependent
USING.

�6� For ordinary and labeled USING instructions, this field indicates the base
address specified in the USING. For dependent USING instructions, this
field is prefixed with a plus sign (+) and indicates the hexadecimal offset of
the address of the second operand from the base address specified in the
corresponding ordinary USING.

�7� Shows the range of the USING. For more information, see the description of
the USING statement in the HLASM Language Reference.

�8� For USING instructions, this field indicates the ESDID of the section
specified on the USING statement.

�9� For ordinary and labeled USING instructions, and for DROP instructions, this
field indicates the register or registers specified in the instruction. There is a
separate line in the USING map for each register specified in the instruction.
If the DROP instruction has no operands, all registers and labels are
dropped and this field contains two asterisks (��).

For dependent USING instructions, the field indicates the register for the
corresponding ordinary USING instruction that is used to resolve the

 Chapter 2. Using the Assembler Listing 33

 General Purpose Register Cross Reference

address. If the corresponding ordinary USING instruction has multiple
registers specified, only the first register used to resolve the address is
displayed.

�1�� For each base register specified in an ordinary USING instruction or a
labeled USING instruction, this field shows the maximum displacement
calculated by the assembler when resolving symbolic addresses into
base-displacement form using that base register.

�11� For ordinary and labeled USING instructions, this field indicates the
statement number of the last statement that used the specified base register
to resolve an address. Where an ordinary USING instruction is used to
resolve a dependent USING, the statement number printed reflects the use
of the register to resolve the dependent USING.

�12� For USING and DROP instructions, this field lists the text specified on the
USING or DROP instruction, truncated if necessary. For labeled USING
instructions, the text is preceded by the label specified for the USING.

If a DROP instruction drops more than one register or labeled USING, the
text for each register or labeled USING is printed on the line corresponding
to the register that is dropped.

You can suppress this section of the listing by specifying either of the assembler
options, USING(NOMAP) or NOUSING.

General Purpose Register Cross Reference
This section of the listing shows all references in the program to each of the
general registers. Additional flags indicate the type of reference. This is a useful
tool in checking the logic of your program; it helps you see if your use of registers
is in order.

General Purpose Register Cross Reference Page 8

Register References (M=modified, B=branch, U=USING, D=DROP, N=index) HLASM R5.� 2��4/�6/11 17.48

 �1� �2�
 �(�) 115

1(1) 118 12� 121 122 124 126 127 128 13� 131 133 135 136 137

2(2) 36 37 38 39 4� 41 42 43 44M 45 46 47 48 49 5� 51

52M 53 54 55M 56 57 58 59M 6� 61 62 63 64 65 66 67

68 69 7� 71 72M 73 74 75 76 77 78 79 8� 81 82 83

84 85 86 87 88 89M 9� 91 92 93M 94 95 96 97 98 99

1�� 1�1 1�2 1�3 1�4 1�5 1�6 1�7 1�8 1�9 11� 111 112

3(3) (no references identified) �3�
 4(4) 16M 281

 5(5) 283

6(6) 66N 167N 17� 171 174 178 18�N 19� 192 193 194 197 199 2�� 2�1N

 7(7) 283

 8(8) 283

9(9) 224 225 226 227

 1�(A) 255U 342D

11(B) 237 238 239N 24� 241 242 243N 244 245N 271

 12(C) 8U

13(D) 261 262 263 264 265 266

14(E) 2�9 21� 211 212 213 214 215 216

 15(F) 34 144

Figure 23. General Purpose Register Cross Reference

�1� Lists the sixteen general registers (0–15).

34 HLASM V1R5 Programmer’s Guide

 Diagnostic Cross Reference and Assembler Summary

�2� The statements within the program that reference the register. Additional
indicators are suffixed to the statement numbers as follows:

(space) Referenced

M Modified

B Used as a branch address

U Used in USING statement

D Used in DROP statement

N Used as an index register

�3� The assembler indicates when it has not detected any references to a
register.

Note: The implicit use of a register to resolve a symbol to a base and
displacement does not create a reference in the General Purpose Register Cross
Reference.

Diagnostic Cross Reference and Assembler Summary
This section of the listing summarizes the error diagnostic messages issued during
the assembly, and provides statistics about the assembly.

The sample listing shown in Figure 24 on page 36 contains a combination of MVS
and CMS data sets to show examples of the differences in data set information.

Note: For a complete list of the diagnostic messages issued by the assembler,
see Appendix G, “High Level Assembler Messages” on page 336.

 Chapter 2. Using the Assembler Listing 35

 Diagnostic Cross Reference and Assembler Summary

Diagnostic Cross Reference and Assembler Summary Page 9

 HLASM R5.� 2��4/�6/11 17.48

Statements Flagged

 �1�
1(P1,�), 3(P1,3), 4(P1,4), 5(P1,5), 6(P1,6), 7(P1,7), 8(P1,8), 17�(L3:DCBD,2149)

 �2� 8 Statements Flagged in this Assembly 16 was Highest Severity Code

High Level Assembler, 5696-234, RELEASE 5.� �3�
SYSTEM: CMS 16 JOBNAME: (NOJOB) STEPNAME: (NOSTEP) PROCSTEP: (NOPROC) �4�
Datasets Allocated for this Assembly �5�
 Con DDname Data Set Name Volume Member

 A1 ASMAOPT XITDIS OPTIONS A1 ADISK

 P1 SYSIN XITDIS ASSEMBLE A1 ADISK

 L1 SYSLIB TEST MACLIB A1 ADISK

 L2 DSECT MACLIB A1 ADISK

 L3 OSMACRO MACLIB S2 MNT19�

 L4 OSMACRO1 MACLIB S2 MNT19�

�6� SYSLIN XITDIS TEXT A1 ADISK

 SYSPRINT XITDIS LISTING A1 ADISK

External Function Statistics �7�
 ----Calls---- Message Highest Function

SETAF SETCF Count Severity Name

 3 1 5 22 MSG

 1 � 2 8 MSG1

 1 � 1 � MSG2

�8�
Input/Output Exit Statistics

Exit Type Name Calls ---Records--- Diagnostic

 Added Deleted Messages

LIBRARY CTLXIT 258 � � 2

LISTING ASMAXPRT 195 � 52 �

| �9�
| Suppressed Message Summary

| Message Count Message Count Message Count Message Count Message Count

| 169 � 3�6 � 3�9 � 32� �

| �1�� 622K allocated to Buffer Pool,
| �11� 16 Primary Input Records Read �13� 3�72 Library Records Read
| �12� 1 ASMAOPT Records Read �14� 141 Primary Print Records Written

| �15� 2 Punch Records Written �16� � ADATA Records Written

Assembly Start Time: 12.�6.�6 Stop Time: 12.�6.�7 Processor Time: ��.��.��.1771 �17�
Return Code �16

Figure 24. Diagnostic Cross Reference and Assembler Summary

�1� The statement number of a statement that causes an error message, or
contains an MNOTE instruction, appears in this list. Flagged statements are
shown in either of two formats. When assembler option FLAG(NORECORD) is
specified, only the statement number is shown. When assembler option
FLAG(RECORD) is specified, the format is: statement(dsnum:member,record),
where:

statement is the statement number as shown in the source and object section
of the listing.

dsnum is the value applied to the source or library data set, showing the
type of input file and the concatenation number. “P” indicates the
statement was read from the primary input source, and “L” indicates
the statement was read from a library. This value is
cross-referenced to the input data sets listed under the sub-heading
“Datasets Allocated for this Assembly” �5�.

member is the name of the macro from which the statement was read. On
MVS, this may also be the name of a partitioned data set member
that is included in the primary input (SYSIN) concatenation.

36 HLASM V1R5 Programmer’s Guide

 Diagnostic Cross Reference and Assembler Summary

record is the relative record number from the start of the data set or
member which contains the flagged statement.

�2� The number of statements flagged, and the highest non-zero severity code of
all messages issued. The highest severity code is equal to the assembler
return code.

If no statements are flagged, the following statement is printed:

No Statements Flagged in this Assembly

If the assembly completes with a non-zero return code, and there are no
flagged statements, it indicates there is a diagnostic message in the Option
Summary section of the listing (see Figure 2 on page 11).

For a complete discussion of how error messages and MNOTEs are handled,
see Chapter 6, “Diagnosing Assembly Errors” on page 152.

�3� The current release of High Level Assembler and the last PTF applied.

�4� Provides information about the system on which the assembly was run. These
are:

� The name and level of the operating system used to run the assembly.

� The jobname for the assembly job. If the jobname is not available,
“(NOJOB)” is printed.

� The stepname for the assembly job. If the stepname is not available,
“(NOSTEP)” is printed.

� The procedure name for the assembly job. If the procedure name is not
available, “(NOPROC)” is printed.

�5� On MVS and CMS, all data sets used in the assembly are listed by their
standard ddname. The data set information includes the data set name, and
the serial number of the volume containing the data set. On MVS, the data set
information may also include the name of a member of a partitioned data set
(PDS).

If a user exit provides the data set information, then the data set name is the
value extracted from the Exit-Specific Information block described in the
HLASM Programmer's Guide.

The “Con” column shows the concatenation value assigned for each input data
set. You use this value to cross-reference flagged statements, and macros
and copy code members listed in the Macro and Copy Code Cross Reference
section.

MVS: On MVS, the data set name for all data sets is extracted from the MVS
job file control block (JFCB). If the data set is a JES2 spool file, for example,
the data set name is the name allocated by JES2. If the data set is allocated
to DUMMY, or NULLFILE, the data set name is shown as NULLFILE.

CMS: On CMS, the data set name is assigned one of the values shown in
Figure 25.

 Chapter 2. Using the Assembler Listing 37

 Diagnostic Cross Reference and Assembler Summary

VSE: On VSE, the data set name is assigned one of the values shown in
Figure 26.

�6� Output data sets do not have a concatenation value.

�7� The usage statistics of external functions for the assembly. The following
statistics are reported:

SETAF function calls The number of times the function was called from a
SETAF assembler instruction.

SETCF function calls The number of times the function was called from a
SETCF assembler instruction.

Messages issued The number of times the function requested that a
message be issued.

Messages severity The maximum severity for the messages issued by
this function.

Function Name The name of the external function module.

Figure 25. Data Set Names on CMS

File Allocated To: Data Set Name

CMS file The 8-character filename, the
8-character filetype, and the
2-character filemode of the file, each
separated by a space. If the data set
is a disk file in the Shared File system,
the volume serial number contains “��
SFS”.

Dummy file (no physical I/O) DUMMY

Printer PRINTER

Punch PUNCH

Reader READER

Labeled tape file The data set name of the tape file

Unlabeled tape file TAPn, where n is a value from 0 to 9,
or from A to F.

Terminal TERMINAL

Figure 26. Data Set Names on VSE

File Allocated To: Data Set Name

Disk The file-id

Job stream (SYSIPT) None

Library (Disk). The ddname is shown
as �LIB�.

The file-id

Printer None

Punch None

Labeled tape file The file-id of the tape file

Unlabeled tape file None

Terminal (TERM) None

38 HLASM V1R5 Programmer’s Guide

 Diagnostic Cross Reference and Assembler Summary

�8� The usage statistics of the I/O exits you specified for the assembly. If you do
not specify an exit, the assembler does not produce any statistics. The
following statistics are reported:

Exit Type The type of exit.

Name The name of the exit module as specified in the EXIT
assembler option.

Calls The number of times the exit was called.

Records The number of records added and deleted by the exit.

Diagnostic Messages The number of diagnostic messages printed, as a result
of exit processing.

All counts are shown right justified and leading zeros are suppressed, unless
the count is zero.

| �9� The message number of each message specified for suppression, and the
| count of the number of times it was suppressed during the assembly.

| �1�� The amount of storage allocated to the buffer pool.

�11� The number of primary input records read by the assembler. This count does
not include any records read or discarded by the SOURCE user exit.

�12� The number of records read from the ASMAOPT file (MVS and CMS) or the
Librarian member (VSE) by the assembler.

�13� The number of records read from the libraries allocated to SYSLIB on MVS
and CMS, or assigned to the Librarian on VSE. This count does not include
any records read or discarded by the LIBRARY user exit.

�14� The count of the actual number of records generated by the assembler. If you
have used the SPACE n assembler instruction, the count may be less than the
total number of printed and blank lines appearing in the listing. For a SPACE
n that does not cause an eject, the assembler inserts n blank lines in the listing
by generating n/3 blank records, rounded to the next lower integer if a fraction
results. For a SPACE 2, no blank records are generated. The assembler
does not generate a blank record to force a page eject.

This count does not include any listing records generated or discarded by the
LISTING user exit.

�15� The number of object records written. This count does not include any object
records generated or discarded by the OBJECT or PUNCH user exits.

�16� The number of ADATA records written to the associated data file.

�17� On VSE, the assembly start and stop times in hours, minutes and seconds.

On MVS and CMS, the assembly start and stop times in hours, minutes and
seconds and the approximate amount of processor time used for the assembly,
in hours, minutes, and seconds to four decimal places.

The assembly start time does not include the time used during assembly
initialization, which allocates main storage and data sets and processes the
assembler invocation parameters. The assembly stop time does not include
the time used during assembly termination, which deallocates main storage
and data sets.

 Chapter 2. Using the Assembler Listing 39

 Diagnostic Cross Reference and Assembler Summary

On MVS and CMS, High Level Assembler provides a sample listing exit which
allows you to suppress the Diagnostic Cross Reference and Assembler Summary.
See Appendix J, “Sample LISTING User Exit (MVS and CMS)” on page 401.

40 HLASM V1R5 Programmer’s Guide

 Precedence of Assembler Options

Chapter 3. Controlling Your Assembly with Options

High Level Assembler offers a number of optional facilities. For example, you can
suppress printing of the assembly listing or parts of the listing, and you can specify
whether you want an object module or an associated data file. There are two types
of options:

� Simple pairs of keywords: A positive form (such as OBJECT) requests a facility,
and an alternate negative form (such as NOOBJECT) excludes the facility.

� Keywords, such as LINECOUNT(50), that permit you to assign a value to a
function.

High Level Assembler accepts options from five different sources:

� External file (MVS and CMS)
� Library member (VSE)

 � Invocation parameter
� JCL Option (VSE)

 � *PROCESS statement

This chapter describes the different sources for assembler options, each assembler
option, and when you can use the options. Each option has a default value that
the assembler uses if you do not specify an alternative value. The way in which
the default values are arrived at is explained under “Default Options” on page 44.

The Sources of Assembler Options
This section describes in detail the different sources of assembler options, and the
general rules for specifying the options.

Before describing the sources, the section sets out the rules of precedence by
which the assembler works out what to do when an option is specified two or more
times with differing values.

Precedence of Assembler Options
Assembler options are recognized in this order of precedence (highest to lowest):

1. Fixed installation default options
2. Options on *PROCESS OVERRIDE statements
3. Options in the ASMAOPT file (CMS or MVS) or library member (VSE)

 4. Invocation options
a. Options on the JCL PARM parameter of the EXEC statement on MVS and

VSE, or the ASMAHL command on CMS
b. Options on the JCL OPTION statement (VSE)
c. Options specified via the STDOPT (Standard JCL Options) command

(VSE)
5. Options on *PROCESS statements
6. Non-fixed installation default options

You can specify an option as often as you want, and in as many sources as you
want. However, this may mean that you have specified the positive and negative
form of an option (for keyword pairs), or two or more different values (for a value
keyword). These option specifications are “conflicting” options. If all specifications

 Copyright IBM Corp. 1982, 2004 41

of a particular option are at the same level of precedence, the last specification
takes effect, and a warning message is issued. If some conflicting specifications
are at different levels of precedence, then the specification at the higher order of
precedence takes effect, and (in general) the assembler issues a warning message
for each option that is not accepted. A warning message is not issued if the higher
level of precedence is a *PROCESS OVERRIDE statement, unless the option
cannot be set by a *PROCESS statement.

Fixed Installation Default Options
If an option was specified on the DELETE operand of the ASMAOPT macro during
installation, you cannot change the option when you invoke the assembler.

*PROCESS OVERRIDE Statement Options
If the keyword OVERRIDE is added to a process (*PROCESS) statement, then the
nominated assembler option is not overridden by specifications at a lower level of
precedence. Furthermore, if there is a conflicting specification at a lower level of
precedence, the assembler does not issue a warning message.

If an option specified on the process statement is an option listed in “*Process
Statement Options” on page 43, and a different value is supplied as an ASMAOPT
or invocation option, then the ASMAOPT or invocation value is accepted, and the
assembler issues a warning message.

 ASMAOPT Options
High Level Assembler accepts options from an external file (MVS and CMS) with
the DDname ASMAOPT or library member (VSE) with the name and type
ASMAOPT.USER. The file or library member may contain multiple records. All
records are read from the file or library member.

The contents of each record are used to build an internal buffer containing the
complete option list. Each record is processed until the first space is encountered,
unless the option being processed is a SYSPARM option which is enclosed in
quotes. The assembler appends the options string from each record, separating
the strings with commas. For example, these records:

ADATA,MXREF

SYSPARM(TESTPARM)

| XREF(FULL)

generate this option list:

ADATA,MXREF,SYSPARM(TESTPARM),XREF(FULL)

 Invocation Options
The way you specify the invocation options depends on the environment in which
High Level Assembler is running.

 On MVS batch, you select the options by specifying them in the PARM
field of the JCL EXEC statement that invokes the assembler. For example:

//ASSEMBLE EXEC PGM=ASMA9�,PARM=‘LIST(133),DBCS’

You can also use catalogued procedures to invoke the assembler. To override
options in a cataloged procedure, you must include the PARM field in the EXEC

42 HLASM V1R5 Programmer’s Guide

statement that invokes the procedure. If the cataloged procedure contains more
than one step, you must also qualify the keyword parameter (PARM) with the name
of the step within the procedure that invokes the assembler. For example:
// EXEC ASMACG,PARM.C=‘LIST(133),DBCS’

For more examples on how to specify options in a cataloged procedure, see
“Overriding Statements in Cataloged Procedures” on page 191.

On TSO, you select the options by specifying them in the second parameter of the
TSO CALL command that invokes the assembler. For example:
CALL ‘SYS1.LINKLIB(ASMA9�)’ ‘LIST(133),DBCS’

 You select the options by specifying them after the left parenthesis on
the CMS ASMAHL command that invokes the assembler. For example:
ASMAHL filename (LIST(133) DBCS[)]

 In batch, you select the options by specifying them in the PARM field of
the EXEC JCL statement that invokes the assembler. You can also specify some
of the options on the JCL OPTION statement. For example:

// OPTION TERM

// EXEC ASMA9�,SIZE=ASMA9�,PARM=‘LIST,DBCS’

VSE ICCF: On ICCF, you select the options by specifying them in the PARM field
of the job entry statement /LOAD that invokes the assembler. For example:
/LOAD ASMA9� PARM=‘LIST,DBCS’

*Process Statement Options
Process (*PROCESS) statements let you specify assembler options in your
assembler source program. You can include them in the primary input data set or
provide them from a SOURCE user exit.

If you add the OVERRIDE keyword, then the option has a higher precedence than
values set as default and invocation options (see “*PROCESS OVERRIDE
Statement Options” on page 42).

Some options cannot be set by a process statement. These are:

 ADATA LINECOUNT SIZE

ASA (MVS and CMS) LIST SYSPARM

| DECK MACHINE TERM

 DISK (CMS) NOPRINT (CMS) TRANSLATE

EXIT OBJECT XOBJECT (MVS and CMS)

GOFF (MVS and CMS) OPTABLE

 LANGUAGE PRINT (CMS)

If you specify one of these options on a normal process statement, the assembler
issues a warning message.

Refer to the HLASM V1R5 Language Reference for a description of the
*PROCESS statement.

 Chapter 3. Controlling Your Assembly with Options 43

 Default Options
When High Level Assembler is installed, each assembler option is preset to a
default. The IBM-supplied default options are shown above the main path of the
syntax diagrams in the description of the assembler options that follow. However,
these might not be the default options in effect at your installation; the defaults
could have been changed when High Level Assembler was installed. For example,
NOADATA is an IBM-supplied default, and ADATA might be the default at your
installation. During an assembly you cannot override default options that were fixed
during installation (see “Fixed Installation Default Options” on page 42). The
assembler issues a message if you try to override a fixed option.

PESTOP: If the PESTOP option was specified during installation, and an error is
detected in the options you specify at run time, the assembly stops.

Invoking the Assembler Dynamically
Assembler options can be passed in a parameter list when the assembler is
invoked dynamically from an executing program. For further information, refer to
“Invoking the Assembler Dynamically” on page 164 (for the MVS platform) or
“Invoking the Assembler Dynamically” on page 222 (for the VSE platform).

 Coding Rules
The rules for coding the assembler options are:

� You can specify the options in any order.

� If you specify an incorrect option the assembler issues a diagnostic message,
and sets the return code to 2 or higher. You can prevent the setting of the
return code by using the FLAG option.

 If you specify two or more options, the options can be separated by
spaces or execution.

 If you specify two or more options, the list of options must be
enclosed within single quotation marks or parentheses. Each option must be
separated by a comma.

� If you specify only one option and it does not include any special characters,
the enclosing single quotation marks or parentheses can be omitted.

� All options that have suboptions must be within single quotation marks because
they contain special characters.

� If you need to continue the PARM field onto another record, the entire PARM
field must be enclosed in parentheses. However, any part of the PARM field
enclosed in single quotation marks must not be continued on another record.

 You must enclose the options in single quotation marks and
separate each option with a comma.

� If you need to continue the PARM field onto another record, place any
character in column 72 of the record you wish to continue, and continue in
column 16 on the following record.

� The operating system passes to the assembler any spaces you code in the
PARM=JCL parameter, including those implied in a continuation. For example:

44 HLASM V1R5 Programmer’s Guide

 ADATA

// EXEC ASMA9�,SIZE=(ASMA9�,5�K),PARM='RENT,SIZE(MAX-5��K),EXIT(LIBEXIT/

 (EDECKXIT))'

is not equivalent to:

// EXEC ASMA9�,SIZE=(ASMA9�,5�K),PARM='RENT,SIZE(MAX-5��K), /

 EXIT(LIBEXIT(EDECKXIT))'

The second example results in this diagnostic message:
�� ASMA4��W ERROR IN INVOCATION PARAMETER - EXIT (LIBEXIT(EDECKXIT)).

Additional rules for coding the assembler options in the external file or library
member are:

� Trailing spaces are ignored.

� If two or more options are specified in a record they must be separated by a
comma.

� Only a SYSPARM options enclosed in quotes may be continued on another
record.

� If a SYSPARM options contains embedded spaces it must be enclosed in
quotes.

� The maximum length of the options list including the delimiting commas
inserted by the assembler is 32766.

 Assembler Options
Here are descriptions of the assembler options. The IBM-supplied default value for
each option is shown above the main path in the syntax diagram. Your installation
may have a different default (see “Default Options” on page 44).

 ADATA

 ┌ ┐─NOADATA─
��─ ──┼ ┼───────── ─��
 └ ┘─ADATA───

Default
NOADATA

Abbreviations
None

Restrictions
You cannot specify this option on *PROCESS statements.

ADATA
Specifies that the assembler collect associated data and write it to the
associated data file. You define the associated data file with the SYSADATA
ddname on MVS and CMS, or with the SYSADAT filename on VSE.
Appendix D, “Associated Data File Output” on page 268 describes the format
of the associated data file.

 Chapter 3. Controlling Your Assembly with Options 45

 ASA

NOADATA
Specifies that the assembler is not to collect associated data. If you specify
NOADATA, then the assembler ignores the EXIT(ADEXIT) option.

 ALIGN

 ┌ ┐─ALIGN───
��─ ──┼ ┼───────── ─��
 └ ┘─NOALIGN─

Default
ALIGN

Abbreviations
None

ALIGN
Instructs the assembler to check alignment of addresses in machine
instructions for consistency with the requirements of the operation code type.
DC, DS, DXD, and CXD are to be aligned on the correct boundaries.

NOALIGN
| Instructs the assembler not to check alignment of machine instruction data
| references not always requiring operand alignment, but still to check instruction
| references and machine instruction data references always requiring operand
| alignment. DC, DS, and DXD are to be aligned on the correct boundaries only

if the duplication factor is 0.

Notes:

1. Specify the FLAG(NOALIGN) option to suppress the message issued when the
assembler detects an alignment inconsistency.

2. If your program is assembled with data areas or DSECT for interfacing with
IBM products, you should use the default (ALIGN) unless specifically directed
otherwise.

3. On VSE, you can specify the ALIGN option on the JCL OPTION statement.

ASA (MVS and CMS)

 ┌ ┐─NOASA─
��─ ──┼ ┼─────── ─��
 └ ┘─ASA───

Default
NOASA

Abbreviations
None

Restrictions
You cannot specify this option on *PROCESS statements.

46 HLASM V1R5 Programmer’s Guide

 CODEPAGE

ASA
Instructs the assembler to use American National Standard printer control
characters in records written to the listing data set.

NOASA
Instructs the assembler to use machine printer control characters in records
written to the listing data set.

 BATCH

 ┌ ┐─BATCH───
��─ ──┼ ┼───────── ─��
 └ ┘─NOBATCH─

Default
BATCH

Abbreviations
None

BATCH
Instructs the assembler that multiple assembler source programs may be in the

| input data set. The first statement of the second and subsequent source
| programs must immediately follow the assembled END statement of the

previous source program. An end-of-file must immediately follow the last
source program.

NOBATCH
Instructs the assembler that only one assembler source program is in the input
data set.

 CODEPAGE

 ┌ ┐─CODEPAGE(1148|X'47C')───
��─ ──┼ ┼───────────────────────── ─��
 └ ┘─CODEPAGE(nnnnn|X'xxxx')─

Default
CODEPAGE(1148|X'47C')

Abbreviation
CP

1148|X'47C'
Specifies that characters contained in the Unicode character (CU-type) data
constants (DCs) are to be converted using the ECECP: International 1
Unicode-3 mappings contained in module ASMA047C.

nnnnn|X'xxxx'
Specifies that characters contained in the Unicode character (CU-type) data
constants (DCs) are to be converted using the Unicode mapping table module
ASMAxxxx where xxxx is the hexadecimal value of the number nnnnn which is
the number of the code page contained in the module. The number must be in
the range 1 through 64k−1.

 Chapter 3. Controlling Your Assembly with Options 47

 COMPAT

The following Unicode-3 code pages are supported by the assembler:

Figure 27. Unicode-3 SBCS Mapping Code Pages

Code
Page

Module
Name

Description

1140 ASMA0474 ECECP: USA, Canada, Netherlands, Portugal, Brazil,
Australia, New Zealand

1141 ASMA0475 ECECP: Austria, Germany

1142 ASMA0476 ECECP: Denmark, Norway

1143 ASMA0477 ECECP: Finland, Sweden

1144 ASMA0478 ECECP: Italy

1145 ASMA0479 ECECP: Spain, Latin America (Spanish)

1146 ASMA047A ECECP: United Kingdom

1147 ASMA047B ECECP: France

1148 ASMA047C ECECP: International 1

 COMPAT

 ┌ ┐─NOCOMPAT──────────────────────────
��─ ──┼ ┼─────────────────────────────────── ─��
 │ │┌ ┐─,─────────────────
 │ ││ │┌ ┐─NOCASE─

└ ┘──COMPAT(──(1)───

┴┬ ┬──┼ ┼──────── ─────)
 │ │└ ┘─CASE───
 │ │┌ ┐─NOLITTYPE─
 ├ ┤──┼ ┼─────────── ──
 │ │└ ┘─LITTYPE───
 │ │┌ ┐─NOMACROCASE─
 ├ ┤──┼ ┼─────────────
 │ │└ ┘─MACROCASE───
 │ │┌ ┐─NOSYSLIST─
 └ ┘──┼ ┼─────────── ──
 └ ┘─SYSLIST───

Note:
1 Choose at least one option.

Default
NOCOMPAT

Abbreviations
CPAT(CASE, NOCASE, LIT, NOLIT, MC, NOMC, SYSL, NOSYSL) / NOCPAT

Note: You can specify the COMPAT (or NOCOMPAT) option as a parameter of
the ACONTROL statement. For further details, refer to the High Level Assembler
Language Reference.

CASE
Instructs the assembler to maintain uppercase alphabetic character set
compatibility with earlier assemblers. It restricts language elements to
uppercase alphabetic characters A through Z if they were so restricted in earlier
assemblers.

48 HLASM V1R5 Programmer’s Guide

 DBCS

NOCASE
Instructs the assembler to allow a mixed-case alphabetic character set.

LITTYPE
Instructs the assembler to return “U” as the type attribute for all literals.

NOLITTYPE
Instructs the assembler to provide the correct type attribute for literals once
they have been defined.

MACROCASE
| Instructs the assembler to convert (internally) lowercase alphabetic characters

(a through z) in unquoted macro operands to uppercase alphabetic characters
(A through Z).

NOMACROCASE
| Instructs the assembler not to convert (internally) lowercase alphabetic

characters (a through z) in unquoted macro operands.

SYSLIST
Instructs the assembler to treat sublists in SETC symbols as compatible with
earlier assemblers. SETC symbols that are assigned parenthesized sublists
are treated as character strings, not sublists, when passed to a macro definition
in an operand of a macro instruction.

NOSYSLIST
Instructs the assembler not to treat sublists in SETC symbols as character
strings, when passed to a macro definition in an operand of a macro
instruction.

NOCOMPAT
Instructs the assembler to allow lowercase alphabetic characters a through z in
all language elements, to treat sublists in SETC symbols as sublists when
passed to a macro definition in the operand of a macro instruction, and to
provide the correct type attribute for literals once the have been defined.

 DBCS

 ┌ ┐─NODBCS─
��─ ──┼ ┼──────── ─��
 └ ┘─DBCS───

Default
NODBCS

Abbreviations
None

DBCS
Instructs the assembler to accept double-byte character set data, and to
support graphic (G-type) constants and self-defining terms. The assembler
recognizes X'0E' and X'0F' in character strings enclosed by single quotation
marks, and treats them as Shift-Out and Shift-In control characters for
delimiting DBCS data.

 Chapter 3. Controlling Your Assembly with Options 49

 DXREF

NODBCS
Specifies that the assembler does not recognize X'0E' and X'0F' as
double-byte character set data delimiters, and does not support graphic
(G-type) constants and self-defining terms.

 DECK

 ┌ ┐─NODECK─
��─ ──┼ ┼──────── ─��
 └ ┘─DECK───

Default
NODECK

Abbreviations
None

Restrictions
You cannot specify this option on *PROCESS statements.

DECK
Specifies that the assembler generate object code and write it to the object
data set. You define the object data set with the SYSPUNCH ddname on MVS
and CMS, or with the IJSYSPH filename and by assigning SYSPCH on VSE.

NODECK
Instructs the assembler not to write the object code to SYSPUNCH on MVS
and CMS, or SYSPCH on VSE.

If you specify NODECK and NOOBJECT, the assembler ignores the
EXIT(OBJEXIT)) option.

On VSE, you can only specify the DECK option on the JCL OPTION statement. If
you specify it on the PARM operand of the JCL EXEC statement, the assembler
issues message ASMA4��W, and ignores the option.

 DISK (CMS)
See “PRINT (CMS)” on page 70.

 DXREF

 ┌ ┐─DXREF───
��─ ──┼ ┼───────── ─��
 └ ┘─NODXREF─

Default
DXREF

Abbreviations
DX / NODX

DXREF
Instructs the assembler to produce the DSECT Cross Reference section of the
assembler listing. The DSECT cross reference includes:

50 HLASM V1R5 Programmer’s Guide

 ESD

� The symbolic names of all DSECTs defined in the assembly
� The assembled length of each DSECT
� The ESDID of each DSECT
� The statement number which defines the DSECT

NODXREF
Instructs the assembler not to produce the DSECT Cross Reference section of
the assembler listing.

 ERASE (CMS)

 ┌ ┐─ERASE───
��─ ──┼ ┼───────── ─��
 └ ┘─NOERASE─

Default
ERASE

Abbreviations
None

Restrictions
This option is not allowed on *PROCESS statements.

This option can only be specified when you use the ASMAHL command on
CMS.

ERASE
Specifies that the existing files with a filename the same as the filename on the
ASMAHL command, and a filetype of LISTING, TEXT, and SYSADATA, are to
be deleted before the assembly is run. Only files on the disk on which the
assembler writes the new listing, object, and associated data files are deleted.

NOERASE
Specifies that the existing LISTING, TEXT, and SYSADATA files are not to be
deleted before the assembly is run.

 ESD

 ┌ ┐─ESD───
��─ ──┼ ┼─────── ─��
 └ ┘─NOESD─

Default
ESD

Abbreviations
None

ESD
Instructs the assembler to produce the External Symbol Dictionary section of
the assembler listing. The ESD contains the external symbol dictionary
information that is passed to the linkage editor or loader, or z/OS binder, in the
object module.

 Chapter 3. Controlling Your Assembly with Options 51

 EXIT

NOESD
Instructs the assembler not to produce the External Symbol Dictionary section
of the assembler listing.

On VSE, you can specify this option on the JCL OPTION statement.

 EXIT

 ┌ ┐─NOEXIT──
��─ ──┼ ┼─── ─��
 │ │┌ ┐─,───────────────────────────────────────
 │ ││ │┌ ┐ ─NOINEXIT─────────────────────

└ ┘──EXIT(───

┴──(1)──┬ ┬──┼ ┼────────────────────────────── ─)
│ │└ ┘──INEXIT(mod1 ──┬ ┬────────────)

 │ │└ ┘─(──str1──)─
 │ │┌ ┐ ─NOLIBEXIT─────────────────────
 ├ ┤──┼ ┼───────────────────────────────

│ │└ ┘──LIBEXIT(mod2 ──┬ ┬────────────)
 │ │└ ┘─(──str2──)─
 │ │┌ ┐ ─NOPRTEXIT─────────────────────
 ├ ┤──┼ ┼───────────────────────────────

│ │└ ┘──PRTEXIT(mod3 ──┬ ┬────────────)
 │ │└ ┘─(──str3──)─
 │ │┌ ┐ ─NOOBJEXIT─────────────────────
 ├ ┤──┼ ┼───────────────────────────────

│ │└ ┘──OBJEXIT(mod4 ──┬ ┬────────────)
 │ │└ ┘─(──str4──)─
 │ │┌ ┐ ─NOADEXIT─────────────────────
 ├ ┤──┼ ┼────────────────────────────── ─

│ │└ ┘──ADEXIT(mod5 ──┬ ┬────────────)
 │ │└ ┘─(──str5──)─
 │ │┌ ┐ ─NOTRMEXIT─────────────────────
 └ ┘──┼ ┼───────────────────────────────

└ ┘──TRMEXIT(mod6 ──┬ ┬────────────)
 └ ┘─(──str6──)─

Note:
1 Choose at least one option.

Default
NOEXIT

Abbreviations
EX(INX, NOINX, LBX, NOLBX, PRX, NOPRX, OBX, NOOBX, ADX, NOADX,
TRX, NOTRX) / NOEX

Restrictions
You cannot specify this option on *PROCESS statements.

INEXIT
Specifies that the assembler use an input (SOURCE) exit for the assembly.
mod1 is the name of the load module for the exit. The assembler passes
control to the load module for SOURCE type exit processing, and provides a
pointer to str1 in a parameter list when the exit is first called. For a full
description, see Chapter 4, “Providing User Exits” on page 85.

You can use a SOURCE exit, for example, to read variable-length source input
records. See also Appendix K, “Sample SOURCE User Exit (MVS and CMS)”
on page 403.

52 HLASM V1R5 Programmer’s Guide

 EXIT

NOINEXIT
Specifies that there is no SOURCE exit.

LIBEXIT
Specifies that the assembler use a LIBRARY exit for the assembly. mod2 is the
name of the load module for the exit. The assembler passes control to the
load module for LIBRARY type exit processing, and provides a pointer to str2 in
a parameter list when the exit is first called. For a full description, see
Chapter 4, “Providing User Exits” on page 85.

On CMS, you can use this exit, for example, to handle non-standard libraries,
or macros and copy books that are in separate CMS files instead of CMS
MACLIBs.

On VSE, you can use this exit to handle edited macros from the library
sublibraries.

Refer to VSE/ESA Guide to System Functions for a description of a LIBRARY
exit to read edited macros.

NOLIBEXIT
Specifies that there is no LIBRARY exit.

PRTEXIT
Specifies that the assembler use a LISTING exit for the assembly. mod3 is the
name of the load module for the exit. The assembler passes control to the
load module for LISTING type exit processing, and provides a pointer to str3 in
a parameter list when the exit is first called. For a full description, see
Chapter 4, “Providing User Exits” on page 85.

You can use the LISTING exit, for example, to suppress parts of the assembly
listing, or provide additional listing lines. See also Appendix J, “Sample
LISTING User Exit (MVS and CMS)” on page 401.

NOPRTEXIT
Specifies that there is no LISTING exit.

OBJEXIT
On MVS and CMS, specifies that the assembler use an OBJECT exit or
PUNCH exit, or both, for the assembly. mod4 is the name of the load module
for the exit. The assembler passes control to the load module for OBJECT
type exit processing when you specify either the OBJECT or GOFF option, and
provides a pointer to str4 in a parameter list when the exit is first called. For a
full description, see Chapter 4, “Providing User Exits” on page 85. The
assembler passes control to the load module for PUNCH type exit processing
when you specify the DECK option. The OBJEXIT suboption is ignored if you
specify the assembler options NODECK and NOOBJECT.

On VSE, specifies that the assembler use a PUNCH exit for the assembly. The
name of the load module for the exit is mod4. The assembler passes control to
the load module for PUNCH type exit processing when you specify the DECK
option. You can use the PUNCH exit, for example, to catalog object modules
directly into a library sublibrary.

NOOBJEXIT
Specifies that there is no OBJECT exit or PUNCH exit.

 Chapter 3. Controlling Your Assembly with Options 53

 EXIT

ADEXIT
Specifies that the assembler use an ADATA exit for the assembly. mod5 is the
name of the load module for the exit. The assembler passes control to the
load module for ADATA type exit processing, and provides a pointer to str5 in a
parameter list when the exit is first called. For a full description, see Chapter 4,
“Providing User Exits” on page 85. See also Appendix I, “Sample ADATA
User Exits (MVS and CMS)” on page 390.

NOADEXIT
Specifies that there is no ADATA exit.

TRMEXIT
Specifies that the assembler use a TERM exit for the assembly. mod6 is the
name of the load module for the exit. The assembler passes control to the
load module for TERM type exit processing, and provides a pointer to str6 in a
parameter list when the exit is first called. For a full description, see Chapter 4,
“Providing User Exits” on page 85.

NOTRMEXIT
Specifies that there is no TERM exit.

NOEXIT
Specifies that there are no exits for the assembly.

The module names mod1, mod2, mod3, mod4, mod5, and mod6 can refer to the
same load module.

The suboptions str1, str2, str3, str4, str5, and str6 are optional. They are character
strings, up to 64 characters in length, that are passed to the exit module during
OPEN processing. You may include any character in a string, but you must pair
parentheses. JCL restrictions require that you specify two single quotation marks
to represent a single quotation mark, and two ampersands to represent a single
ampersand.

For more information about the EXIT option, see Chapter 4, “Providing User Exits”
on page 85.

You specify these options in the installation default options using the ADEXIT,
INEXIT, LIBEXIT, OBJEXIT, PRTEXIT, and TRMEXIT operands.

54 HLASM V1R5 Programmer’s Guide

 FLAG

 FLAG

 ┌ ┐─,──────────────────
 │ │┌ ┐─�───────
��─ ──FLAG(───

┴──(1)──┬ ┬──┼ ┼───────── ─) ─��

 │ │└ ┘─integer─
 │ │┌ ┐─ALIGN───
 ├ ┤──┼ ┼───────── ─
 │ │└ ┘─NOALIGN─
 │ │┌ ┐─CONT───
 ├ ┤──┼ ┼──────── ──
 │ │└ ┘─NOCONT─
 │ │┌ ┐─NOIMPLEN─
 ├ ┤──┼ ┼──────────
 │ │└ ┘─IMPLEN───
 │ │┌ ┐─NOPAGE�─
 ├ ┤──┼ ┼───────── ─
 │ │└ ┘─PAGE�───
 │ │┌ ┐─PUSH───
 ├ ┤──┼ ┼──────── ──
 │ │└ ┘─NOPUSH─
 │ │┌ ┐─RECORD───
 ├ ┤──┼ ┼──────────
 │ │└ ┘─NORECORD─
 │ │┌ ┐─NOSUBSTR─
 ├ ┤──┼ ┼──────────
 │ │└ ┘─SUBSTR───
 │ │┌ ┐─USING�───
 ├ ┤──┼ ┼──────────
 │ │└ ┘─NOUSING�─

| │ │┌ ┐─EXLITW───
 └ ┘──┼ ┼──────────

| └ ┘─NOEXLITW─

Note:
1 Choose at least one option.

Default
| FLAG(0, ALIGN, CONT, NOIMPLEN, NOPAGE0, PUSH, RECORD,
| NOSUBSTR, USING0, EXLITW)

Abbreviations
AL, NOAL, IMP, NOIMP, PG0, NOPG0, PU, NOPU, RC, NORC, SUB, NOSUB,
US0, NOUS0

Note: You can specify the FLAG option as a parameter of the ACONTROL
statement. For further details, refer to the High Level Assembler Language
Reference.

integer
Specifies that error diagnostic messages with this or a higher severity code are
printed in the source and object section of the assembly listing. Error
diagnostic messages with a severity code lower than integer do not appear in
the source and object section, and the severity code associated with those
messages is not used to set the return code issued by the assembler. Any
severity code from 0 through 255 may be specified. Error diagnostic messages
have a severity code of 0, 2, 4, 8, 12, 16, or 20. MNOTEs can have a severity
code of 0 through 255.

 Chapter 3. Controlling Your Assembly with Options 55

 FLAG

When specified with the TERM assembler option, FLAG controls which
messages are displayed in the terminal output.

ALIGN
Instructs the assembler to issue diagnostic message ASMA�33I when an
inconsistency is detected between the operation code type and the alignment of
addresses in machine instructions. Assembler option ALIGN describes when
the assembler detects an inconsistency.

NOALIGN
Instructs the assembler not to issue diagnostic messages ASMA�33I, ASMA212W
and ASMA213W when an inconsistency is detected between the operation code
type and the alignment of addresses in machine instructions.

CONT
Specifies that the assembler is to issue diagnostic messages ASMA43�W through
ASMA433W when one of the following situations occurs in a macro call instruction:

� The operand on the continued record ends with a comma, and a
continuation statement is present but continuation does not start in the
continue column (usually column 16).

� A list of one or more operands ends with a comma, but the continuation
column (usually column 72) is a space.

� The continuation record starts in the continue column (usually column 16)
but there is no comma present following the operands on the previous
record.

� The continued record is full but the continuation record does not start in the
continue column (usually column 16).

Note: FLAG(CONT) checks only apply to statements that appear in the output
listing.

NOCONT
Specifies that the assembler is not to issue diagnostic messages ASMA43�W

through ASMA433W when an inconsistent continuation is encountered.

IMPLEN
Instructs the assembler to issue diagnostic message ASMA169I when an explicit
length subfield is omitted from an SS-format machine instruction.

NOIMPLEN
Instructs the assembler not to issue diagnostic message ASMA169I when an
explicit length subfield is omitted from an SS-format machine instruction.

PAGE0
Instructs the assembler to issue diagnostic message ASMA3�9W when an
operand is resolved to a baseless address and a base and displacement is
expected. This message is only issued for instructions that reference storage.
For example, a LOAD instruction generates the message but a LOAD
ADDRESS instruction does not generate the message.

NOPAGE0
Instructs the assembler not to issue diagnostic message ASMA3�9W when an
operand is resolved to a baseless address and a base and displacement is
expected.

56 HLASM V1R5 Programmer’s Guide

 FLAG

The FLAG suboptions PAGE0 and IMPLEN are specified in the installation
default options as PAGE0WARN and IMPLENWARN respectively.

PUSH
Instructs the assembler to issue diagnostic warning message ASMA138W when a
PUSH/POP stack is not empty at the completion of a compile.

NOPUSH
Instructs the assembler to suppress diagnostic warning message ASMA138W

when a PUSH/POP stack is not empty at the completion of a compile.

RECORD
Instructs the assembler to do the following:

� Issue diagnostic message ASMA435I immediately after the last diagnostic
message for each statement in error. The message text describes the
record number and input data set name of the statement in error.

� Include the member name (if applicable), the record number and the input
data set concatenation value with the statement number in the list of
flagged statements in the Diagnostic Cross Reference and Assembler
Summary section of the assembler listing.

NORECORD
Instructs the assembler to do the following:

� Not issue diagnostic message ASMA435I for statements in error.

� Only show the statement number in the list of flagged statements in the
Diagnostic Cross Reference and Assembler Summary section of the
assembler listing.

SUBSTR
Instructs the assembler to issue warning diagnostic message ASMA�94I when
the second subscript value of the substring notation indexes past the end of the
character expression.

NOSUBSTR
Instructs the assembler not to issue warning diagnostic message ASMA�94I

when the second subscript value of the substring notation indexes past the end
of the character expression.

USING0
Instructs the assembler to issue diagnostic warning message ASMA3�6W for a
USING that is coincident with or overlaps an implied USING 0,0, when the
USING(WARN) suboption includes the condition numbers 1 and/or 4.

| Note: Message ASMA302W is issued when R0 is specified as a base register
| with a non-zero base address, and message ASMA306W is issued
| when any register other than R0 is specified as a base register with an
| absolute base address whose range overlaps the assembler's default
| (0,4095).

NOUSING0
Instructs the assembler to suppress diagnostic warning message ASMA3�6W.

| Note: Message ASMA302W is issued when R0 is specified as a base register
| with a non-zero base address, and message ASMA306W is issued
| when any register other than R0 is specified as a base register with an

 Chapter 3. Controlling Your Assembly with Options 57

 GOFF

| absolute base address whose range overlaps the assembler's default
| (0,4095).

| EXLITW
| Instructs the assembler to issue diagnostic warning ASMA016W when a literal
| is used as the object of an EX instruction.

| NOEXLITW
| Instructs the assembler to suppress diagnostic warning message ASMA016W
| when a literal is used as the object of an EX instruction.

The FLAG suboptions ALIGN, CONT, IMPLEN, PAGE0, PUSH, RECORD,
| SUBSTR, USING0, and EXLITW are specified in the installation default options as

ALIGNWARN, CONTWARN, IMPLENWARN, PAGE0WARN, PUSHWARN,
| RECORDINFO, SUBSTRWARN, USING0WARN, and EXLITW respectively.

| For information about installation default options, please refer to the HLASM
| Installation and Customization Guide.

 FOLD

 ┌ ┐─NOFOLD─
��─ ──┼ ┼──────── ─��
 └ ┘─FOLD───

Default
NOFOLD

Abbreviations
None

FOLD
Instructs the assembler to convert lowercase alphabetic characters (a through
z) in the assembly listing to uppercase alphabetic characters (A through Z). All
lowercase alphabetic characters are converted, including lowercase characters
in source statements, assembler error diagnostic messages, and assembly
listing lines provided by a user exit. Lowercase alphabetic characters are
converted to uppercase alphabetic characters, regardless of the setting of the
COMPAT(CASE) option.

NOFOLD
Specifies that lowercase alphabetic characters are not converted to uppercase
alphabetic characters.

The assembler listing headings are not affected by the FOLD option. The
LANGUAGE option controls the case for assembler listing headings.

GOFF (MVS and CMS)

 ┌ ┐─NOGOFF─────────────
��─ ──┼ ┼──────────────────── ─��
 │ │┌ ┐─(NODATA)─
 └ ┘──GOFF ──┼ ┼──────────
 └ ┘─(ADATA)──

58 HLASM V1R5 Programmer’s Guide

 GOFF

Default
NOGOFF

Abbreviations
None

Restrictions
You cannot specify this option on *PROCESS statements.

GOFF
Instructs the assembler to produce a Generalized Object File format (GOFF)
data set. You define this data set with the SYSLIN or SYSPUNCH ddname.

Note: For more information on the GOFF format, refer to DFSMS/MVS
Program Management.

NOADATA
The same as GOFF without a suboption.

ADATA
Instructs the assembler to produce a Generalized Object File format data set,
and include ADATA text records.

NOGOFF
Instructs the assembler not to produce a Generalized Object File format data
set.

Notes:

1. You should specify the LIST(133) option when you specify the GOFF option. If
the logical record length of the listing data set is less than 133, the assembler
truncates the listing lines.

2. The generalized object format does not support TEST (SYM) records. If you
specify the TEST option with the GOFF option, the assembler issues a
diagnostic error message.

3. The assembler option XOBJECT is treated as a synonym for the GOFF option
and accepts the same subparameters as GOFF.

For more information on the 133-character format, see “Source and Object” on
page 16.

When the GOFF option is not specified a control section is initiated or resumed by
the CSECT, RSECT, and COM statements. Any machine language text created by
statements that follow such control section declarations belongs to the control
section, and is manipulated during program linking and binding as an indivisible
unit.

When the GOFF option is specified, the behavior of statements like CSECT is
somewhat different. By default, the assembler creates a definition of a text class
named B_TEXT, to which subsequent machine language text belongs if no other
classes are declared. If you specify other class names using the CATTR statement,
machine language text following such CATTR statements belongs to that class.

The combination of a section name and a class name defines an element, which is
the indivisible unit manipulated during linking and binding. All elements with the
same section name are “owned” by that section, and binding actions (such as
section replacement) act on all elements owned by a section.

 Chapter 3. Controlling Your Assembly with Options 59

 LANGUAGE

When the GOFF option is specified, and if no CATTR statements are present, then
all machine language text is placed in the default class B_TEXT, and the behavior
of the elements in the bound module is essentially the same as the behavior of
control sections when the OBJECT option is specified. However, if additional
classes are declared, a section name can best be thought of as a "handle" by
which elements within declared classes are owned.

 INFO

 ┌ ┐─NOINFO─────────
��─ ──┼ ┼──────────────── ─��

├ ┤──INFO(yyyymmdd)
 └ ┘─INFO───────────

Default
NOINFO

Abbreviations
None

INFO
Instructs the assembler to copy to the list data set all product information.

The Product Information Page (see Figure 28) follows the Option Summary,

INFO(yyyymmdd)
Instructs the assembler not to copy to the list data set any product information
which is dated prior to yyyymmdd.

NOINFO
Instructs the assembler not to copy any product information to the list data set.

High Level Assembler Product Information Page 2

 HLASM R5.� 2��4/�6/11 17.48

The following information describes enhancements and changes to the

High Level Assembler Product.

The information displayed can be managed by using the following options:

INFO - prints all available information for this release.

INFO(yyyymmdd) - suppresses items dated prior to "yyyymmdd".

NOINFO - suppresses the product information entirely.

 199811�4 APAR PQ21�28 Fixed

Some machine opcodes incorrectly no longer accept literal operands.

Figure 28. High Level Assembler Product Information Page

(This page from a previous release of HLASM, for illustrative purposes only.)

 LANGUAGE

60 HLASM V1R5 Programmer’s Guide

 LIBMAC

┌ ┐──LANGUAGE(EN) ──────
��─ ──┼ ┼──────────────────── ─��

└ ┘──LANGUAGE(──┬ ┬─DE─)
 ├ ┤─ES─
 ├ ┤─JP─
 └ ┘─UE─

Default
LANGUAGE(EN)

Abbreviations
LANG(EN|ES|DE|JP|UE)

Restrictions
This option is not allowed on *PROCESS statements.

EN
Specifies that the assembler issues messages, and prints the assembler listing
headings in mixed uppercase and lowercase English.

DE
Specifies that the assembler issues messages in German. The assembler
listing headings are printed in mixed-case English.

ES
Specifies that the assembler issues messages in Spanish. The assembler
listing headings are printed in mixed-case English.

JP Specifies that the assembler issues messages in Japanese. The assembler
listing headings are printed in uppercase English.

UE
Specifies that the assembler issues messages, and prints the assembler listing
headings in uppercase English.

Note: The assembler uses the language specified in the installation default
options for messages produced in CMS by the ASMAHL command.

 LIBMAC

 ┌ ┐─NOLIBMAC─
��─ ──┼ ┼────────── ─��
 └ ┘─LIBMAC───

Default
NOLIBMAC

Abbreviations
LMAC / NOLMAC

Note: You can specify the LIBMAC (or NOLIBMAC) option as a parameter of the
ACONTROL statement. For further details, refer to the High Level Assembler
Language Reference.

 Chapter 3. Controlling Your Assembly with Options 61

 LIST

LIBMAC
Specifies that, for each macro, macro definition statements read from a macro
library are to be embedded in the input source program immediately preceding
the first invocation of that macro. The assembler assigns statement numbers
to the macro definition statements as though they were included in the input
source program.

NOLIBMAC
Specifies that macro definition statements read from a macro library are not
included in the input source program.

 LINECOUNT

┌ ┐──LINECOUNT(6�) ─────
��─ ──┼ ┼──────────────────── ─��

└ ┘──LINECOUNT(integer)

Default
LINECOUNT(60)

Abbreviations
LC(integer)

CMS Only:

The LINECOUNT option can be abbreviated to LINECOUN.

Restrictions
This option is not allowed on *PROCESS statements.

LINECOUNT(integer)
Specifies the number of lines to be printed on each page of the assembly
listing. integer must have a value of 0, or 10 to 32767. If a value of 0 is
specified, no page ejects are generated and EJECT, CEJECT, and TITLE
statements in the assembly are ignored.

Up to 7 lines on each page may be used for heading lines.

 LIST

┌ ┐──LIST(121) ────────────
��─ ──┼ ┼─────────────────────── ─��
 ├ ┤──LIST ──┬ ┬─────────────
 │ │└ ┘──(──┬ ┬─133─)
 │ │└ ┘─MAX─
 └ ┘─NOLIST────────────────

Default
LIST(121)

Abbreviations
None

Restrictions
You cannot specify this option on *PROCESS statements.

62 HLASM V1R5 Programmer’s Guide

 MACHINE

LIST
Instructs the assembler to produce a listing. Specifying LIST without a
suboption is equivalent to specifying LIST(121).

121 (MVS and CMS)
Instructs the assembler to produce a listing, and print the Source and Object
section in the 121-character format.

133 (MVS and CMS)
Instructs the assembler to produce a listing, and print the Source and Object
section in the 133-character format. You should use this option when you
specify the GOFF option.

MAX (MVS and CMS)
Instructs the assembler to produce a listing, and print the Source and Object
section in either the 121-character format or the 133-character format. If the
logical record length (LRECL) of the listing data set is less than 133 then the
assembler selects the 121-character format. If the LRECL of the listing data set
is 133 or more then the assembler selects the 133-character format.

NOLIST
Instructs the assembler to suppress the assembly listing. When you specify
NOLIST the assembler ignores the following options:

 DXREF PCONTROL

 ESD RLD

 EXIT(PRTEXIT) RXREF

 INFO USING(MAP)

 MXREF(MAP) XREF

| MACHINE
|

| ��─ ──MACHINE(──┬ ┬─S37�────── , ──┬ ┬─LIST───) ─��
| ├ ┤─S37�XA──── └ ┘─NOLIST─
| ├ ┤─S37�ESA───
| ├ ┤─S39�──────
| ├ ┤─S39�E─────
| ├ ┤─ZSERIES───
| ├ ┤─ZS────────
| ├ ┤─ZSERIES-2─
| └ ┘─ZS-2──────

| Abbreviations
| MAC

| Restrictions
| None

| S370
| Instructs the assembler to load and use the operation code table that contains
| the System/370 machine instructions, including those with a vector facility.
| Equivalent to OPTABLE(370).

| S370XA
| Instructs the assembler to load and use the operation code table that contains
| the System/370 extended architecture machine instructions, including those
| with a vector facility. Equivalent to OPTABLE(XA).

 Chapter 3. Controlling Your Assembly with Options 63

 MACHINE

| S370ESA
| Synonym for MACHINE(S390E).

| S390
| Synonym for MACHINE(S390E).

| S390E
| Instructs the assembler to load and use the operation code table that contains
| the ESA/370 and ESA/390 architecture machine instructions, including those
| with a vector facility. Equivalent to OPTABLE(ESA).

| ZSERIES
| Instructs the assembler to load and use the operation code table that contains
| the symbolic operation codes for the machine instructions specific to
| z/Architecture systems. Equivalent to OPTABLE(ZOP).

| ZS Synonym for MACHINE(ZSERIES).

| ZSERIES-2
| Same as MACHINE(ZSERIES) but with the addition of the long displacement
| facility. Equivalent to OPTABLE(YOP).

| ZS-2
| Synonym for MACHINE(ZSERIES-2).

| LIST
| Instructs the assembler to produce the Operation Code Table Contents section
| in the listing. Equivalent to OPTABLE(LIST).

| NOLIST
| Instructs the assembler not to produce the Operation Code Table Contents
| section in the listing. Equivalent to OPTABLE(NOLIST).

| Notes:

| 1. These operation code tables do not contain symbolic operation codes for
| machine instructions that are unique to IBM 4300 Processors operating in
| ECPS:VSE mode.

| 2. The operation codes supported by High Level Assembler are described in the
| manuals listed under “Related Publications (Architecture)” on page 429.

| 3. Figure 29 shows the equivalent sub-options for the MACHINE and OPTABLE
| options.

| Figure 29 (Page 1 of 2). Equivalent sub-options for MACHINE and OPTABLE options

| MACHINE
| sub-option
| OPTABLE
| sub-option
| Output in
| assembler listing

| | UNI| MACHINE(,NOLIST)

| | DOS| MACHINE(,NOLIST)

| S370| 370| MACHINE(S370,NOLIST)

| S370XA| XA| MACHINE(S370XA,NOLIST)

| S370ESA| ESA| MACHINE(S390,NOLIST)

| S390| ESA| MACHINE(S390,NOLIST)

| S390E| ESA| MACHINE(S390,NOLIST)

| ZSERIES| ZOP| MACHINE(zSeries,NOLIST)

64 HLASM V1R5 Programmer’s Guide

 MXREF

| Figure 29 (Page 2 of 2). Equivalent sub-options for MACHINE and OPTABLE options

| MACHINE
| sub-option
| OPTABLE
| sub-option
| Output in
| assembler listing

| ZS| ZOP| MACHINE(zSeries,NOLIST)

| ZSERIES-2| YOP| MACHINE(zSeries-2,NOLIST)

| ZS-2| YOP| MACHINE(zSeries-2,NOLIST)

 MXREF

┌ ┐──MXREF(SOURCE) ──────────
��─ ──┼ ┼───────────────────────── ─��
 ├ ┤──MXREF ──┬ ┬──────────────
 │ │└ ┘──(──┬ ┬─FULL─)
 │ │└ ┘─XREF─
 └ ┘─NOMXREF─────────────────

Default
MXREF(SOURCE)

Abbreviations
MX / NOMX

MXREF
Specifying MXREF without a suboption is equivalent to specifying
MXREF(SOURCE).

SOURCE
Instructs the assembler to produce the Macro and Copy Code Source
Summary section of the assembler listing. The macro and copy code source
summary includes the name of each macro library or copy library accessed, the
volume serial number of the first DASD volume on which the library resides,
and the names of each member retrieved from the library.

FULL
Instructs the assembler to produce the Macro and Copy Code Source
Summary section and the Macro and Copy Code Cross Reference section of
the assembler listing.

Note: See note following MXREF(XREF).

XREF
Instructs the assembler to produce the Macro and Copy Code Cross Reference
section of the assembler listing. The Macro and Copy Code Cross Reference
includes the name of each macro or copy code member referenced in the
assembly, where it was referenced and where it was called or copied from.

Note: If you specify MXREF(FULL) or MXREF(XREF), you might need to
review the value of the SIZE option (as both of these assembler options
use considerable amounts of storage).

NOMXREF
Specifies that macro and copy code information is not generated in the
assembler listing.

 Chapter 3. Controlling Your Assembly with Options 65

 OPTABLE

 OBJECT

 ┌ ┐─OBJECT───
��─ ──┼ ┼────────── ─��
 └ ┘─NOOBJECT─

Default
OBJECT

Abbreviations
OBJ / NOOBJ

Restrictions
You cannot specify this option on *PROCESS statements.

OBJECT
Instructs the assembler to generate object code and write it to the object data
set. You define the object data set with the SYSLIN ddname, on MVS and
CMS, or with the IJSYSLN filename and by assigning SYSLNK on VSE.

NOOBJECT
Instructs the assembler not to write the object code to SYSLIN, on MVS and
CMS, or SYSLNK on VSE.

On VSE, you can only specify the OBJECT option by using the LINK or CATAL
option on the JCL OPTION statement. If you specify OBJECT on the PARM
operand of the JCL EXEC statement, the assembler issues message ASMA4��W,
and ignores the option.

 OPTABLE
|

| ┌ ┐──OPTABLE(UNI,NOLIST) ────────────
| ��─ ──┼ ┼───────────────────────────────── ─��
| └ ┘──OPTABLE(──┬ ┬─DOS─ , ──┬ ┬─LIST───)
| ├ ┤─ESA─ └ ┘─NOLIST─
| ├ ┤─XA──
| ├ ┤─37�─
| ├ ┤─YOP─
| └ ┘─ZOP─

| Default
| OPTABLE(UNI,NOLIST)

Abbreviation
OP

Restrictions
| None

DOS
Instructs the assembler to load and use the DOS operation code table. The
DOS operation code is designed specifically for assembling programs
previously assembled using the DOS/VSE assembler. The operation code table
contains the System/370 machine instructions, excluding those with a vector
facility.

66 HLASM V1R5 Programmer’s Guide

 OPTABLE

ESA
Instructs the assembler to load and use the operation code table that contains
the ESA/370 and ESA/390 architecture machine instructions, including those

| with a vector facility. Equivalent to MACHINE(S390E).

UNI
| Instructs the assembler to load and use the operation code table that contains
| the System/370 and System/390 architecture machine instructions, including
| those with a vector facility, and Z/Architecture machine instructions.

XA
Instructs the assembler to load and use the operation code table that contains
the System/370 extended architecture machine instructions, including those

| with a vector facility. Equivalent to MACHINE(S370XA).

370
Instructs the assembler to load and use the operation code table that contains
the System/370 machine instructions, including those with a vector facility.
Equivalent to MACHINE(S370).

ZOP
Instructs the assembler to load and use the operation code table that contains
the symbolic operation codes for the machine instructions specific to

| Z/Architecture systems. Equivalent to MACHINE(ZSERIES).

| YOP
| Same as OPTABLE(ZOP) but with the addition of the long displacement facility.
| Equivalent to MACHINE(ZSERIES-2).

LIST
Instructs the assembler to produce the Operation Code Table Contents section

| in the listing. Equivalent to MACHINE(LIST).

NOLIST
Instructs the assembler not to produce the Operation Code Table Contents

| section in the listing. Equivalent to MACHINE(NOLIST).

Notes:

1. These operation code tables do not contain symbolic operation codes for
machine instructions that are unique to IBM 4300 Processors operating in
ECPS:VSE mode.

2. The operation codes supported by High Level Assembler are described in the
manuals listed under “Related Publications (Architecture)” on page 429.

| 3. Figure 29 on page 64 shows the equivalent sub-options for the OPTABLE and
| MACHINE options.

 Chapter 3. Controlling Your Assembly with Options 67

 PCONTROL

 PCONTROL

 ┌ ┐─NOPCONTROL────────────────────────
��─ ──┼ ┼─────────────────────────────────── ─��
 │ │┌ ┐─,───────────────
 │ ││ │┌ ┐─NODATA─

└ ┘──PCONTROL(──(1)───

┴┬ ┬──┼ ┼──────── ───)
 │ │└ ┘─DATA───
 │ │┌ ┐─NOGEN─
 ├ ┤──┼ ┼─────── ────
 │ │└ ┘─GEN───
 │ │┌ ┐─NOMCALL─
 ├ ┤──┼ ┼───────── ──
 │ │└ ┘─MCALL───
 │ │┌ ┐─NOMSOURCE─
 ├ ┤──┼ ┼───────────
 │ │└ ┘─MSOURCE───
 │ │┌ ┐─OFF─
 ├ ┤──┼ ┼───── ──────
 │ │└ ┘─ON──
 │ │┌ ┐─NOUHEAD─
 └ ┘──┼ ┼───────── ──
 └ ┘─UHEAD───

Note:
1 Choose at least one option.

Default
NOPCONTROL

Abbreviations
PC(DATA, NODATA, GEN, NOGEN, MC, NOMC, MS, NOMS, ON, OFF, UHD,
NOUHD) / NOPC

DATA
Specifies that the assembler is to print the object code of all constants in full,
as though a PRINT DATA statement were specified at the beginning of the
source program. All PRINT NODATA statements in the source program are
ignored. However, specifying PCONTROL(DATA) does not override PRINT
OFF or PRINT NOGEN statements in the source program.

NODATA
Specifies that the assembler is to print only the first 8 bytes of the object code
of constants, as though a PRINT NODATA statement were specified at the
beginning of the source program. All PRINT DATA statements in the source
program are ignored.

GEN
Specifies that the assembler is to print all statements generated by the
processing of a macro, as though a PRINT GEN statement were specified at
the beginning of the source program. All PRINT NOGEN statements in the
source program are ignored. However, specifying PCONTROL(GEN) does not
override PRINT OFF statements in the source program.

NOGEN
Specifies that the assembler is not to print statements generated by the
processing of a macro or open code statements with substitution variables, as
though a PRINT NOGEN statement were specified at the beginning of the

68 HLASM V1R5 Programmer’s Guide

 PCONTROL

source program. All PRINT GEN and PRINT MSOURCE statements in the
source program are ignored.

MCALL
Specifies that the assembler is to print nested macro instructions, as though a
PRINT MCALL statement were specified at the beginning of the source
program. All PRINT NOMCALL statements in the source program are ignored.
However, specifying PCONTROL(MCALL) does not override PRINT OFF or
PRINT NOGEN statements in the source program.

NOMCALL
Instructs the assembler not to print nested macro instructions, as though a
PRINT NOMCALL statement were specified at the beginning of the source
program. All PRINT MCALL statements in the source program are ignored.

MSOURCE
| Specifies that the assembler is to print the source statements generated during
| conditional assembly substitution or macro processing, as well as the

assembled addresses and generated object code of the statements. All PRINT
NOMSOURCE statements in the source program are ignored. However,
specifying PCONTROL(MSOURCE) does not override PRINT OFF or PRINT

| NOGEN statements in the source program. PRINT GEN statements or the
| PCONTROL(GEN) option must be active for this option to have effect.

NOMSOURCE
Instructs the assembler to suppress the printing of source statements

| generated during conditional assembly substitution or macro processing, but
not suppress the printing of the assembled addresses and generated object
code of the statements. All PRINT MSOURCE statements in the source

| program are ignored. PRINT GEN statements or the PCONTROL(GEN) option
| must be active for this option to have effect.

OFF
Specifies that the assembler is not to produce the Source and Object section of
the assembly listing. All PRINT ON statements in the source program are
ignored.

ON
Specifies that the assembler is to produce an assembly listing unless the
NOLIST option is specified. All PRINT OFF statements in the source program
are ignored.

UHEAD
Specifies that the assembler is to print a summary of active USINGs in the
heading lines of each page of the source and object code section of the listing,
as though a PRINT UHEAD statement were specified at the beginning of the
source program. All PRINT NOUHEAD statements in the source program are
ignored. However, specifying PCONTROL(UHEAD) does not override PRINT
OFF statements in the source program.

NOUHEAD
Instructs the assembler not to print a summary of active USINGs, as though a
PRINT NOUHEAD statement were specified at the beginning of the source
program. All PRINT UHEAD statements in the source program are ignored.

 Chapter 3. Controlling Your Assembly with Options 69

 PROFILE

NOPCONTROL
Specifies that the assembler honor all PRINT statements in the source
program. The standard PRINT operands active at the beginning of an
assembly are ON, GEN, NODATA, NOMCALL, MSOURCE, and UHEAD.

NOLIST Assembler Option: The PCONTROL option cannot be used to override
the NOLIST option. If the NOLIST option is specified, the PCONTROL option is
ignored.

 PESTOP
PESTOP is an installation-default option that instructs the assembler to terminate
when an error is detected in the invocation parameters or *PROCESS statements.
Refer to the HLASM Installation and Customization Guide, SC26-3494, for
instructions how to specify this option.

 PRINT (CMS)

 ┌ ┐─DISK────
��─ ──┼ ┼───────── ─��
 ├ ┤─PRINT───
 └ ┘─NOPRINT─

Default
DISK

Abbreviations
PR / NOPR / DI

Restrictions
This option is not allowed on *PROCESS statements.

This option can only be specified when you use the ASMAHL command on
CMS.

PRINT
Specifies that the LISTING file is to be written on the virtual printer.

NOPRINT
Specifies that the writing of the LISTING file is suppressed. Any diagnostic
messages to be written to SYSTERM are not affected.

DISK
Specifies that the LISTING file is to be written to disk.

 PROFILE

 ┌ ┐─NOPROFILE───────────
��─ ──┼ ┼───────────────────── ─��
 └ ┘──PROFILE ──┬ ┬────────

└ ┘──(name)

Default
NOPROFILE

70 HLASM V1R5 Programmer’s Guide

 RA2

Abbreviations
PROF / NOPROF

PROFILE
Instructs the assembler to copy the installation-default profile member into the
source program, as if the source program contained a COPY instruction.

name
Instructs the assembler to copy the member name into the source program, as
if the source program contained a COPY instruction.

NOPROFILE
Specifies that the assembler is not to copy a library member into the source
program.

Notes:

1. The profile member is copied into the source program immediately following an
ICTL statement or *PROCESS statements, or both.

2. You specify the default profile member name in the PROFMEM parameter of
the installation options macro ASMAOPT. If the PROFMEM parameter is not
specified, ASMAOPT generates a default member name of ASMAPROF. Refer
to the HLASM Installation and Customization Guide for instructions how to use
the ASMAOPT macro.

3. On MVS and CMS, the assembler searches for the member in the macro and
copy code libraries defined in the SYSLIB DD statement.

4. On VSE, the assembler searches for the member in the macro and copy code
libraries defined in the LIBDEF job control statement.

5. The assembler processes the source statements in the profile member the
same way it does for source statements obtained using the COPY instruction.
Refer to the HLASM V1R5 Language Reference for further information about
the COPY instruction.

 RA2

 ┌ ┐─NORA2─
��─ ──┼ ┼─────── ─��
 └ ┘─RA2───

Default
NORA2

Abbreviations
None

Note: You can specify the RA2 (or NORA2) option as a parameter of the
ACONTROL statement. For further details, refer to the High Level Assembler
Language Reference.

RA2
Instructs the assembler to suppress error diagnostic message ASMA�66W when
2-byte relocatable address constants, such as AL2(*) and Y(*), are defined in
the source program.

 Chapter 3. Controlling Your Assembly with Options 71

 RLD

NORA2
Instructs the assembler to issue error diagnostic message ASMA�66W when
2-byte relocatable address constants, such as AL2(*) and Y(*), are defined in
the source program.

 RENT

 ┌ ┐─NORENT─
��─ ──┼ ┼──────── ─��
 └ ┘─RENT───

Default
NORENT

Abbreviations
None

RENT
Specifies that the assembler checks for possible coding violations of program
reenterability. Non-reenterable code is identified by an error message, but is
not exhaustively checked because the assembler cannot check the logic of the
code. Therefore, the assembler might not detect all violations of program
reenterability.

NORENT
Specifies that the assembler not check for possible coding violations of
program reenterability.

 RLD

 ┌ ┐─RLD───
��─ ──┼ ┼─────── ─��
 └ ┘─NORLD─

Default
RLD

Abbreviations
None

RLD
Instructs the assembler to produce the Relocation Dictionary (RLD) section of
the assembler listing. The RLD shows the relocation dictionary information that
is passed to the linkage editor or loader, or z/OS binder, in the object module.

NORLD
Instructs the assembler not to produce the RLD section of the assembler listing.

On VSE, you can specify the RLD option on the JCL OPTION statement.

72 HLASM V1R5 Programmer’s Guide

 SEG

 RXREF

 ┌ ┐─RXREF───
��─ ──┼ ┼───────── ─��
 └ ┘─NORXREF─

Default
RXREF

Abbreviations
RX / NORX

RXREF
Instructs the assembler to produce the General Purpose Register Cross
Reference section of the assembler listing. The General Purpose Register
Cross Reference includes:

� The register number
� An indicator showing the context in which the register was used.

NORXREF
Instructs the assembler not to produce the General Purpose Register Cross
Reference section of the assembler listing.

| SECTALGN
|

| ��─ ──SECTALGN(alignment) ─��

| Default
| 8 (doubleword alignment)

| Abbreviations
| None

| Restrictions
| The GOFF option must be specified if the alignment value is greater than 8.

| SECTALGN(alignment)
| Specifies the alignment for all sections, expressed as a power of 2.

| Valid range: 8 (doubleword) to 4096 (page).

 SEG (CMS)

��─ ──┬ ┬─────── ─��
 ├ ┤─SEG───
 └ ┘─NOSEG─

Default
None. The assembler modules are loaded from the Logical Saved Segment
(LSEG). If the LSEG is not available, the assembler modules are loaded from
disk.

 Chapter 3. Controlling Your Assembly with Options 73

 SIZE

Abbreviations
None

Restrictions
You cannot specify this option on *PROCESS statements.

You can only specify this option on CMS using the ASMAHL command.

SEG
Specifies that the assembler modules are loaded from the Logical Saved
Segment (LSEG). If the LSEG is not found the assembler stops.

NOSEG
| Specifies that the assembler modules may be loaded from disk.

 SIZE

┌ ┐──SIZE(MAX) ─────────────────────────────
��─ ──┼ ┼── ─��

└ ┘──SIZE(──┬ ┬──integerK ──────────────────)
├ ┤──integerM ──────────────────
├ ┤──MAX,ABOVE ─────────────────
├ ┤──MAX-integerK ──┬ ┬──────────

 │ │└ ┘ ─,──ABOVE─
└ ┘──MAX-integerM ──┬ ┬──────────

 └ ┘ ─,──ABOVE─

You use the SIZE option to specify the amount of virtual storage available to the
assembler to perform an in-storage assembly.

Default
SIZE(MAX)

Abbreviation
SZ

Restrictions
You cannot specify this option on *PROCESS statements.

integerK
Specifies the amount of virtual storage in 1024-byte (1K) increments.

The minimum acceptable value is 200K (refer to Note 2 on page 75).

integerM
Specifies the amount of virtual storage in 1048576-byte (1M) increments.

The minimum acceptable value is 1M.

MAX
Specifies that the assembler requests all the available space (refer to Note 3
on page 75) in the user region (MVS), or virtual machine (CMS) or in the
partition GETVIS (VSE).

MAX-integerK
Specifies that the assembler requests all the available space (refer to Note 3
on page 75) in the user region (MVS), virtual machine (CMS) or partition
GETVIS (VSE) less the amount of integerK of storage (1K equals 1024 bytes).

The minimum acceptable integerK value is 1K.

74 HLASM V1R5 Programmer’s Guide

 SIZE

MAX-integerM
Specifies that the assembler requests all the available space (refer to Note 3
on page 75) in the user region (MVS), or virtual machine (CMS) less the
amount of integerK of storage (1M equals 1048756 bytes).

The minimum acceptable integerM value is 1M.

Note:

1. The maximum storage value you can specify might not be available in the user
region (MVS), virtual machine (CMS), or in the partition GETVIS (VSE), after
storage has been allocated for the operating system.

2. The minimum amount of working storage required by the assembler is 200K or
10 times the work data set block size, whichever is greater.

3. When you specify the MAX suboption, the assembler releases 128K back to
the user region (MVS), virtual machine (CMS), or the partition GETVIS (VSE),
for system usage. When you specify the MAX suboption, there might not be
enough storage remaining in the user region (MVS), virtual machine (CMS), or
the partition GETVIS (VSE), to load any exits you specify, or any external
functions you use in your assembly or for operating system functions that may
be required during the assembly. If the assembly does fail due to a lack of
storage, then use MAX-integerK or MAX-integerM to ensure that there is
sufficient free storage during the assembly for any of these functions.

4. The assembler loads user I/O exits before it obtains the working storage. If the
user exit obtains storage, then it reduces the amount available for the
assembler.

5. The assembler loads external function routines after it obtains working storage.
If you use external functions in your program, you should reduce the value you
specify in the SIZE option, to allow storage space for the external function
modules, and any storage they might acquire.

| 6. The ABOVE operand, whilst acceptable in Release 5, has no effect.

High Level Assembler acquires the amount of storage you specify in the SIZE
option from the user region (MVS), virtual machine (CMS), or partition GETVIS
(VSE). The assembler only requires a work data set when it has insufficient virtual
storage to perform an in-storage assembly. An in-storage assembly usually
reduces the elapsed time needed to complete the assembly.

The statistics in the Diagnostic Cross Reference and Assembler Summary section
of the assembly listing shows the amount of storage the assembler used and an
estimate of the amount of storage it requires to perform an in-storage assembly. If
you do not provide a work data set, you must specify a large enough value on the
SIZE option to allow the assembler to perform an in-storage assembly.

Use the STORAGE operand of the installation default options macro, ASMAOPT, to
specify the equivalent of the ABOVE suboption.

 Chapter 3. Controlling Your Assembly with Options 75

 SYSPARM

| SUPRWARN
| SUPRWARN |

| ┌ ┐| ─NOSUPRWARN─ ──┬ ┬────────────────────
| │ ││ │┌ ┐─,────────
| │ │└ ┘| ─(─ ───

┴─msgnum───(1) ─)─

| ��─ ── ──┼ ┼──────────────────────────────────── ─��
| │ │┌ ┐─,────────
| └ ┘| ─SUPRWARN──(─ ───

┴─msgnum───(1) ─)───────

| Note:
| 1 Specify at least one message number.

| Default
| NOSUPRWARN

| Abbreviations
| SUP, NOSUP

| Restrictions
| You can only suppress messages of severity 4 or less.

| SUPRWARN
| Suppresses the specified message numbers.

| NOSUPRWARN
| Reverses the action of SUPRWARN and allows the specified message
| numbers to be displayed.

| msgnum
| 1–4 digit message number.

| If you specify an invalid message number, message ASMA318W is issued. If
| you specify a message number with a severity higher than 4, message
| ASMA319W is issued.

 SYSPARM

┌ ┐──SYSPARM() ──────
��─ ──┼ ┼───────────────── ─��

└ ┘──SYSPARM(string)

Default
The &SYSPARM system variable is set to NULL.

Abbreviations
None

Restrictions
You cannot specify this option on *PROCESS statements.

string
Specifies the character string the assembler assigns to the &SYSPARM system
variable symbol. The character string is up to 255 characters in length. Any
character may be included in the string, subject to the rules for building
character strings defined in the HLASM V1R5 Language Reference.

76 HLASM V1R5 Programmer’s Guide

 TERM

On an MVS or VSE invocation parameter, if the string includes spaces,
commas, or parentheses, it must be enclosed in single quotation marks. Any
parentheses inside the string must be balanced. You must use two single
quotation marks to represent a single quotation mark, and two ampersands to
represent a single ampersand. For example:

PARM='OBJECT,SYSPARM((&&((AM)),''EO).FY)'

assigns the value (&AM,'EO).FY to &SYSPARM.

On MVS and VSE, JCL restrictions limit the length of the SYSPARM value.
When you call the assembler from a problem program (dynamic invocation),
you can specify a SYSPARM value up to 255 characters long. The ASMAOPT
file (“ASMAOPT Options” on page 42) also supports a SYSPARM value up to
255 characters long.

On CMS, you can specify SYSPARM(?). This causes the assembler to issue
the following message at your terminal:

ENTER SYSPARM:

In response to this message you can enter up to 255 characters. To specify a
SYSPARM value of ?, you must specify SYSPARM(?) and enter ? at the
terminal prompt.

 TERM

 ┌ ┐─NOTERM─────────────
��─ ──┼ ┼──────────────────── ─��
 │ │┌ ┐─(WIDE)───
 └ ┘──TERM ──┼ ┼──────────
 └ ┘─(NARROW)─

Default
NOTERM

Abbreviations
None

Restrictions
This option is not allowed on *PROCESS statements.

TERM
Is equivalent to TERM(WIDE). See the description of TERM(WIDE) below.

WIDE
On MVS and CMS, instructs the assembler to write error messages to the
terminal data set. You define the terminal data set with the SYSTERM
ddname.

On VSE, instructs the assembler to write error messages to SYSLOG.
SYSLOG is usually assigned at system initialization time and is assigned
permanently to the system log (console).

NARROW
The NARROW suboption instructs the assembler to compress multiple
consecutive spaces into a single space.

 Chapter 3. Controlling Your Assembly with Options 77

 THREAD

On MVS and CMS, instructs the assembler to write error messages to the
terminal data set. You define the terminal data set with the SYSTERM
ddname.

On VSE, instructs the assembler to write error messages to SYSLOG.
SYSLOG is usually assigned at system initialization time and is assigned
permanently to the system log (console).

NOTERM
Instructs the assembler not to write error messages to SYSTERM (MVS and
CMS) or SYSLOG (VSE).

You can specify the TERM option on the JCL OPTION statement.

 TEST

 ┌ ┐─NOTEST─
��─ ──┼ ┼──────── ─��
 └ ┘─TEST───

Default
NOTEST

Abbreviations
None

TEST
Specifies that the object module contains the special source symbol table (SYM
records) required by the TSO TEST command.

NOTEST
Specifies that the object module does not contain the special source symbol
table (SYM records) required by the TSO TEST command.

On MVS and CMS, if you specify the TEST option with the GOFF option, the
assembler ignores the TEST option.

 THREAD

 ┌ ┐─THREAD───
��─ ──┼ ┼────────── ─��
 └ ┘─NOTHREAD─

Default
THREAD

Abbreviations
THR / NOTHR

THREAD
Specifies that the assembler not reset the location counter to zero at the
beginning of each CSECT.

NOTHREAD
Specifies that the assembler reset the location counter to zero at the beginning
of each CSECT, except for the first CSECT.

78 HLASM V1R5 Programmer’s Guide

 TYPECHECK

 TRANSLATE

 ┌ ┐─NOTRANSLATE─────────
��─ ──┼ ┼───────────────────── ─��

└ ┘──TRANSLATE(──┬ ┬─AS─)
 └ ┘─xx─

Default
NOTRANSLATE

Abbreviations
TR / NOTR

Restrictions
This option is not allowed on *PROCESS statements.

AS
Specifies that characters contained in character (C-type) data constants (DCs)
and literals are converted into ASCII characters using the ASCII translation
table provided with High Level Assembler.

xx Specifies that characters contained in character (C-type) data constants (DCs)
and literals are converted using a user-supplied translation table. The
translation table must be named ASMALTxx.

Notes:

| 1. Using the TRANSLATE option when you have also specified the DBCS option
| can cause erroneous translation of double-byte data in C-type constants.
| G-type constant data is not affected.

2. The assembler searches for the user-supplied translation table load module in
the standard load module search order. See also Appendix L, “How to
Generate a Translation Table” on page 404.

3. The assembler does not convert UNICODE character strings.

| TYPECHECK
| For a detailed description of the TYPECHECK assembler option, see Appendix N,
| “TYPECHECK Assembler Option” on page 411.

|

| ┌ ┐─TYPECHECK(MAGNITUDE,REGISTER)────────
| ��─ ──┼ ┼────────────────────────────────────── ─��
| ├ ┤─NOTYPECHECK──────────────────────────
| │ │┌ ┐─,─────────────────
| │ ││ │┌ ┐─MAGNITUDE───
| └ ┘──TYPECHECK(──(1)───

┴┬ ┬──┼ ┼─────────────)

| │ │└ ┘─NOMAGNITUDE─
| │ │┌ ┐─REGISTER───
| └ ┘──┼ ┼──────────── ─
| └ ┘─NOREGISTER─

| Note:
| 1 Choose at least one option.

 Chapter 3. Controlling Your Assembly with Options 79

 USING

| Default
| TYPECHECK(MAGNITUDE,REGISTER)

| Abbreviations
| TC(MAG, NOMAG, REG, NOREG) / NOTC

| Note: You can specify the TYPECHECK (or NOTYPECHECK) option as a
| parameter of the ACONTROL statement. For further details, refer to the
| High Level Assembler Language Reference.

| MAGNITUDE
| Specifies that the assembler performs magnitude validation of signed
| immediate-data fields of machine instruction operands.

| NOMAGNITUDE
| Specifies that the assembler not perform magnitude validation of signed
| immediate-data fields of machine instruction operands.

| REGISTER
| Specifies that the assembler performs type checking of register fields of
| machine instruction operands.

| NOREGISTER
| Specifies that the assembler not perform type checking of register fields of
| machine instruction operands.

| NOTYPECHECK
| Specifies that the assembler not perform any type checking of machine
| instruction operands.

 USING

 ┌ ┐─USING(MAP,WARN(15))────────────────
��─ ──┼ ┼──────────────────────────────────── ─��
 │ │┌ ┐─,───────────────────
 │ ││ │┌ ┐─MAP───

├ ┤──USING(──(1)───

┴──┬ ┬──┼ ┼─────── ──────)
 │ ││ │└ ┘─NOMAP─

│ ││ │┌ ┐──WARN(15)
 │ │├ ┤──┼ ┼────────── ───

│ ││ │├ ┤──WARN(n) ─
 │ ││ │└ ┘─NOWARN───
 │ ││ │┌ ┐─NOLIMIT─────
 │ │└ ┘──┼ ┼─────────────

│ │└ ┘──LIMIT(xxxx)
 └ ┘─NOUSING────────────────────────────

Note:
1 Choose at least one option.

Default
USING(MAP,WARN(15))

Abbreviations
US / NOUS

80 HLASM V1R5 Programmer’s Guide

 USING

xxxx
This suboption, when used in combination with the WARN(8) suboption,
specifies the maximum displacement that base-displacement address resolution
checks.

xxxx is the decimal value of the displacement, and must be less than or equal
to 4095. X'xxx' may also be used to specify the value in hexadecimal. If
specified, this value must be less than or equal to X'FFF'.

If more than one base register is specified in a USING statement, the value
specified in the LIMIT suboption is used only to check the maximum
displacement from the last specified base register. For example, if
USING(LIMIT(X'F00'),WARN(8)) were specified at invocation, the messages
would be issued as in Figure 30.

Active Usings: None

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

������ ����� �1F82 1 EXAMPLE CSECT ����1���

 R:AB ����� 2 USING EXAMPLE,1�,11 ����2���
...

���4�E 47F� AB8C ��B8C 176 B LABEL111 �1� ��176���
...

��B8C 496 LABEL111 EQU � ��496���
...

��152E 47F� BF8� �1F8� 9�8 B LABEL999 �2� ��9�8���

�� ASMA3�4W Displacement exceeds LIMIT value specified
...

�1F8� 1436 LABEL999 EQU � �1436���

��1F8� �7FE 1437 BR 14 �1437���

 1438 END �1438���

Figure 30. Effect of the LIMIT Suboption

Although the resolved displacement of the instruction at �1� is greater than the
specified limit, error diagnostic message ASMA3�4W is not issued because
register 10 was not the last specified base register. However, the instruction at
�2� causes the message to be issued because register 11 was the last
specified base register.

NOLIMIT
This suboption specifies that displacements are not checked. Specifying this
suboption is equivalent to specifying the LIMIT suboption with a value of 4095
or X'FFF'.

MAP
This suboption instructs the assembler to produce the USING Map section of
the assembler listing. For more information, see “USING Map” on page 33.

NOMAP
This suboption specifies that no USING map is produced.

WARN(n)
This suboption specifies the conditions under which warning error diagnostic
messages are issued. Each condition has an associated condition number, n.
The allowable values for n are:

0 No USING warning messages are issued.

 Chapter 3. Controlling Your Assembly with Options 81

 USING

1 Nullified USINGs: The assembler issues message:

� ASMA3��W when a previous active ordinary (unlabeled) USING's range
coincides with and supersedes that of the USING being processed.

� ASMA3�1W when the range of the USING being processed coincides
with and supersedes that of a previous active ordinary (unlabeled)
USING.

� ASMA3�6W when the range of the USING being processed coincides
with the implicit USING 0,0 (for example USING 0,2).

| Note: Message ASMA302W is issued when R0 is specified as a
| base register with a non-zero base address, and message
| ASMA306W is issued when any register other than R0 is
| specified as a base register with an absolute base address
| whose range overlaps the assembler's default (0,4095).

2 R0 based USINGs: The assembler issues message ASMA3�2W when a
USING specifies R0 as a base register, with a non-zero absolute or
relocatable expression for the base address.

4 Multiple resolutions: The assembler issues message:

� ASMA3�3W when multiple resolutions are possible for an implicit
address.

� ASMA3�6W when the range of the USING being processed overlaps
the range of the implicit USING 0,0 (for example USING 16,2).

| Note: Message ASMA302W is issued when R0 is specified as a
| base register with a non-zero base address, and message
| ASMA306W is issued when any register other than R0 is
| specified as a base register with an absolute base address
| whose range overlaps the assembler's default (0,4095).

8 LIMIT: The assembler issues message ASMA3�4W when the calculated
displacement in any valid resolution exceeds the threshold specified in
the LIMIT suboption. This has no effect if the LIMIT suboption is not
specified.

Several conditions may be combined by adding together the associated
condition numbers. For example, specifying WARN(12) would request the
assembler to issue warning diagnostic messages for the conditions with
condition numbers 4 and 8.

NOWARN
This suboption specifies that no USING warning messages are issued.

NOUSING
NOUSING specifies that all USING suboptions are off. It is equivalent to
specifying USING(NOLIMIT,NOMAP,NOWARN), or specifying in the
ASMADOPT default options: LIMIT=NO,MAP=NO,WARN=NO.

The USING suboptions LIMIT, MAP, and WARN are specified in the installation
default options as LIMIT, MAP, and WARN.

82 HLASM V1R5 Programmer’s Guide

 XREF

XOBJECT (MVS and CMS)

 ┌ ┐─NOXOBJECT──────────────
��─ ──┼ ┼──────────────────────── ─��
 │ │┌ ┐─(NOADATA)─
 └ ┘──XOBJECT ──┼ ┼───────────
 └ ┘─(ADATA)───

Default
NOXOBJECT

Abbreviations
XOBJ / NOXOBJ

| Note: XOBJECT is treated as a synonym for the GOFF option and accepts the
| same subparameters as GOFF.

 XREF

 ┌ ┐─XREF(SHORT,UNREFS)───────
��─ ──┼ ┼────────────────────────── ─��

├ ┤──XREF(──┬ ┬─FULL─────────)
 │ ││ │┌ ┐─,────────
 │ │└ ┘───

┴┬ ┬─SHORT──

 │ │└ ┘─UNREFS─
 └ ┘─NOXREF───────────────────

Default
XREF(SHORT,UNREFS)

Abbreviations
None

FULL
Instructs the assembler to produce the Ordinary Symbol and Literal Cross
Reference section of the assembler listing. This includes symbols that are
defined, but never referred to.

SHORT
Instructs the assembler to produce the Ordinary Symbol and Literal Cross
Reference section of the assembler listing. Symbols that are defined, but not
referred to, are not included in the cross reference listing. SHORT may be
specified with the UNREFS suboption to produce a list of unreferenced
symbols. The SHORT suboption can not be specified with the FULL suboption.

UNREFS
Instructs the assembler to produce the Unreferenced Symbols Defined in
CSECTs section of the assembler listing. The symbols are listed in symbol
name order. UNREFS may be specified with the SHORT suboption to produce
a cross reference list of referenced symbols. The UNREFS suboption can not
be specified with the FULL suboption.

NOXREF
Specifies that symbol cross reference information is not generated as part of
the assembly listing.

 Chapter 3. Controlling Your Assembly with Options 83

 XREF

Any suboption you specify overrides the suboptions specified in the installation
default options, unless the XREF option is fixed.

If you specify the XREF option more than once, the assembler uses the last one
you specify. For example, if you specify XREF(SHORT),XREF(UNREFS), the assembler
uses XREF(UNREFS). To use both suboptions, specify XREF(SHORT,UNREFS).

On VSE, you can use the XREF option of the JCL OPTION statement to specify
the XREF(FULL) assembler option, and the SXREF option of the JCL OPTION
statement to specify the XREF(SHORT) assembler option.

84 HLASM V1R5 Programmer’s Guide

 Exit Types

Chapter 4. Providing User Exits

This chapter describes how you can provide user exits to complement the
assembler's data set processing. It describes the type of exits, how to specify them
during assembly, and the details you need to write an exit.

 Exit Types
You can instruct the assembler to call the following types of exits:

SOURCE Exit: To process Primary Input records.

You use a SOURCE exit to replace or complement the assembler's primary input
data set processing. You can use it to supply primary input records to the
assembler, or monitor and modify records the assembler has read before the
assembler processes them. The exit can supply all the primary input records, or
extend the primary input by supplying additional records during the assembly. The
exit can also discard records.

LIBRARY Exit: To process Library Input records.

You use a LIBRARY exit to replace or complement the assembler's macro call
(MACRO) and copy code (COPY) library processing. You can use it to supply
MACRO and COPY library records to the assembler, or monitor and modify records
the assembler has read before the assembler processes them. The exit can supply
all the MACRO and COPY library records, or extend the library input processing by
supplying additional MACRO and COPY records during the assembly. The exit can
also discard records.

LISTING Exit: To process Listing Output records.

You use a LISTING exit to replace or complement the assembler's listing output
processing. You can use it to write the listing records the assembler supplies, or
monitor and modify the records before the assembler writes them to the listing data
set. The exit can write all the listing records, or supply additional listing records for
the assembler to write during the assembly. The exit can also discard records.

OBJECT (MVS and CMS) and PUNCH Exit: To process Object and Punch
Output records.

You use an OBJECT and PUNCH exit to replace or complement the assembler's
object module output processing. You can use it to write the object module records
the assembler supplies, or monitor and modify the records before the assembler
writes them to the object data set. The exit can write all the object module records,
or supply additional records for the assembler to write during the assembly. The
exit can also discard records.

ADATA Exit: To process Associated Data Output records.

| You use an ADATA exit to replace or complement the assembler's associated data
| output processing. You can use it to write the associated data records the
| assembler supplies, or monitor and modify the records before the assembler writes
| them to the associated data data set. The exit can write all the associated data

 Copyright IBM Corp. 1982, 2004 85

 Specifying User Exits

| records, or supply additional records for the assembler to write during the
| assembly. The exit can also discard records.

TERM Exit: To process Terminal Output records.

You use a TERM exit to replace or complement the assembler's terminal output
processing. You can use it to write the terminal records the assembler supplies, or
monitor and modify the records before the assembler writes them. The exit can
write all the terminal records, or supply additional terminal records for the
assembler to write during the assembly. The exit can also discard records.

 The assembler writes terminal output to SYSLOG; however, you can use
the exit to write the output to a disk data set.

Specifying User Exits
You use the EXIT option to specify the name of one or more user exits to load, and
optionally pass to the exit a character string up to 64 characters long that is
processed during assembly initialization. You can use the EXITCTL assembler
instruction to pass data from the assembler source program to the user exit during

| the assembly. See “EXITCTLn” on page 92.

The Diagnostic Cross Reference and Assembler Summary section of the assembler
listing shows the statistics for records processed by the user exits during the
assembly. See “EXIT” on page 52 for the syntax of the EXIT assembler option.

The following tables lists the exit type, the EXIT suboption, the default data set
ddname (MVS and CMS), or filename (VSE), that the exit corresponds to, and a
Page number reference to the section that describes how the assembler processes
the exit:

Figure 31. MVS and CMS Exit Types

Exit Type Exit Suboption ddname Page Number

SOURCE INEXIT SYSIN 104

LIBRARY LIBEXIT SYSLIB 106

LISTING PRTEXIT SYSPRINT 112

PUNCH OBJEXIT SYSPUNCH 116

OBJECT OBJEXIT SYSLIN 116

ADATA ADEXIT SYSADATA 120

TERM TRMEXIT SYSTERM 122

86 HLASM V1R5 Programmer’s Guide

 Loading User Exits

Figure 32. VSE Exit Types

Exit Type Exit Suboption filename Page Number

SOURCE INEXIT IJSYSIN 104

LIBRARY LIBEXIT Library
sublibraries

106

LISTING PRTEXIT IJSYSLS 112

PUNCH OBJEXIT IJSYSPH 116

ADATA ADEXIT SYSADAT 120

TERM TRMEXIT SYSLOG 122

Loading User Exits
The assembler loads the user exits during initialization. The assembler must be
able to locate the user exits as follows:

| The user exit must be a load module or program object that is located in
a partitioned data set in the standard search sequence. The user exit can also be
located in the Link Pack Area (LPA).

| An exit module may contain more than one entry name if the initially loaded module
| executes an IDENTIFY macro to make additional names available to the assembler
| as exit names.

If you use the same exit load module for more than one user exit type, for example
as a SOURCE and LISTING exit, the load module can be loaded more than once,
depending on the link edit options specified.

 The user exit must be a MODULE that is located on one of the accessed
disks. You generate the module using the CMS LOAD and GENMOD commands.
When the LOAD command is issued, the RLDSAVE option must be specified to
make the module relocatable. If RLDSAVE is not specified, it might result in the
assembler program or data storage being overlaid.

If you use the same exit load module for more than one user exit type, for example
as a SOURCE and LISTING exit, only one copy of the module is loaded.

 The user exit must be a relocatable phase that is in a sublibrary you
specify in your JCL LIBDEF phase search chain. The user exit can also be located
in the Shared Virtual Area (SVA).

If you use the same exit for more than one exit type, for example as a SOURCE
and LISTING exit, only one copy of the phase is loaded.

The user exits may be created in any addressing mode (AMODE) and residency
mode (RMODE).

 Chapter 4. Providing User Exits 87

 Exit Parameter List

Calling User Exits
The assembler calls user exits using the standard OS Linkage conventions. The
user exit can be written in any language that conforms to the following:

� Can be called many times via the exit module entry point
� Retains storage for private variables across invocations

High Level Assembler provides an “anchor word” in the Exit Parameter List to allow
you to maintain information across calls to the exit.

Refer to the language's Programming Guide to find out if you can use it to write a
user exit for the assembler.

The contents of the registers upon entry to the user exit are as follows:

Register 0 Undefined
Register 1 Address of Exit Parameter List, see Figure 33 on

page 89.
Registers 2 through 12 Undefined
Register 13 Address of 72 byte save area
Register 14 Return address
Register 15 Address of entry point of user exit

Exit Parameter List
The assembler passes an Exit Parameter List to the user exit. On entry to the exit,
Register 1 contains the address of this parameter list. Each exit is passed a
separate copy of the parameter list. The parameter list includes a pointer to an
Exit-Specific block that contains information for each exit type. High Level
Assembler provides macro ASMAXITP to map the Exit Parameter List and the
Exit-Specific Information block. Figure 33 on page 89 describes the format of the
Exit Parameter List, Figure 37 on page 100 describes the format of the
Exit-Specific Information block for the LISTING exit, and Figure 38 on page 100
describes the format of the Exit-Specific Information block for the other exit types.

88 HLASM V1R5 Programmer’s Guide

 Exit Parameter List

 � 31

 ┌─────────────────────────┐

┌───�│ Parameter List Version │

 │ ├─────────────────────────┤

│ │ Exit Type │

 │ ├─────────────────────────┤

│ │ Request Type │

 │ ├─────────────────────────┤

 │ │ Options │

 │ ├─────────────────────────┤

│ │ EXITCTL 1 │

 │ ├─────────────────────────┤

│ │ EXITCTL 2 │

 │ ├─────────────────────────┤

│ │ EXITCTL 3 │

 │ ├─────────────────────────┤

│ │ EXITCTL 4 │

 │ ├─────────────────────────┤

│ │ Return Code │

 │ ├─────────────────────────┤

│ │ Reason Code │

 │ ├─────────────────────────┤

│ │ Buffer Length │

 │ ├─────────────────────────┤

│ │ Error Buffer Length │

 │ ├─────────────────────────┤

│ │ Error Severity │

 │ ├─────────────────────────┤

│ │ User-Defined Field │

 │ ├─────────────────────────┤

� 31 │ │ Common User Field │

┌────────────┐ ┌───────────────────────┐ │ └─────────────────────────┘

│ Register 1 ├────�│ Ptr to Request Info ├────┘

 └────────────┘ ├───────────────────────┤ ┌─────────────────────────┐

│ Ptr to Buffer ├────────�│ Buffer │

 ├───────────────────────┤ └─────────────────────────┘

│ Ptr to Error Buffer ├──────┐

 ├───────────────────────┤ │ ┌─────────────────────────┐

│ Ptr to Exit Info ├────┐ └─�│ Error Buffer │

├───────────────────────┤ │ └─────────────────────────┘

│ Ptr to DCB │ │

├───────────────────────┤ │ ┌─────────────────────────┐

│ Ptr to Static ├──┐ └───�│ Exit-Specific Block │

│ Assembler Information │ │ └─────────────────────────┘

 └───────────────────────┘ │ 63

 │ ┌─────────────────/ /─────────────┐

└─────�│ HLASM VRM │

 ├─────────────────/ /─────────────┤

│ PTF Level │ 127

 ├─────────────────/ /─────────────┴────┐

│ System Id │

 ├─────────────────/ /─────┬────────────┘

| │ Numeric Version │ 31

 └─────────────────────────┘

Figure 33. Exit Parameter List Format

The following sections describe the Exit Parameter List.

 Chapter 4. Providing User Exits 89

 Exit Parameter List

Request Info Pointer
The request info pointer points to a list of fullword fields that describe the exit
request. The assembler sets this pointer, which is always a valid address.

Parameter List Version
A fullword identifying the version of the parameter list. For High Level Assembler
Release 5 this field contains a value of 2.

 Exit Type
A fullword identifying the type of exit being called. You use this field when the exit
handles more than one exit type. The exit type is identified by the following values:

1 SOURCE Input

2 LIBRARY Input

3 LISTING Output

4 PUNCH Output

5 OBJECT Output

6 ADATA Output

7 TERM Output

The assembler always sets this field.

 Request Type
A fullword identifying the type of processing request. The request type is identified
by the following values:

1 OPEN—exit receives control before any input or output processing.

2 CLOSE—exit receives control before the assembler does any close
processing.

3 READ—exit receives control to provide a record to the assembler.

4 WRITE—exit receives control to write a record provided by the assembler.

5 PROCESS (for exit types other than LIBRARY)—exit receives control to
inspect or manipulate the record provided by the assembler.

5 PROCESS MACRO (LIBRARY exit type)—exit receives control to inspect or
manipulate the macro definition record provided by the assembler.

6 PROCESS COPY (LIBRARY exit type)—exit receives control to inspect or
manipulate the copy member record provided by the assembler.

7 FIND MACRO (LIBRARY exit type)—exit receives control to locate the
specified library macro.

8 FIND COPY MEMBER (LIBRARY exit type)—exit receives control to locate the
specified copy member.

9 END OF MEMBER (LIBRARY exit type)—exit receives control after the reading
of a macro or copy member is completed.

| 10 REINIT—exit receives control during the assembler's reinitialisation processing
| between assemblies in a batch. This call only occurs if the exit requested the
| REINIT by setting reason code 16 in response to the OPEN request.

90 HLASM V1R5 Programmer’s Guide

 Exit Parameter List

The assembler always sets this field.

 Options
A fullword that provides additional information to the exit.

For the SOURCE and LIBRARY Exits: The following values are provided:

0 No additional information available.

1 New information is available in the Exit-Specific Information block. The
assembler updates this block whenever the primary input data set changes.

For example, the SOURCE input might be a concatenation of data sets. When
the first data set is opened, and when each subsequent concatenated data set
is opened, this value is set to 1 to inform the exit that a data set switch has
occurred. It is also set for LIBRARY processing to inform the exit which data
set in the concatenation is being used to provide the specific member.

2 For the LIBRARY exit, when the request type is FIND MACRO or FIND COPY,
this indicates that the copy code or a macro should resume at the saved
record position.

3 For the LIBRARY exit, when the request type is FIND MACRO or FIND COPY,
this indicates that copy code or a macro definition is currently being processed.
The user exit should save the position within the current member to allow it to
be resumed when the new member has been processed.

See “Nesting COPY Instructions and Macro Definitions” on page 109.

For the LISTING exit: The following decimal values are provided:

00 No additional information available
10 High Level Assembler Options Summary heading line
11 High Level Assembler Options Summary detail line
15 High Level Assembler Options Summary diagnostic message
17 High Level Assembler Product Information heading line
18 High Level Assembler Product Information detail line
20 External Symbol Dictionary heading line
21 External Symbol Dictionary detail line
30 Source and Object heading line
31 Source and Object machine instruction
32 Source and Object DC/DS instruction
33 Source and Object comment
34 Source and Object statement in error
35 Source and Object diagnostic message
36 Source and Object other
40 Relocation Dictionary heading line
41 Relocation Dictionary detail line
50 Ordinary Symbol and Literal Cross Reference heading line
51 Ordinary Symbol and Literal Cross Reference detail line
52 Unreferenced Symbols Defined in CSECTs heading line
53 Unreferenced Symbols Defined in CSECTs detail line
60 Macro and Copy Code Source Summary heading line
61 Macro and Copy Code Source Summary detail line
62 Macro and Copy Code Cross Reference heading line
63 Macro and Copy Code Cross Reference detail line
70 DSECT Cross Reference heading line

 Chapter 4. Providing User Exits 91

 Exit Parameter List

71 DSECT Cross Reference detail line
80 USING Map heading line
81 USING Map detail line
85 General Purpose Register Cross Reference heading line
86 General Purpose Register Cross Reference detail line
90 Diagnostic Cross Reference and Assembler Summary heading line
91 Diagnostic Cross Reference and Assembler Summary detail line

For the PUNCH, OBJECT, and ADATA Exits: This field contains 0.

The assembler sets this field.

 EXITCTLn
Four fullword fields containing the exit-control values for this exit type. Exit-control
values are set by the EXITCTL assembler instruction during the assembly.

For the SOURCE and LIBRARY Exits: The new EXITCTL values are available to
the exit when the input record following the EXITCTL instruction is passed to the
exit.

For the LISTING, ADATA, and TERM Exits: The new EXITCTL values are
available to the exit with the output record containing the EXITCTL instruction.

For the OBJECT and PUNCH Exits: The new EXITCTL values are available to
the exit when the next object module record is passed to the exit. This may
happen several source statements after the EXITCTL instruction statement. A
possible consequence is that one or more EXITCTL statements can be processed
without the exit receiving the EXITCTL parameter values, if they occur between
object records.

 Return Code
A fullword, set by the exit, that indicates success or failure of the exit call, and the
action taken by the assembler on return from the exit. Figure 34 summarizes the
return codes.

Figure 34 (Page 1 of 2). User-Exit Return Codes

Exit Request RC=0 4 8 16 20

SOURCE OPEN Assembler to
open the
primary input
data set1

Exit provides
records2

 | Disable6 Operation failed

 CLOSE Operation
successful

 Operation failed

 READ Exit has
provided
record

 End-of-file
indicator

Operation failed

 PROCESS Accept record Discard record | Disable6 Operation failed

| | REINIT| Operation
| successful
| | | Disable6| Operation failed

LIBRARY OPEN Assembler to
open its
library1

Exit has
opened its
library3

Exit has
opened its
library,
assembler to
open its library

| Disable6 Operation failed

92 HLASM V1R5 Programmer’s Guide

 Exit Parameter List

Figure 34 (Page 2 of 2). User-Exit Return Codes

Exit Request RC=0 4 8 16 20

 CLOSE Operation
successful

 Operation failed

 READ Exit has
provided
record

 EOD on input
source

Operation failed

 PROCESS
(macro or
copy
member)

Accept record Discard record | Disable5 ,6 Operation failed

 FIND (macro
or copy
member)

Operation
successful

Member not
found; search
assembler
library if
available

 Operation failed

 END OF
MEMBER

Operation
successful

 | Disable5 ,6 Operation failed

| | REINIT| Operation
| successful
| | | Disable6| Operation failed

LISTING
PUNCH
OBJECT(MVS
and CMS)
TERM

| ADATA

OPEN Assembler
opens the
output data
set1

Exit has
opened its
output data
set4

 | Disable6 Operation failed

 CLOSE Operation
successful

 Operation failed

 WRITE Exit has
written record

 Operation failed

 PROCESS Accept record Discard record | Disable6 Operation failed

| | REINIT| Operation
| successful
| | | Disable6| Operation failed

Notes:

1. The assembler only uses the PROCESS and CLOSE operation codes on subsequent calls.

2. The assembler only uses the READ and CLOSE operation codes on subsequent calls.

3. The assembler only uses the READ, FIND, and CLOSE operation codes on subsequent calls.

4. The assembler only uses the WRITE and CLOSE operation codes on subsequent calls.

5. This return is valid from all PROCESS and END OF MEMBER requests with the following exceptions:

a. PROCESS MACRO requests when the LIBRARY exit set the return code of 8 for the OPEN request.
b. PROCESS COPY requests when the LIBRARY exit set the return code of 8 for the OPEN request.
c. END OF MEMBER requests when the LIBRARY exit set the return code of 4 or 8 for the OPEN request.

| 6. If an exit sets the disable return code, then the assembler does not call that exit again, so any resource clean-up should be done
| before returning control to the assembler.

 Reason Code
A fullword, set by the exit, to qualify the return code. Figure 35 shows reason
codes for each exit type, and which request they are checked after.

 Chapter 4. Providing User Exits 93

 Exit Parameter List

Figure 35. User Exit Reason Codes

Exit Request RSN=0 4 8 16

| SOURCE| OPEN| No additional
| information
| Input source
| information
| available

| REINIT call required

| READ| No additional
| information
| Input source
| information
| available

| Redrive
| requested2

| LIBRARY| OPEN| No additional
| information
| End of member
| call required
| REINIT call required

| FIND (macro
| or copy
| member)

| No additional
| information
| Input source
| information
| available

| Redrive
| requested2

| READ| No additional
| information
| Input source
| information
| available

| Redrive
| requested2

| LISTING
| TERM
| OPEN| No additional
| information
| When return code
| is 0, reason code
| 4 indicates the exit
| has provided a
| line length in the
| buffer length field.
| When return code
| is 4, reason code
| 4 indicates the exit
| has provided the
| data set
| information.

| REINIT call required

| SOURCE
| LIBRARY
| LISTING
| PUNCH
| OBJECT(MVS
| and CMS)
| TERM
| ADATA

| PROCESS| No additional
| information
| Return to exit with
| empty buffer
| Redrive
| requested2

| LISTING
| PUNCH
| OBJECT(MVS
| and CMS)
| TERM
| ADATA

| WRITE| No additional
| information
| Redrive
| requested2

| PUNCH
| OBJECT(MVS
| and CMS)

| OPEN| No additional
| information
| Exit has provided
| the output data set
| information

| REINIT call required

| ADATA| OPEN| No additional
| information
| Exit has provided
| the output data set
| information

| Exit intends to
| discard type
| X'0002' and
| X'0090' records

| REINIT call required

| Notes:

| 1. Multiple reason codes can be specified by OR-ing them together.

| 2. When redrive is requested, the assembler issues any required error message and then recalls the exit with the same parameter
| list as before.

94 HLASM V1R5 Programmer’s Guide

 Exit Parameter List

 Buffer Length
A fullword containing the length of the area pointed to by the buffer pointer.

For OPEN Requests: This field contains the length of the optional character string
you specified in the EXIT assembler option.

For WRITE and PROCESS Requests: This field contains the length of the record
pointed to by the buffer pointer.

For READ Requests: This field contains the length of the area pointed to by the
buffer pointer where the exit may return a record to the assembler.

All Other Requests: This field contains zero.

Setting the Length: When either the SOURCE, LIBRARY, PUNCH, or OBJECT
exit is invoked for a READ, WRITE, or PROCESS request, the assembler sets the
buffer length to 80.

On MVS and CMS, if you specify the GOFF assembler option, and the OBJECT
exit is invoked, the buffer length might be fixed-length 80, or variable-length,
depending on the JCL (MVS) you supply. The maximum value for variable-length
records is 8212.

For an OPEN request the LISTING exit can use this field to pass the listing line
length to the assembler. The exit indicates that it has provided a print line length
by setting the return code to 0 and the reason code to 4.

 The line length must be in the range 121 to 255. If it is any other
value, the assembler issues message ASMA4�2W and does not call the exit to
process listing records.

 If the assembler opens the listing data set and the LISTING exit provides
a print line length, the line length must be 121 if SYSLST is assigned to disk,
otherwise it can be any value from 121 to 133. If it is any other value, the
assembler issues message ASMA4�2W and does not call the exit to process listing
records.

For all other calls to the LISTING exit, the assembler sets this field to the length
determined during the OPEN call.

The TERM exit can use this field to indicate to the assembler the length of the
terminal record. This may be done when the exit is invoked with an OPEN request.
The exit indicates that it has provided a terminal line length by setting the Return
Code to 0 and the Reason Code to 4. The value must not be zero, or negative,
and must not be greater than 255 on MVS and CMS, or 125 on VSE. If the value
is not correct, the assembler issues message ASMA4�4W and does not call the exit to
process terminal records.

For all other calls to the TERM exit, the assembler sets this field to the length
determined during the OPEN call.

 Chapter 4. Providing User Exits 95

 Exit Parameter List

Error Buffer Length
An unsigned fullword, set by the exit, that contains the length of the text pointed to
by the error buffer pointer. The maximum length is 255 bytes. If the exit specifies a
larger value, the assembler uses 255.

The assembler uses this length to determine whether to issue an error message. If
the length is greater than zero, the text in the error buffer is inserted into one of the
messages ASMA7��I to ASMA7�4C. The assembler selects which message to issue
by checking the value of the error severity field.

| The contents of the error buffer are ignored on CLOSE calls to the exit, unless the
| exit requests immediate termination. If immediate termination is requested, the
| assembler generates an ASMA940U message with the text provided by the exit; all
| remaining open exits are CLOSEd, but may not provide any additional message
| text.

 Error Severity
A fullword, set by the exit, that contains the severity code the assembler uses to
determine which diagnostic message to issue.

The severity code should be a value of 0, 4, 8, 12, or 16. If the severity code is not
one of these values, it is rounded up to the nearest value or, if the severity code is
greater than 16, it is reset to 16.

The values 0, 4, 8, 12, and 16 correspond to the five diagnostic messages,
ASMA7��I through ASMA7�4C, respectively. For example, severity code of 4 causes
the assembler to issue message ASMA7�1W. Figure 36 summarizes the return code
values and the associated diagnostic message.

Figure 36. Error Severity and Associated Diagnostic Message

Error Severity Code
Specified

Error Severity Code
Used

Associated
Message

0 0 ASMA700I

1–4 4 ASMA701W

5–8 8 ASMA702E

9–12 12 ASMA703S

> 12 16 ASMA704C

 User-Defined Field
A fullword, set to zero by the assembler before it calls the exit with an OPEN
request. The exit can use this field to store information (such as the address of
acquired storage) between calls. This field is separately maintained for each exit
type and is preserved across all calls until the exit is closed. The assembler does
not modify or interpret this field.

96 HLASM V1R5 Programmer’s Guide

 Exit Parameter List

Common User Field
A fullword, set to zero by the assembler. Any exit can use this to store information
(such as the address of acquired storage) between calls. This field is common for
all exit types and so provides a mechanism for different exits to share information.
The assembler does not modify or interpret this field.

 Buffer Pointer
The buffer pointer points to the area containing a record to be processed by the
exit.

For OPEN Requests: This field contains the character string from the EXIT
assembler option. If you did not specify a character string in the EXIT assembler
option, this area contains spaces and the buffer length field is set to zero.

For READ Requests: This field points to an empty buffer area.

For PROCESS and WRITE Requests: This field points to the record supplied by
the assembler.

All Other Requests: This field is set to zero.

| Note: The buffer pointer may not be the same for all calls to the exit, even if the
| exit is the same type for all calls.

Error Buffer Pointer
The error buffer pointer points to the error text buffer.

The assembler sets this pointer. If you want the assembler to issue a message on
behalf of the exit, you must supply the text of the error messages in the area
pointed to by the error buffer pointer. The text can be up to 255 characters. The
exit must place the length of the text in the error buffer length field. The assembler
selects a message number based on the value you place in the error severity field.

Exit-Specific Information Pointer
The exit-specific information pointer is a fullword that contains the address of the
Exit-Specific Information block. The assembler sets this pointer. For more details,
see “Exit-Specific Information Block” on page 99.

 DCB Pointer
 This field is a fullword and always contains zeros. It is included to

maintain compatibility with the Exit Parameter List in the MVS and CMS
environments.

 The DCB pointer is a fullword that contains the address of the Data
Control Block.

The assembler sets this address which points to the applicable DCB for the exit
being called as follows:

Exit DCB

SOURCE SYSIN

 Chapter 4. Providing User Exits 97

 Static Assembler Information Pointer

LIBRARY SYSLIB

LISTING SYSPRINT

PUNCH SYSPUNCH

OBJECT SYSLIN

ADATA SYSADATA

TERM SYSTERM

When an exit is invoked with an OPEN request, the data set referred to by the DCB
is not open, and the contents of the DCB might not be complete.

When an exit is invoked with a PROCESS request, the exit may use the DCB to
obtain additional information about the data set or member being used. For
example, on MVS, the exit can obtain user information from a PDS directory by
using the BLDL system macro.

Static Assembler Information Pointer
The Static Assembler Information Pointer is a fullword that contains the address of

| the Static Assembler Information block. The block is not aligned on any particular
boundary.

 HLASM VRM
This is an 8 byte field which contains the version, release and modification level of
the assembler being used to assemble the source module. For example, when

| HLASM Release 5.0 is being used, this field has the value 1.5.0. The value of the
field is set to the value of the system variable &SYSVER.

 PTF Level
This is an 8 byte field which contains the current PTF level of the assembler being
used to assemble the source module. For example, when the last PTF applied to
the assembler was UQ12345 this field will have the value: UQ12345.

 System ID
This is a 16 byte field which contains the name and release of the operating system
under which your source module is being assembled. For example, on MVS, the
field might contain the value MVS/ESA SP 5.1.0. The value of the field is set to the
value of the system variable &SYSTEM_ID.

| Numeric Version
| A fullword containing a numeric value indicating the version and release of the
| assembler being used. For example, for High Level Assembler Release 5, this field
| is set to 5.

98 HLASM V1R5 Programmer’s Guide

 Exit-Specific Information Block

 Error Handling
Exit Failure Handling: You can signal an exit failure for any call to the exit by
setting the return code field in the Exit Parameter List to 20. When the assembler
receives this return code it issues message ASMA94�U, and stops the assembly.
You can provide the assembler with additional information to insert in the message
text by placing the information in the error buffer pointed to by error buffer pointer,
and the length of the information in the error buffer length.

If the exit sets the return code field in the Exit Parameter List to any value other
than those described in Figure 34 on page 92, the assembler issues message
ASMA94�U and stops the assembly.

| Note: For CLOSE requests, the assembler only checks for a return code of 20; it
| treats all other values as a successful completion.

User Error Handling: You can instruct the assembler to produce an error
message after any call to the exit by placing information in the error buffer pointed
to by error buffer pointer, and the length of the information in the error buffer length.
You can indicate the severity of the message by placing the severity code in the
error severity field. The message is issued as a normal assembler message and,
as such, can be suppressed using the FLAG assembler option.

Exit-Specific Information Block
All user exits are passed an Exit-Specific Information block pointed to by the Exit
Parameter List. It contains a list of character data items which describe the data
for the exit, and the absolute and relative record numbers for the record passed to
the exit.

| On entry to the exit, the Member Name field contains spaces (unless the data set is
| a SYSLIB data set), the Data Set Name field contains the path name, and the
| Volume Serial field contains spaces.

The Exit-Specific Information block passed to all exits, except the LISTING exit, is
shown in Figure 38 on page 100. The Exit-Specific Information block passed to
the LISTING exit has additional parameters as shown in Figure 37.

 Chapter 4. Providing User Exits 99

 Exit-Specific Information Block

 � 31

 ┌───────────────────────┐ ┌─────────────────────────────┐

│ Ptr to Exit Block ├──────────────────�│Member Name (255 bytes) │

 └───────────────────────┘ ├─────────────────────────────┤

│Reserved (1 byte) │

 ├─────────────────────────────┤

│Member Type (255 bytes) │

 ├─────────────────────────────┤

│Reserved (1 byte) │

 ├─────────────────────────────┤

│Data Set Name (255 bytes) │

 ├─────────────────────────────┤

│Reserved (1 byte) │

 ├─────────────────────────────┤

│Volume Serial (255 bytes) │

 ├─────────────────────────────┤

│Reserved (1 byte) │

 ├─────────────────────────────┤

│Relative Record (4 bytes) │

 ├─────────────────────────────┤

│Absolute Record (4 bytes) │

 ├─────────────────────────────┤

│Linecount Value (4 bytes) │

 ├─────────────────────────────┤

│Current page number (4 bytes)│

 └─────────────────────────────┘

Figure 37. Exit-Specific Information Block—LISTING Exit

 � 31

 ┌───────────────────────┐ ┌─────────────────────────────┐

│ Ptr to Exit Block ├──────────────────�│Member Name (255 bytes) │

 └───────────────────────┘ ├─────────────────────────────┤

│Reserved (1 byte) │

 ├─────────────────────────────┤

│Member Type (255 bytes) │

 ├─────────────────────────────┤

│Reserved (1 byte) │

 ├─────────────────────────────┤

│Data Set Name (255 bytes) │

 ├─────────────────────────────┤

│Reserved (1 byte) │

 ├─────────────────────────────┤

│Volume Serial (255 bytes) │

 ├─────────────────────────────┤

│Reserved (1 byte) │

 ├─────────────────────────────┤

│Relative Record (4 bytes) │

 ├─────────────────────────────┤

│Absolute Record (4 bytes) │

 └─────────────────────────────┘

Figure 38. Exit-Specific Information Block—Other Exit Types

100 HLASM V1R5 Programmer’s Guide

 Exit-Specific Information Block

The Exit-Specific Information block consists of the following fields:

 Member Name
Member name within the data set. It is always provided for library members and is
also provided for data set members used sequentially on MVS where the data set
is a partitioned data set.

The assembler also sets this field as a parameter for the FIND operation. It is
left-justified and padded with spaces.

For output files, the information should not be updated after it has been set by the
OPEN call.

The assembler uses this field to update the system variable symbols, as described
in Figure 39 (MVS and CMS) and Figure 40 (VSE).

 Member Type
 Always blank. This field is present to maintain compatibility with High

Level Assembler running on VSE.

 The file type of the member. This field is also set by the assembler as a
parameter for the FIND operation. It is left-justified and padded with spaces.

Data Set Name
The name of the data set from which the last input record was retrieved, or to
which the next output record is written. It is left-justified and padded with spaces.

 For library data sets, the name includes the library and sublibrary name.

For output files, the information should not be updated after it has been set by the
OPEN call.

The assembler uses this field to update the system variable symbols, as described
in Figure 39 (MVS and CMS) and Figure 40 (VSE).

 Volume Serial
Volume serial where the data set is located. It is left-justified and padded with
spaces.

For output files, the information should not be updated after it has been set by the
OPEN call.

The assembler uses this field to update the system variable symbols, as described
in Figure 39 (MVS and CMS) and Figure 40 (VSE).

 Chapter 4. Providing User Exits 101

 Exit-Specific Information Block

Figure 39. MVS and CMS System Variable Symbols

Data Set Member Name Data Set Name Volume Serial

SYSIN &SYSIN_MEMBER &SYSIN_DSN &SYSIN_VOLUME

SYSLIB &SYSLIB_MEMBER &SYSLIB_DSN &SYSLIB_VOLUME

SYSPRINT &SYSPRINT_MEMBER &SYSPRINT_DSN &SYSPRINT_VOLUME

SYSTERM &SYSTERM_MEMBER &SYSTERM_DSN &SYSTERM_VOLUME

SYSPUNCH &SYSPUNCH_MEMBER &SYSPUNCH_DSN &SYSPUNCH_VOLUME

SYSLIN &SYSLIN_MEMBER &SYSLIN_DSN &SYSLIN_VOLUME

SYSADATA &SYSADATA_MEMBER &SYSADATA_DSN &SYSADATA_VOLUME

Figure 40. VSE System Variable Symbols

Data Set Member Name Data Set Name Volume Serial

SYSIPT (IJSYSIN) &SYSIN_MEMBER &SYSIN_DSN &SYSIN_VOLUME

Library &SYSLIB_MEMBER &SYSLIB_DSN &SYSLIB_VOLUME

SYSLST (IJSYSLS) &SYSPRINT_MEMBER &SYSPRINT_DSN &SYSPRINT_VOLUME

SYSLOG &SYSTERM_MEMBER &SYSTERM_DSN &SYSTERM_VOLUME

SYSPCH (IJSYSPH) &SYSPUNCH_MEMBER &SYSPUNCH_DSN &SYSPUNCH_VOLUME

SYSADAT &SYSADATA_MEMBER &SYSADATA_DSN &SYSADATA_VOLUME

Relative Record Number
The relative record number is the number assigned to the current record being
processed.

PROCESS Calls: For PROCESS calls, it represents the total number of records
the assembler has passed to the exit for the current data set. Each time a new
data set or library member is opened for input, the relative record number is reset
to 1 for the first record. If the new data set is a library member, caused by a macro
call or a COPY instruction, the relative record number is returned to the correct
sequential number when the macro or COPY processing is complete.

LISTING Exit: The relative record number is reset to 1 for the LISTING exit
whenever the assembler forces a page eject.

BATCH Assembler Option: The relative record number is reset to 1 for all output
data sets prior to each assembly when the BATCH assembler option is specified.

READ and WRITE Calls: For READ calls and WRITE calls, the exit should
maintain the relative record number. The assembler uses the relative record
number in information messages when you specify the FLAG(RECORD) option. If
you specify the ADATA option, the assembler includes the record number in the
associated data file (ADATA) Source Analysis record.

102 HLASM V1R5 Programmer’s Guide

 Exit-Specific Information Block

Absolute Record Number
The absolute record number is the number assigned to the current record being
processed. The number is incremented by 1 for each record since the assembly
started. For PROCESS calls, it represents the total number of records provided to
the exit for the current exit type. It starts at 1, but is not reset when the BATCH
assembler option is specified to assemble multiple source programs.

For READ calls and WRITE calls, the exit should maintain the absolute record
number. The number provided after READ calls is written to the associated data file
(ADATA) in the Source Analysis record.

 Linecount
This field is only provided for the LISTING exit.

The linecount value is set to the value of the LINECOUNT assembler option before
the OPEN call to the LISTING exit. This option contains the number of lines per
page in the assembler listing. The exit may change the linecount value only during
the OPEN call.

For PROCESS calls, the linecount field contains the number of logical records
written to the current listing page. A page eject occurs when the number exceeds
the linecount value specified in the LINECOUNT assembler option or during the
OPEN call.

Current Page Number
The assembler sets this field to the value of the current page number. Any change
the exit makes to this number is ignored.

This field is only provided for the LISTING exit and only for the PROCESS, WRITE
and CLOSE call types.

 Chapter 4. Providing User Exits 103

 SOURCE Exit Processing

SOURCE Exit Processing
The assembler calls the SOURCE exit with the following request types:

 OPEN
The assembler calls the exit with a request type of 1 (OPEN) at the start of the
assembly. This is the first call to the exit.

The exit may set the return code in the Exit Parameter List to one of the following:

0 Instructs the assembler to open the primary input data set, and supply the
primary input records to the exit in later PROCESS calls.

| Note: A reason code of 16 indicates a REINIT call is required.

4 Indicates that the exit supplies the primary input records to the assembler in
later READ calls. If you wish to provide the assembler with the values for
the system variables &SYSIN_DSN, &SYSIN_MEMBER and
&SYSIN_VOLUME, the user exit must set the reason code to 4 and place
the values in the data set name, member name, and volume serial fields of
the exit-specific information block. The assembler also shows this
information in the Diagnostic Cross Reference and Assembler Summary
section of the listing, and includes it in the associated data file Job
Identification record.

| Note: A reason code of 16 indicates a REINIT call is required.

16 Instructs the assembler to open the primary input data set, and make no
further calls to the exit.

If you provide a character string in the str1 suboption of the EXIT assembler option,
the buffer pointer points to the character string, and buffer length contains the
length of the character string. The buffer length is set to zero if there is no
character string.

 CLOSE
The assembler calls the exit with a request type of 2 (CLOSE) at the end of the
assembly. The exit should close any data sets it opened and release any storage
that it acquired.

 READ
The assembler calls the exit with a request type of 3 (READ) when the exit is
supplying the primary input records.

The exit may set the return code in the Exit Parameter List to one of the following:

0 A record is supplied. The record must be placed in the area pointed to by
the buffer pointer field. The record area is 80 characters in length.

The user exit should maintain the absolute record number and the relative
record number. These fields are set to zero before the OPEN request. The
assembler uses the relative record number in diagnostic messages when
you specify the FLAG(RECORD) assembler option. If you specify the
ADATA assembler option, the assembler includes both fields in the
associated data file Source Analysis record.

104 HLASM V1R5 Programmer’s Guide

 SOURCE Exit Processing

If you wish to provide the assembler with the values for the system variables
&SYSIN_DSN, &SYSIN_MEMBER and &SYSIN_VOLUME, the user exit
must set the reason code to 4 and place the values in the data set name,
member name, and volume serial fields of the exit-specific information block.
You can provide this information during the OPEN call, or whenever the exit
supplies a record to the assembler. If the exit is reading records from
concatenated data sets, it should supply the data set information with the
first record from each data set in the concatenation.

If the exit does not supply the data set information, the system variables are
set to null, and the primary input data set details are not shown in the
Diagnostic Cross Reference and Assembler Summary section of the listing,
nor are they included in the ADATA Job Identification record.

16 Indicates to the assembler that there are no more records. This is equivalent
to end-of-file processing for input data sets.

 PROCESS
The assembler calls the exit with a request type of 5 (PROCESS) when the
assembler is reading the primary input data set, and it has a record for the exit to
process. The address of the record read is in the buffer pointer field, and the
length is in the buffer length field. The record length is always 80.

The exit can set the return code in the Exit Parameter List to one of the following:

0 Indicates that the record has been accepted, and the assembler is to
process it. The exit may modify the record before it returns control to the
assembler. The user exit may also insert extra records in the primary input
by setting the reason code to 4. The assembler processes the current
record and then calls the user exit with an empty buffer. The exit must place
the record in the 80-byte area pointed to by the buffer pointer field. The exit
can continue to supply additional records, by setting the reason code to 4.
The exit must keep track of when the assembler calls it with an empty buffer,
and ensure that it resets the reason code to zero to resume normal
processing.

4 Instructs the assembler to discard the current record.

16 Instructs the assembler to make no further calls to the exit.

Although the user exit might insert or discard records, the assembler maintains the
absolute record number and relative record number.

If the options field is set to 1 (see “Options” on page 91), the assembler has
provided the exit with the current primary input data set information in the data set
name, member name, and volume serial fields of the exit-specific information block.
The assembler updates this information when it reads the first record of each data
set in a data set concatenation.

Figure 41 summarizes the SOURCE exit processing.

 Chapter 4. Providing User Exits 105

 LIBRARY Exit Processing

Figure 41. SOURCE Exit Processing Summary

Request
Value=Type

Exit
Return Code

Action

1=OPEN 0 Assembler opens primary input.

4 Exit supplies primary input records.
If reason code=4, exit supplies data set information.

| If reason code=16, REINIT call required.

16 Assembler opens primary input,
and makes no further calls to the exit.

2=CLOSE n/a Exit should close any data sets it opened, and release
any storage it acquired.

3=READ 0 Exit supplies record in buffer.
If reason code=4, exit supplies data set information.

| If reason code=8, redrive requested.1

16 Exit indicates end-of-file.

5=PROCESS 0 Record accepted. Exit may modify record.
If reason code=4, the assembler, after processing the
current record, provides an empty buffer for the exit to
provide additional record.

| If reason code=8, redrive requested.1

4 Requests assembler to discard record.
| If reason code=8, redrive requested.1

16 Assembler makes no further calls to the exit.

| 10=REINIT| 0| Operation successful.

| 16| Assembler makes no further calls to the exit.

| Notes:

| 1. When redrive is requested, the assembler issues any required error message and then
| recalls the exit with the same parameter list as before.

LIBRARY Exit Processing
The assembler calls the LIBRARY exit with the following request types:

 OPEN
The assembler calls the exit with a request type of 1 (OPEN) at the start of the
assembly. This is the first call to the exit.

The exit can set the return code in the Exit Parameter List to one of the following:

0 Instructs the assembler to open the library data set, and supply the macro
and copy code library input records to the exit in later PROCESS calls.

Note: A reason code of 4 indicates that the exit expects to receive END OF
MEMBER calls.

| A reason code of 16 indicates a REINIT call is required.

4 Indicates that the exit supplies the macro and copy code library records to
the assembler in later READ calls. If you wish to provide the assembler with
the values for the system variables &SYSLIB_DSN, &SYSLIB_MEMBER and
&SYSLIB_VOLUME, the user exit must set the reason code to 4 and place

106 HLASM V1R5 Programmer’s Guide

 LIBRARY Exit Processing

the values in the data set name, member name, and volume serial fields of
the exit-specific information block. The assembler also shows this
information in the Diagnostic Cross Reference and Assembler Summary
section of the listing, and includes it in the associated data file Library
record.

Note: A reason code of 4 indicates that the exit expects to receive END OF
MEMBER calls.

| A reason code of 16 indicates a REINIT call is required.

8 Indicates that both the assembler and user exit supply the macro and copy
code library records. On return from the exit, the assembler opens the library
data set. When a macro or copy member is required, the assembler calls
the exit with a FIND request. If the member is found by the exit, the exit
supplies the records in later READ calls. If the exit cannot find the member,
the assembler attempts to find the member in the library data set. If the
assembler finds the member, the records are passed to the exit in later
PROCESS calls.

Note: A reason code of 4 indicates that the exit expects to receive END OF
MEMBER calls.

| A reason code of 16 indicates a REINIT call is required.

16 Instructs the assembler to open the library data set, and make no further
calls to the exit.

If you provide a character string in the str2 suboption of the EXIT assembler option,
the buffer pointer field points to the character string, and buffer length contains the
length of the character string. The buffer length is set to zero if there is no
character string.

 CLOSE
The assembler calls the exit with a request type of 2 (CLOSE) at the end of the
assembly. The exit should close any data sets it opened and release any storage
that it acquired.

 READ
The assembler calls the exit with a request type of 3 (READ) when the exit is
supplying the library records, and after a successful FIND request. For copy
members, the assembler calls the exit until the exit indicates the end-of-file. For
macro definitions, the assembler calls the exit until it receives a MEND statement,
or the exit indicates the end-of-file.

The exit can set the return code in the Exit Parameter List to one of the following:

0 The exit is supplying a record. The record must be placed in the area
pointed to by the buffer pointer field. The record area is 80 characters in
length.

The user exit should maintain the absolute record number and the relative
record number. These fields are set to zero before the OPEN request. The
assembler uses the relative record number in diagnostic messages when
you specify the FLAG(RECORD) assembler option. If you specify the
ADATA assembler option, the assembler includes both fields in the
associated data file Source Analysis record.

 Chapter 4. Providing User Exits 107

 LIBRARY Exit Processing

| Note: A reason code of 8 requests redrive of the exit.

16 Indicates to the assembler that there are no more records. This is equivalent
to end-of-file processing for input members.

| Note: A reason code of 8 requests redrive of the exit.

PROCESS MACRO or PROCESS COPY
The assembler calls the exit with a request type of 5 (PROCESS MACRO) or 6
(PROCESS COPY) when the assembler is reading members from the library data
set, and it has a record for the exit to process. The exit is also called with these
request types when both the assembler and the exit are supplying library records
(return code 8 from the OPEN call), and the assembler is supplying the record.
The address of the record read is in the buffer pointer field, and the length is in the
buffer length field. The record length is always 80.

The exit can set the return code in the Exit Parameter List to one of the following:

0 Indicates that the record has been accepted, and the assembler is to
process it. The exit can modify the record before it returns control to the
assembler. The user exit can also insert extra records in the library member
by setting the reason code to 4. The assembler processes the current
record and then calls the user exit with an empty buffer. The exit must place
the record in the 80-byte area pointed to by the buffer pointer field. The exit
can continue to supply additional records by setting the reason code to 4.
The exit must keep track of when the assembler calls it with an empty buffer,
and ensure that it resets the reason code to zero to resume normal
processing.

| Note: A reason code of 8 requests redrive of the exit.

4 Instructs the assembler to discard the current record.

| Note: A reason code of 8 requests redrive of the exit.

16 Instructs the assembler to make no further calls to the exit. This will be
disregarded by the assembler if the exit return code from the OPEN was 8.

Although the user exit can insert or discard records, the assembler maintains the
absolute record number and relative record number.

If the options field is set to 1, the assembler has provided the exit with the current
primary input data set information in the data set name, member name, and volume
serial fields of the exit-specific information block. The assembler updates this
information when it reads the first record of each data set in a data set
concatenation.

FIND MACRO or FIND COPY
The assembler calls the exit with a request type of 7 (FIND MACRO) whenever the
assembler cannot find an operation code and the exit issued a return code on
OPEN of either 4 or 8. The member name field contains the operation code, and is
the name of the macro definition that the assembler is searching for.

The assembler calls the exit with a request type of 8 (FIND COPY) whenever the
assembler processes a COPY instruction and the exit issued a return code on
OPEN of either 4 or 8. The member name field contains the name of the copy
code member.

108 HLASM V1R5 Programmer’s Guide

 LIBRARY Exit Processing

If the user exit is supplying the library records, the exit can set the return code in
the Exit Parameter List to one of the following:

0 Indicates that the exit supplies the library records. The assembler calls the
user exit with later READ calls to retrieve each record.

| Note: A reason code of 8 requests redrive of the exit.

4 Indicates that the exit is not supplying the macro or copy member, and is
equivalent to not finding the member in the library.

| Note: A reason code of 8 requests redrive of the exit.

If both the assembler and the user exit are supplying the library records, the exit
can set the return code in the Exit Parameter List to one of the following:

0 Indicates that the exit supplies the library records. The assembler calls the
user exit with later READ calls to retrieve each record.

| Note: A reason code of 8 requests redrive of the exit.

4 Indicates that the exit is not supplying the macro or copy member, and is
equivalent to not finding the member in the library. On return from the exit,
the assembler attempts to find the member in the library. If the assembler
finds the member, it calls the user exit with later PROCESS MACRO or
PROCESS COPY calls passing each record read from the library.

| Note: A reason code of 8 requests redrive of the exit.

System Variables: If you wish to provide the assembler with the values for the
system variables &SYSLIB_DSN, &SYSLIB_MEMBER, and &SYSLIB_VOLUME,
the user exit must set the return code to 0, the reason code to 4, and place the
values in the data set name, member name, and volume serial fields of the
exit-specific information block.

If the exit does not supply the data set information, the system variables are set to
null, and the library data set details are not shown in the Diagnostic Cross
Reference and Assembler Summary section of the listing, nor are they included in
the ADATA Library record.

Nesting COPY Instructions and Macro Definitions: The assembler lets you
code COPY instructions and macro call instructions in copy code members. It also
lets you code COPY instructions in macro definitions. This type of coding is
described as nesting.

If the exit is processing a member, and supplies a record to the assembler
containing a COPY instruction, or a macro call instruction, the assembler calls the
exit with a request type of FIND COPY or FIND MACRO, respectively. In this case,
the exit needs to save the position in the currently active member before reading
the new copy code or macro member. This enables the exit to resume processing
the currently active member after it finishes with the new member.

The assembler indicates that it is processing a new (or nested) member by setting
the options field to 3. When the assembler finishes processing the new member
and resumes the previous (or outer) member, it issues a FIND call to the exit with
the options field set to 2 indicating that the previous member is resumed. After the
FIND call is complete, the assembler continues with PROCESS or READ calls to
the exit for the previous member.

 Chapter 4. Providing User Exits 109

 LIBRARY Exit Processing

When the assembler calls the exit with a FIND COPY or FIND MACRO request,
and the options field is set to 3, the exit should save the current member control
information in a stack.

When the assembler calls the exit with a FIND COPY or FIND MACRO request,
and the options field is set to 2, the exit should restore the previous member control
information from the stack. The next READ request expects the next record from
the previous member.

The assembler does not limit the number of levels of nesting.

There is a corresponding FIND (resume) request for every successful nested FIND
request, except under the following situations:

� An END instruction is found while reading a copy code member. The END
instruction causes the assembly to stop.

� When the assembler issues a PROCESS call, and provides the last record in a
copy code member, and the record is a macro call. In this case there are no
more copy records to resume reading.

� When a macro call (outer macro) inside a copy code member in turn issues a
macro call (inner macro). In this case, the assembler processes the outer
macro to completion, and then begins to generate the outer macro. During
generation, the assembler begins to process the inner macro, without issuing a
FIND (resume) request for the outer macro or copy code member. The
assembler issues a FIND request for each nested macro call, with options set
to 3. It does not issue a FIND request for the outer macro, with options set to
2, because the outer macro processing is complete.

� An error occurs during the assembly that prevents the member from being read
completely.

If the FIND COPY or FIND MACRO is unsuccessful, the position in the currently
active member should not be affected.

END OF MEMBER
The assembler calls the exit with a request type of 9 (END OF MEMBER)
whenever the reading of a macro or copy member is completed. For a macro,
processing of a MEND statement indicates completion; for a copy member, an end
of file condition indicates completion.

The END OF MEMBER call simplifies stack management required in coding a
LIBRARY exit which contains READs and FINDs. The exit may use the information
provided by this call in the handling of nested FINDs where there is usually, but not
always, a corresponding resume FIND (options=2) for every nested FIND
(options=3). For an example of how you can use END OF MEMBER calls to
perform stack management, see page 135.

| Note: A reason code of 8 requests redrive of the exit.

Figure 42 summarizes the LIBRARY exit processing.

110 HLASM V1R5 Programmer’s Guide

 LIBRARY Exit Processing

Figure 42 (Page 1 of 2). LIBRARY Exit Processing Summary

Request
Value=Type

Exit Return
Code

Action

1=OPEN 0 Assembler opens its library for input.
If reason code=4, the assembler makes END OF
MEMBER calls to the exit.

| If reason code=16, REINIT call required.

4 Exit supplies library records.
If reason code=4, the assembler makes END OF
MEMBER calls to the exit.

| If reason code=16, REINIT call required.

8 Both the assembler and the exit supply library records.
The assembler opens its library.
If reason code=4, the assembler makes END OF
MEMBER calls to the exit.

| If reason code=16, REINIT call required.

16 Assembler opens the library data set, and makes no
further calls to the EXIT.

2=CLOSE n/a Exit should close any data sets it opened, and release
any storage it acquired.

3=READ 0 Exit supplies record in buffer. Record with MEND
statement indicates end of macro member.

16 Exit indicates end-of-file for member.

5=PROCESS
 MACRO

0 Record accepted. Exit can modify record.
If reason code=4, the assembler, after processing the
current record, provides an empty buffer for the exit to
provide additional record.

| If reason code=8, redrive requested.1

4 Requests assembler to discard record.
| If reason code=8, redrive requested.1

16 Assembler makes no further calls to the EXIT
(disregarded if the EXIT return code from the OPEN is
8).

6=PROCESS
 COPY

0 Record accepted. Exit can modify record.
If reason code=4, the assembler, after processing the
current record, provides an empty buffer for the exit to
provide additional record.

| If reason code=8, redrive requested.1

4 Requests assembler to discard record.
| If reason code=8, redrive requested.1

16 Assembler makes no further calls to the EXIT
(disregarded if the EXIT return code from the OPEN is
8).

 Chapter 4. Providing User Exits 111

 LISTING Exit Processing

Figure 42 (Page 2 of 2). LIBRARY Exit Processing Summary

Request
Value=Type

Exit Return
Code

Action

7=FIND
 MACRO

0 Macro member found by exit; the exit supplies the
records.
If options=3, the exit should save the current member
position.
If options=2, the exit should restore the previous
member position.
If reason code=4, exit supplies data set information.

| If reason code=8, redrive requested.1

4 Macro member not found by exit; the exit does not
supply the records.

8=FIND
 COPY

0 Copy code member found by exit; the exit supplies the
records.
If options=3, the exit should save the current member
position.
If options=2, the exit should restore the previous
member position.
If reason code=4, exit supplies data set information.

| If reason code=8, redrive requested.1

4 Copy code member not found by exit; the exit does not
supply the records.

9=END OF
 MEMBER

Exit may use the information to perform stack
management.

| If reason code=8, redrive requested.1

10=REINIT 0 Operation successful.
| If reason code=8, redrive requested.1

16 Assembler makes no further calls to the exit.

| Notes:

| 1. When redrive is requested, the assembler issues any required error message and then
| recalls the exit with the same parameter list as before.

LISTING Exit Processing
You can use the LISTING exit to override the effect of the LIST assembler option.
The exit does this by indicating to the assembler that it opens the listing data set
and does all listing output processing. Then, as each listing record is passed to the
exit, the exit can decide whether to print the record, and where it writes the record.
For instance, the exit can write the listing records to a different data set than the
assembler would normally write them.

The LISTING exit is not called if you specify the NOLIST assembler option. If you
wish to process the listing records in the exit but you do not want the assembler to
write the records to the normal output data set, you can do one of the following:

� Instruct the assembler to discard the listing records by setting the exit return
code

or
� Suppress the listing output as follows:

MVS Provide a //SYSPRINT DD DUMMY JCL statement.
CMS Issue a FILEDEF SYSPRINT DUMMY command.

112 HLASM V1R5 Programmer’s Guide

 LISTING Exit Processing

VSE Assign the SYSLST to IGN.
or
� Instruct the exit to issue an OPEN return code of 4

The sections of the listing that are passed to the exit depend on the assembler
options you specify. For instance, if you specify the NORLD option, then no
Relocation Dictionary listing records are passed to the exit.

 Although the assembler can write to a listing data set with a record
format of variable-length, the exit is always presented with fixed-length records.

The assembler calls the LISTING exit with the following request types:

 OPEN
The assembler calls the exit with a request type of 1 (OPEN) at the start of the
assembly.

The exit may set the return code in the Exit Parameter List to one of the following:

0 Instructs the assembler to open the listing data set, and supply the listing
output records to the exit in later PROCESS calls.

The exit can set the record length for the listing data set by setting the
reason code to 4 and the buffer length field.

| Note: A reason code of 16 indicates a REINIT call is required.

 The buffer length field can be set to any value from 121 to 255.
If the listing data set has a variable-length record format, the LRECL
assigned is 4 bytes greater than the value the exit returns. If the value is
less than 121 or greater than 255, the assembler issues message ASMA4�2W
and does not call the exit for any further processing.

 The buffer length field can be set to any value from 121 to 133. If
the value is less than 121 or greater than 133, the assembler issues
message ASMA4�2W and does not call the exit for any further processing.

If you assign SYSLST to a disk data set in your JCL, the record length must
be 121.

4 Indicates that the exit writes the listing records in later WRITE calls. If you
wish to provide the assembler with the values for the system variables
&SYSPRINT_DSN, &SYSPRINT_MEMBER, and &SYSPRINT_VOLUME, the
exit must set the reason code to 4 and place the values in the data set
name, member name, and volume serial fields of the exit-specific information
block. The assembler also shows this information in the Diagnostic Cross
Reference and Assembler Summary section of the listing, and includes it in
the associated data file Output File Information record.

| Note: A reason code of 16 indicates a REINIT call is required.

16 Instructs the assembler to open the listing data set, and make no further
calls to the exit.

The assembler sets the linecount field to the value of the LINECOUNT assembler
option. This value is the number of lines per page in the listing. The exit can

 Chapter 4. Providing User Exits 113

 LISTING Exit Processing

change the line count to a value of 0, or any value from 10 to 32767.
“LINECOUNT” on page 62 describes the LINECOUNT assembler option.

If you provide a character string in the str3 suboption of the EXIT assembler option,
the buffer pointer field points to the character string, and buffer length contains the
length of the character string. The buffer length is set to zero if there is no
character string.

 CLOSE
The assembler calls the exit with a request type of 2 (CLOSE) at the end of the
assembly. The exit should close any data sets it opened and release any storage
that it acquired.

 WRITE
The assembler calls the exit with a request type of 4 (WRITE) when the exit is
writing the listing records. The buffer pointer field points to the listing record, and
the buffer length contains the length of the record.

| Note: A reason code of 8 requests redrive of the exit.

 Depending on the setting of the ASA assembler option, the record has
either an American National Standard or a machine printer control character at the
start of the record.

The options field contains a value that represents the type of listing record that is
passed. The listing record types, and their corresponding options values, are shown
on page 91.

The user exit should maintain the absolute record number and the relative record
number. These fields are set to zero before the OPEN request. The assembler
uses the relative record number and the linecount value to determine when to start
a new page in the assembler listing. A new page is started when the relative record
number exceeds the line count.

 PROCESS
The assembler calls the exit with a request type of 5 (PROCESS) when the
assembler is writing the listing records, and it has a record for the exit to process.
The address of the record is in the buffer pointer field, and the length is in the
buffer length field.

 The record has either an American National Standard or a machine
printer control character at the start of the record depending on the setting of the
ASA assembler option.

The options field contains a value that represents the type of listing record that is
passed. The listing record types, and their corresponding options values, are shown
on page 91.

The exit can set the return code in the Exit Parameter List to one of the following:

0 Indicates that the record has been accepted, and the assembler is to write it
to the listing data set. The exit may modify the record before it returns
control to the assembler. The user exit may also insert extra records in the
listing by setting the reason code to 4. The assembler writes the current

114 HLASM V1R5 Programmer’s Guide

 LISTING Exit Processing

record and then calls the user exit with an empty buffer. The exit must place
the additional listing record in the area pointed to by the buffer pointer field.
The exit can continue to supply additional records by setting the reason code
to 4. The exit must keep track of when the assembler calls it with an empty
buffer, and ensure that it resets the reason code to zero to resume normal
processing.

| Note: A reason code of 8 requests redrive of the exit.

 The exit must also ensure that a valid printer control character
is placed in the first character of the record. The printer control character
may be either American National Standard or machine. The exit can check
the DCB, pointed to by the DCB pointer field in the Exit Parameter List, to
find out which printer control character to use.

 The exit must also ensure that a valid American National
Standard printer control character is placed in the first character of the
record.

4 Instructs the assembler to discard the listing record.

| Note: A reason code of 8 requests redrive of the exit.

16 Instructs the assembler to make no further calls to the exit.

Although the user exit can insert or discard records, the assembler maintains the
absolute record number and relative record number.

Figure 43 summarizes the LISTING exit processing.

 Chapter 4. Providing User Exits 115

 OBJECT (MVS and CMS) and PUNCH Exit Processing

Figure 43. LISTING Exit Processing Summary

Request
Value=Type

Exit Return
Code

Action

1=OPEN 0 Assembler opens listing data set.
If reason code=4, exit supplies listing line length.

| If reason code=16, REINIT call required.

4 Exit writes listing records.
If reason code=4, exit supplies data set information.

| If reason code=16, REINIT call required.

16 Assembler opens listing data set,
and makes no further calls to the exit.

2=CLOSE n/a Exit should close any data sets it opened, and release
any storage it acquired.

4=WRITE 0 Exit writes record.
| If reason code=8, redrive requested.1

5=PROCESS 0 Record accepted. Exit may modify record.
If reason code=4, the assembler, after processing the
current record, provides an empty buffer for the exit to
provide additional record.

| If reason code=8, redrive requested.1

4 Requests assembler to discard record.
| If reason code=8, redrive requested.1

16 Assembler makes no further calls to the exit.

10=REINIT 0 Operation successful.
| If reason code=8, redrive requested.1

| 16| Assembler makes no further calls to the exit.

| Notes:

| 1. When redrive is requested, the assembler issues any required error message and then
| recalls the exit with the same parameter list as before.

OBJECT (MVS and CMS) and PUNCH Exit Processing
When you specify the OBJEXIT suboption of the EXIT assembler option, the

| assembler calls either the PUNCH user exit or the OBJECT user exit, or both, as
follows:

� If you specify the OBJECT assembler option, the assembler calls
the OBJECT user exit.

� If you specify the OBJECT and the DECK assembler options, the assembler
| calls the user exit as a PUNCH exit, and then as an OBJECT exit.

� If you specify the DECK assembler option, the assembler calls the PUNCH
user exit.

You can use the exit to override the effect of the DECK or OBJECT assembler
options. The exit does this by indicating to the assembler that it opens the output
data set and does all the output processing. Then, as each object record is passed
to the exit, the exit can decide whether to write the record, and where to write the
record. For instance, the exit can write the records to a different data set than the
assembler would normally write them.

116 HLASM V1R5 Programmer’s Guide

 OBJECT (MVS and CMS) and PUNCH Exit Processing

 The exit is not called if you specify the NODECK and NOOBJECT
assembler options.

 The exit is not called if you specify the NODECK assembler option.

If you wish to process the object records in the exit, but you do not want the
assembler to write the records to the normal output data set, you can do one of the
following:

� Instruct the assembler to discard the records by setting the exit return code
or
� Suppress the object output as follows:

MVS Provide a //SYSLIN DD DUMMY JCL statement, and a //SYSPUNCH DD

DUMMY JCL statement.

CMS Issue a FILEDEF SYSLIN DUMMY command, and a FILEDEF SYSPUNCH DUMMY

command.

VSE Assign SYSPCH to IGN.

or
� Instruct the exit to issue an OPEN return code of 4.

The assembler calls the OBJECT and PUNCH exit with the following request types:

 OPEN
The assembler calls the exit with a request type of 1 (OPEN) at the start of the
assembly. The exit type field indicates which exit is being called. The OBJECT exit
is type 5, and the PUNCH exit is type 4.

The exit can set the return code in the Exit Parameter List to one of the following:

0 Instructs the assembler to open the object data set, and supply the object
records to the exit in later PROCESS calls.

| Note: A reason code of 16 indicates a REINIT call is required.

4 Indicates that the exit writes the object records in later WRITE calls. If you
wish to provide the assembler with the values for the system variables
&SYSLIN_DSN, &SYSLIN_MEMBER, and &SYSLIN_VOLUME, then during
the OPEN call for the OBJECT exit, the exit must set the reason code to 4
and place the values in the data set name, member name, and volume serial
fields of the exit-specific information block. If you wish to provide the
assembler with the values for the system variables &SYSPUNCH_DSN,
&SYSPUNCH_MEMBER, and &SYSPUNCH_VOLUME, then during the
OPEN call for the PUNCH exit, the exit must set the reason code to 4 and
place the values in the data set name, member name, and volume serial
fields of the exit-specific information block. The assembler also shows the
information for both object and punch data sets in the Diagnostic Cross
Reference and Assembler Summary section of the listing, and includes it in
the associated data file Output File Information record.

| Note: A reason code of 16 indicates a REINIT call is required.

16 Instructs the assembler to open the object data set and make no further calls
to the exit.

 Chapter 4. Providing User Exits 117

 OBJECT (MVS and CMS) and PUNCH Exit Processing

If you provide a character string in the str4 suboption of the EXIT assembler option,
the buffer pointer field points to the character string, and the buffer length contains
the length of the character string. The buffer length is set to zero if there is no
character string.

| Note: If both OBJECT and DECK are specified (so that the exit is called twice),
| the optional character string specified in the PARM string is passed each
| time.

 CLOSE
The assembler calls the exit with a request type of 2 (CLOSE) at the end of the
assembly. The exit should close any data sets it opened and release any storage
that it acquired.

 WRITE
The assembler calls the exit with a request type of 4 (WRITE) when the exit is
writing the object records. The buffer pointer field points to the object record, and
the buffer length contains the length of the record.

| Note: A reason code of 8 requests redrive of the exit.

 The record length is always 80 bytes when you specify the NOGOFF
assembler option. If you specify the GOFF assembler option, the record length is
80 bytes for fixed-length output or up to 8212 bytes for variable-length output. The
record length for variable-length records does not include the 4-byte length of the
record descriptor word (RDW), and the buffer pointer field points at the object data,
not the RDW.

 The record length is always 80 bytes.

The user exit should maintain the absolute record number and the relative record
number. These fields are set to zero before the OPEN request.

 PROCESS
The assembler calls the exit with a request type of 5 (PROCESS) when the
assembler is writing the object records, and it has a record for the exit to process.
The address of the record is in the buffer pointer field, and the length is in the
buffer length field.

 The record length is always 80 bytes when you specify the
NOXOBJECT assembler option. If you specify the XOBJECT assembler option, the
record length is 80 bytes for fixed-length output or up to 8212 bytes for
variable-length output. The record length for variable-length records does not
include the 4-byte length of the record descriptor word (RDW), and the buffer
pointer field points at the object data, not the RDW.

 The record length is always 80 bytes.

The exit can set the return code in the Exit Parameter List to one of the following:

0 Indicates that the record has been accepted, and the assembler is to write it
to the object data set. The exit can modify the record before it returns
control to the assembler. The user exit can also insert extra records in the

118 HLASM V1R5 Programmer’s Guide

 OBJECT (MVS and CMS) and PUNCH Exit Processing

object data set by setting the reason code to 4. The assembler writes the
current record and then calls the user exit with an empty buffer. The exit
must place the additional object record in the area pointed to by the buffer
pointer field. The exit can continue to supply additional records by setting
the reason code to 4. The exit must keep track of when the assembler calls
it with an empty buffer, and ensure that it resets the reason code to zero to
resume normal processing.

| Note: A reason code of 8 requests redrive of the exit.

4 Instructs the assembler to discard the record.

| Note: A reason code of 8 requests redrive of the exit.

16 Instructs the assembler to make no further calls to the exit.

Although the user exit can insert or discard records, the assembler maintains the
absolute record number and relative record number.

Figure 44 summarizes the OBJECT and PUNCH exit processing.

Figure 44. OBJECT and PUNCH Exit Processing Summary

Request
Value=Type

Exit
Return Code

Action

1=OPEN 0 Assembler opens object data set.
| If reason code=16, REINIT call required.

4 Exit writes object records.
If reason code=4, exit supplies data set information.

| If reason code=16, REINIT call required.

16 Assembler opens object data set,
and makes no further calls to the exit.

2=CLOSE n/a Exit should close any data sets it opened, and release
any storage it acquired.

4=WRITE 0 Exit writes record.
| If reason code=8, redrive requested.1

5=PROCESS 0 Record accepted. Exit can modify record.
If reason code=4, the assembler, after processing the
current record, provides an empty buffer for the exit to
provide additional record.

| If reason code=8, redrive requested.1

4 Requests assembler to discard record.
| If reason code=8, redrive requested.1

16 Assembler makes no further calls to the exit.

10=REINIT 0 Operation successful.
| If reason code=8, redrive requested.1

16 Assembler makes no further calls to the exit.

| Notes:

| 1. When redrive is requested, the assembler issues any required error message and then
| recalls the exit with the same parameter list as before.

 Chapter 4. Providing User Exits 119

 ADATA Exit Processing

ADATA Exit Processing
When you specify the ADEXIT suboption of the EXIT assembler option, the
assembler calls the ADATA user exit if you also specify the ADATA assembler
option.

The ADATA exit is not called if you specify the NOADATA assembler option. If you
wish to process the associated data records in the exit, but you do not want the
assembler to write the records to the normal output data set, you can do one of the
following:

� Instruct the assembler to discard the associated data records by setting the exit
return code

or
� Suppress the associated data output as follows:

MVS Provide a //SYSADATA DD DUMMY JCL statement.
CMS Issue a FILEDEF SYSADATA DUMMY command.
VSE Assign SYSADAT to IGN.

The assembler calls the ADATA exit with the following request types:

 OPEN
The assembler calls the exit with a request type of 1 (OPEN) at the start of the
assembly.

If you provide a character string in the str5 suboption of the EXIT assembler option,
the buffer pointer field points to the character string, and the buffer length contains
the length of the character string. The buffer length is set to zero if there is no
character string.

The exit can set the return code in the Exit Parameter List to one of the following:

| 0 Instructs the assembler to open the associated data data set, and supply the
| associated data records to the exit in later PROCESS calls.

| Note: A reason code of 8 indicates that the exit intends to discard both type
| X'0002' and X'0090' records that may be presented to it during the
| assembly.

| This reason code is used by the assembler when building the
| assembler summary section of the listing. To calculate accurate
| associated data record counts the assembler must be aware of any
| future discards of the final two records to be written; the statistics
| record and the end record.

| A reason code of 16 indicates a REINIT call is required.

| 4 Indicates that the exit writes the associated data records in later WRITE
| calls. If you wish to provide the assembler with the values for the system
| variables &SYSADATA_DSN, &SYSADATA_MEMBER, and
| &SYSADATA_VOLUME, the exit must set the reason code to 4 and place
| the values in the data set name, member name, and volume serial fields of
| the exit-specific information block. The assembler also shows this
| information in the Diagnostic Cross Reference and Assembler Summary
| section of the listing, and includes it in the associated data file Output File
| Information record.

120 HLASM V1R5 Programmer’s Guide

 ADATA Exit Processing

| Note: A reason code of 8 indicates that the exit intends to discard both type
| X'0002' and X'0090' records that may be presented to it during the
| assembly.

| This reason code is used by the assembler when building the
| assembler summary section of the listing. To calculate accurate
| associated data record counts the assembler must be aware of any
| future discards of the final two records to be written; the statistics
| record and the end record.

| A reason code of 16 indicates a REINIT call is required.

16 Instructs the assembler to open the ADATA data set and make no further
calls to the exit.

 CLOSE
The assembler calls the exit with a request type of 2 (CLOSE) at the end of the
assembly. The exit should close any data sets it opened and release any storage
that it acquired.

| WRITE
| The assembler calls the exit with a request type of 4 (WRITE) when the exit is
| writing the associated data records. The buffer pointer field points to the
| associated data record, and the buffer length contains the length of the record.
| The record length for variable-length records does not include the 4-byte length of
| the record descriptor word (RDW), and the buffer pointer field points at the
| associated data header, not the RDW.

| Note: A reason code of 8 requests redrive of the exit.

| The user exit should maintain the absolute record number and the relative record
| number. These fields are set to zero before the OPEN request.

 PROCESS
The assembler calls the exit with a request type of 5 (PROCESS) when the
assembler is writing the associated data records, and it has a record for the exit to
process. The address of the record read is in the buffer pointer field, and the
length is in the buffer length field. The record length for variable-length records
does not include the 4-byte length of the record descriptor word (RDW), and the

| buffer pointer field points at the associated data header, not the RDW.

The exit can set the return code in the Exit Parameter List to one of the following:

| 0 Indicates that the record has been accepted, and the assembler is to write it
| to the associated data data set. The exit can modify the record before it
| returns control to the assembler. The user exit can also insert extra records
| in the associated data data set by setting the reason code to 4. The
| assembler writes the current record and then calls the user exit with an
| empty buffer. The exit must place the additional associated data record in
| the area pointed to by the buffer pointer field. The exit can continue to
| supply additional records by setting the reason code to 4. The exit must
| keep track of when the assembler calls it with an empty buffer, and ensure
| that it resets the reason code to zero to resume normal processing.

| Note: A reason code of 8 requests redrive of the exit.

 Chapter 4. Providing User Exits 121

 TERM Exit Processing

4 Instructs the assembler to discard the record.

| Note: A reason code of 8 requests redrive of the exit.

| 16 Instructs the assembler to make no further calls to the exit.

| Although the user exit can insert or discard records, the assembler maintains the
| absolute record number and relative record number.

Figure 45 summarizes the ADATA exit processing.

Figure 45. ADATA Exit Processing Summary

Request
Value=Type

Exit
Return Code

Action

| 1=OPEN| 0| Assembler opens associated data data set.
| If reason code=8, exit intends to discard both X'0002'
| and X'0090' record types.
| If reason code=16, REINIT call required.

4 Exit writes associated data records.
If reason code=4, exit supplies data set information.

| If reason code=8, exit intends to discard both X'0002'
| and X'0090' record types.
| If reason code=16, REINIT call required.

16 Assembler opens associated data data set,
and makes no further calls to the exit.

2=CLOSE n/a Exit should close any data sets it opened, and release
any storage it acquired.

4=WRITE 0 Exit writes record.
| If reason code=8, redrive requested.1

5=PROCESS 0 Record accepted. Exit can modify record.
If reason code=4, the assembler, after processing the
current record, provides an empty buffer for the exit to
provide additional record.

| If reason code=8, redrive requested.1

4 Requests assembler to discard record.
| If reason code=8, redrive requested.1

| 16| Assembler makes no further calls to the exit.

| 10=REINIT| 0| Operation successful.
| If reason code=8, redrive requested.1

| 16| Assembler makes no further calls to the exit.

| Notes:

| 1. When redrive is requested, the assembler issues any required error message and then
| recalls the exit with the same parameter list as before.

TERM Exit Processing
You can use the TERM exit to override the effect of the TERM assembler option.
The exit does this by indicating to the assembler that it opens the terminal data set
and does all terminal output processing. Then, as each terminal record is passed
to the exit, the exit can decide whether to write the record, and where to write the
record. For instance, the exit can write the terminal records to a different data set
to which the assembler would normally write them.

122 HLASM V1R5 Programmer’s Guide

 TERM Exit Processing

The TERMINAL exit is not called if you specify the NOTERM assembler option. If
you wish to process the terminal records in the exit, but you do not want the
assembler to write the records to the normal output data set, you can do one of the
following:

� Instruct the assembler to discard the terminal records by setting the exit return
code

or
� Suppress the terminal output as follows:

MVS Provide a //SYSTERM DD DUMMY JCL statement.
CMS Issue a FILEDEF SYSTERM DUMMY command.
VSE Assign SYSTERM to IGN.

or
� Instruct the exit to issue an OPEN return code of 4

The assembler calls the TERMINAL exit with the following request types:

 OPEN
The assembler calls the exit with a request type of 1 (OPEN) at the start of the
assembly.

The exit may set the return code in the Exit Parameter List to one of the following:

0 Instructs the assembler to open the terminal data set, and supply the
terminal output records to the exit in later PROCESS calls.

The exit can set the record length for the terminal data set by setting the
reason code to 4 and the buffer length field. The buffer length field can be
set to any value from 1 to 255 on MVS and CMS, or from 1 to 125 on VSE.
If the value is zero or greater than 255 on MVS and CMS, or zero or greater
than 125 on VSE, the assembler issues message ASMA4�4W and does not call
the exit for any further processing.

| Note: A reason code of 16 indicates a REINIT call is required.

4 Indicates that the exit writes the terminal records in later WRITE calls. If you
wish to provide the assembler with the values for the system variables
&SYSTERM_DSN, &SYSTERM_MEMBER, and &SYSTERM_VOLUME, the
exit must set the reason code to 4 and place the values in the data set
name, member name, and volume serial fields of the exit-specific information
block. The assembler also shows this information in the Diagnostic Cross
Reference and Assembler Summary section of the listing, and includes it in
the associated data file Output File Information record.

| Note: A reason code of 16 indicates a REINIT call is required.

16 Instructs the assembler to open the terminal data set and make no further
calls to the exit.

If you provide a character string in the str6 suboption of the EXIT assembler option,
the buffer pointer field points to the character string, and the buffer length contains
the length of the character string. The buffer length is set to zero if there is no
character string.

 Chapter 4. Providing User Exits 123

 TERM Exit Processing

 CLOSE
The assembler calls the exit with a request type of 2 (CLOSE) at the end of the
assembly. The exit should close any data sets it opened and release any storage
that it acquired.

 WRITE
The assembler calls the exit with a request type of 4 (WRITE) when the exit is
writing the terminal records. The buffer pointer field points to the terminal record,
and the buffer length contains the length of the record.

The user exit should maintain the absolute record number and the relative record
number. These fields are set to zero before the OPEN request.

| Note: A reason code of 8 requests redrive of the exit.

 PROCESS
The assembler calls the exit with a request type of 5 (PROCESS) when the
assembler is writing the terminal records, and it has a record for the exit to process.
The address of the record is in the buffer pointer field, and the length is in the
buffer length field.

The exit can set the return code in the Exit Parameter List to one of the following:

0 Indicates that the record has been accepted, and the assembler is to write it
to the terminal data set. The exit may modify the record before it returns
control to the assembler. The user exit may also insert extra records in the
terminal by setting the reason code to 4. The assembler writes the current
record and then calls the user exit with an empty buffer. The exit must place
the additional terminal record in the area pointed to by the buffer pointer
field. The exit can continue to supply additional records by setting the
reason code to 4. The exit must keep track of when the assembler calls it
with an empty buffer, and ensure that it resets the reason code to zero to
resume normal processing.

| Note: A reason code of 8 requests redrive of the exit.

4 Instructs the assembler to discard the terminal record.

| Note: A reason code of 8 requests redrive of the exit.

16 Instructs the assembler to make no further calls to the exit.

Although the user exit can insert or discard records, the assembler maintains the
absolute record number and relative record number.

Figure 46 summarizes the TERM exit processing.

124 HLASM V1R5 Programmer’s Guide

 User Exit Coding Example

Figure 46. TERM Exit Processing Summary

Request
Value=Type

Exit
Return Code

Action

1=OPEN 0 Assembler opens terminal data set.
If reason code=4, exit supplies listing line length.

| If reason code=16, REINIT call required.

4 Exit writes terminal records.
If reason code=4, exit supplies system variable
symbols.

| If reason code=16, REINIT call required.

16 Assembler opens terminal data set,
and makes no further calls to the exit.

2=CLOSE n/a Exit should close any data sets it opened, and release
any storage it acquired.

4=WRITE 0 Exit writes record.
| If reason code=8, redrive requested.1

5=PROCESS 0 Record accepted. Exit can modify record.
If reason code=4, the assembler, after processing the
current record, provides an empty buffer for the exit to
provide additional record.

| If reason code=8, redrive requested.1

4 Requests assembler to discard record.
| If reason code=8, redrive requested.1

16 Assembler makes no further calls to the exit.

| 10=REINIT| 0| Operation successful.
| If reason code=8, redrive requested.1

| 16| Assembler makes no further calls to the exit.

| Notes:

| 1. When redrive is requested, the assembler issues any required error message and then
| recalls the exit with the same parameter list as before.

Sample User Exits
Three sample exits are provided with High Level Assembler. They are described
under:

� Appendix I, “Sample ADATA User Exits (MVS and CMS)” on page 390
� Appendix J, “Sample LISTING User Exit (MVS and CMS)” on page 401
� Appendix K, “Sample SOURCE User Exit (MVS and CMS)” on page 403

User Exit Coding Example
Figure 47 on page 127 shows how to code a user exit. The exit is called
“MYEXIT”. It uses all user exit types and all request types. It uses the field
AXPUSER to anchor the storage it has acquired to make it reenterable.

This user exit is not supplied with High Level Assembler. This exit is written for
MVS and CMS only.

 Chapter 4. Providing User Exits 125

 User Exit Coding Example

The user exit does not show examples of how to open, read, write, or close a data
set when it is responsible for opening the data set. Instead, it provides source
records from its own storage, and writes output records to the operator using the
WTO macro.

The user exit can be invoked as the following exit types.

SOURCE Exit—INEXIT: If you specify EXIT(INEXIT(MYEXIT)), the exit allows the
assembler to open the input data set. The exit issues a WTO for each record read
from the input data set.

If you specify EXIT(INEXIT(MYEXIT(EXIT))), the exit opens the input data set. It
passes the following records to the assembler:

SMALL TITLE 'Test the assembler exits'

 MACRO

 LITTLE

 BSM �,14 Return

 MEND

 START

 OUTER

 LITTLE

 REPRO

This is to be written to the punch data set

 COPY TINY

 END

LIBRARY Exit—LIBEXIT: If you specify EXIT(LIBEXIT(MYEXIT)), the exit allows
the assembler to open the library data set. The exit issues a WTO for each record
read from the library data set.

If you specify EXIT(LIBEXIT(MYEXIT(EXIT))), the exit opens the library data set. It
passes the records for the following macros and COPY members to the assembler:

 � Macro OUTER
 � Macro INNER
� COPY member TINY
� COPY member TINY1

If you specify EXIT(LIBEXIT(MYEXIT(BOTH))), the exit and the assembler opens
the library data sets. The exit passes the records for the following macros and
COPY members to the assembler:

 � Macro OUTER
 � Macro INNER
� COPY member TINY
� COPY member TINY1

LISTING Exit—PRTEXIT: If you specify EXIT(PRTEXIT(MYEXIT)), the exit allows
the assembler to open the listing data set. The exit issues a WTO for the first 80
characters of each listing record.

If you specify EXIT(PRTEXIT(MYEXIT(EXIT))), the exit opens the listing data set.
The exit issues a WTO for the first 80 characters of each listing record passed to
the exit.

126 HLASM V1R5 Programmer’s Guide

 User Exit Coding Example

OBJECT and PUNCH Exit—OBJEXIT: If you specify EXIT(OBJEXIT(MYEXIT)),
the exit allows the assembler to open the object and punch data sets. The exit
issues a WTO for each object record written to the object and punch data set.

If you specify EXIT(OBJEXIT(MYEXIT(EXIT))), the exit opens the object and punch
data set. The exit issues a WTO for each object record passed to the exit.

| ADATA Exit—ADEXIT: If you specify EXIT(ADEXIT(MYEXIT)), the exit allows the
| assembler to open the associated data data set. The exit issues a WTO for the
| first 80 characters of each associated data record.

| If you specify EXIT(ADEXIT(MYEXIT(EXIT))), the exit opens the associated data
| data set. The exit issues a WTO for the first 80 characters of each associated data
| record passed to the exit.

TERM Exit—TRMEXIT: If you specify EXIT(TRMEXIT(MYEXIT)), the exit allows
the assembler to open the terminal data set. The exit issues a WTO for the first 68
characters of each terminal record.

If you specify EXIT(TRMEXIT(MYEXIT(EXIT))), the exit opens the terminal data set.
The exit issues a WTO for the first 68 characters of each terminal record passed to
the exit.

MYEXIT TITLE '- EXAMPLE OF A USER EXIT'

���

� �

� This sample user exit demonstrates how to code a user exit. �

� It has code to demonstrate the use of SOURCE, LIBRARY, LISTING, �

� PUNCH, OBJECT, ADATA and TERM exits. �

� �

� This user exit uses the field AXPUSER to anchor the storage it has �

� acquired to make it reenterable. If the user exit does not need to �

� be reenterable, this code is not required. �

� �

� REGISTER USAGE: �

� R� - WORK �

� R1 - WORK �

� R2 - WORK �

� R3 - WORK �

� R4 - WORK �

� R5 - POINTER TO DCB (MVS/CMS) ONLY �

� R6 - POINTER TO SOURCE INFORMATION �

� R7 - POINTER TO ERROR BUFFER �

� R8 - POINTER TO BUFFER �

� R9 - POINTER TO REQUEST INFORMATION �

� R1� - POINTER TO ORIGINAL PASSED PARAMETER �

� R11 - NOT USED. �

� R12 - PROGRAM SECTION BASE REGISTER �

� R13 - SAVEAREA AND DYNAMIC STORAGE AREA �

� R14 - RETURN ADDRESS OF CALLING MODULE �

� R15 - ENTRY POINT OF CALLED MODULE �

� �

���

 PRINT NOGEN

 EJECT

Figure 47 (Part 1 of 17). Example of a User Exit

 Chapter 4. Providing User Exits 127

 User Exit Coding Example

���

� MYEXIT Entry �

� - Save the registers. �

� - Acquire the dynamic storage on the first entry and save the �

� address in AXPUSER. �

� - Chain the save areas using the forward and backward pointers. �

� - Address the data areas passed. �

� - Process the required exit according to the 'Exit type' passed. �

���

MYEXIT CSECT

 STM R14,R12,12(R13) Save registers

LR R12,R15 Set up first base register

 USING MYEXIT,R12,R11

 LA R11,2�48(,R12)

LA R11,2�48(,R11) Set up second base register

LR PARMREG,R1 Save parameter list address

 USING AXPXITP,PARMREG

L REQREG,AXPRIP Get address of exit parm list

 USING AXPRIL,REQREG

ICM R1,B'1111',AXPUSER Get address of user area

BNZ CHAIN Yes, use area

LA �,WORKLEN Otherwise, get length

GETMAIN R,LV=(�) and getmain storage

ST R1,AXPUSER Save it for later

 XC �(WORKLEN,R1),�(R1) Clear area

CHAIN DS �H

ST R13,4(R1) Save previous pointer

ST R1,8(R13) Save next pointer

LR R13,R1 Set savearea/workarea address

 USING WORKAREA,R13

 SPACE 1

L BUFREG,AXPBUFP Get address of buffer

 USING BUFF,BUFREG

L ERRREG,AXPERRP Get address of error buffer

 USING ERRBUFF,ERRREG

L SRCREG,AXPSIP Get address of source info

 USING AXPSIL,SRCREG

L DCBREG,AXPDCBP Get address of DCB

 USING IHADCB,DCBREG

 SPACE 1

XC AXPRETC,AXPRETC Zero the return code

L R15,AXPTYPE Load the exit type value (1-7)

BCTR R15,� Decrement by 1

SLL R15,1 Multiply by 2

LH R15,EXITADDR(R15) Index into address list

AR R15,R12 Calculate the address

BR R15 Branch to applicable routine

 SPACE 1

EXITADDR DC Y(SOURCE-MYEXIT)

 DC Y(LIBRARY-MYEXIT)

 DC Y(LISTING-MYEXIT)

 DC Y(PUNCH-MYEXIT)

 DC Y(OBJECT-MYEXIT)

 DC Y(ADATA-MYEXIT)

 DC Y(TERM-MYEXIT)

 DC Y(�-�)

 EJECT

Figure 47 (Part 2 of 17). Example of a User Exit

128 HLASM V1R5 Programmer’s Guide

 User Exit Coding Example

���

� MYEXIT Exit1 �

� - Restore the callers register 13 �

� - Restore the registers and set the register 15 to zero. �

� - Return to the caller. �

���

EXIT1 DS �H

MVC LASTOP,AXPRTYP+3 Save last operation code

L R13,4(,R13) Unchain save areas

EXIT2 DS �H

LM R14,R12,12(R13) Restore callers registers

LA R15,� Set the return code

BSM R�,R14 Return to caller

 SPACE 1

���

� MYEXIT - Free storage �

� - Called on a CLOSE request. �

� - Free the storage acquired and zero AXPUSER. �

� - Go to EXIT (after R13 is restored) �

���

FREESTOR DS �H

XC AXPUSER,AXPUSER Zero User field

LA �,WORKLEN Length of area to free

LR R1,R13 Address of area to free

L R13,4(,R13) Restore callers register 13

FREEMAIN R,A=(1),LV=(�) Free the storage acquired

 B EXIT2

 SPACE 1

���

� MYEXIT - Logic error �

� - If an error occurred, set up the error message in the buffer �

� and length in AXPERRL. Set the severity code. �

� - Set the return code to 2�. �

� - Return to the caller. �

���

LOGICERR DS �H

MVC AXPRETC,=A(AXPCBAD) Severe error occurred

MVC ERRBUFF(ERRMSGL),ERRMSG Set up error message

MVC AXPERRL,=A(ERRMSGL) Set up error message length

MVC AXPSEVC,=A(2�) Set up error message severity

 B EXIT1

 EJECT

���

� SOURCE EXIT �

� - Process required request type �

���

SOURCE DS �H

L R15,AXPRTYP Get the request type value (1-5)

BCTR R15,� Decrement by 1

SLL R15,1 Multiply by 2

LH R15,SOURCE_ADDR(R15) Index into Address list

AR R15,R12 Calculate the address

BR R15 Branch to applicable routine

SOURCE_ADDR DC Y(SOURCE_OPEN-MYEXIT)

 DC Y(SOURCE_CLOSE-MYEXIT)

 DC Y(SOURCE_READ-MYEXIT)

 DC Y(SOURCE_WRITE-MYEXIT)

 DC Y(SOURCE_PROCESS-MYEXIT)

 DC Y(�-�)

 SPACE 1

Figure 47 (Part 3 of 17). Example of a User Exit

 Chapter 4. Providing User Exits 129

 User Exit Coding Example

���

� SOURCE EXIT - Process OPEN request �

� - Pick up character string if it is supplied. �

� - Set return code indicating whether the assembler or user exit �

� will open the primary input data set. �

� - Open data set if required. �

���

SOURCE_OPEN DS �H

MVI OPENPARM,C' ' Clear open parm

 MVC OPENPARM+1(L'OPENPARM-1),OPENPARM

L R1,AXPBUFL Get the Buffer length

LTR R1,R1 Is string length zero?

BZ SOURCE_NOSTR Yes, no string passed

BCTR R1,� Decrement for execute

EX R1,UPPERSTR Move and uppercase string

SOURCE_NOSTR DS �H

CLC OPENPARM(8),=CL8'EXIT' Will user exit read input?

 BE SOURCE_OPEN_EXIT Yes

MVC AXPRETC,=A(�) assembler to read primary input

 B EXIT1 Return

SOURCE_OPEN_EXIT DS �H

 OI OPENFLAG,EXIT Set flag

MVC AXPRETC,=A(AXPCOPN) User exit to read primary input

LA R1,SRC1 Address first source record

ST R1,CURR_PTR Set up pointer

 B EXIT1 Return

 SPACE 1

���

� SOURCE EXIT - Process CLOSE request �

� - Close data set if required. �

� - Free storage and return. �

���

SOURCE_CLOSE DS �H

 B FREESTOR

 SPACE 1

Figure 47 (Part 4 of 17). Example of a User Exit

130 HLASM V1R5 Programmer’s Guide

 User Exit Coding Example

���

� SOURCE EXIT - Process READ request �

� - Provide source information on first read. �

� - Read primary input record and place in buffer. �

� - Set return code to 16 at end of file. �

���

SOURCE_READ DS �H

CLI LASTOP,AXPROPN Was last operation OPEN?

 BNE SOURCE_READ2

 MVC AXPMEMN,=CL255'Member'

 MVC AXPMEMT,=CL255'None'

 MVC AXPDSN,=CL255'INPUT.data set.NAME'

 MVC AXPVOL,=CL255'VOL��1'

MVC AXPREAC,=A(AXPEISA) Indicate source info available

XC AXPRELREC,AXPRELREC Set Relative Record No. to �

XC AXPABSREC,AXPABSREC Set Absolute Record No. to �

SOURCE_READ2 DS �H

L R1,CURR_PTR Get record address

CLI �(R1),X'FF' Is it EOF?

BE SOURCE_EOF Yes, set return code

 MVC �(8�,BUFREG),�(R1)

 LA R1,8�(,R1)

ST R1,CURR_PTR Point to next source record

 MVC WTOL+4(8�),�(BUFREG)

WTO MF=(E,WTOL) Issue WTO for source record

 L R1,AXPRELREC Update

 LA R1,1(R1) Relative Record

 ST R1,AXPRELREC Number

 L R1,AXPABSREC Update

 LA R1,1(R1) Absolute Record

 ST R1,AXPABSREC Number

 B EXIT1

SOURCE_EOF DS �H

MVC AXPRETC,=A(AXPCEOD) End of file on input

 B EXIT1

 SPACE 1

���

� SOURCE EXIT - Process WRITE request �

� - Not valid for SOURCE exit. �

� - Set return code to 2� and set up error message. �

���

SOURCE_WRITE DS �H

 B LOGICERR

 SPACE 1

���

� SOURCE EXIT - Process PROCESS request �

� - Exit may modify the record, have the assembler discard the �

� record or insert additional records by setting the return code �

� and/or reason code. �

���

SOURCE_PROCESS DS �H

 MVC WTOL+4(8�),�(BUFREG)

WTO MF=(E,WTOL) Issue WTO for source record

 B EXIT1

 EJECT

Figure 47 (Part 5 of 17). Example of a User Exit

 Chapter 4. Providing User Exits 131

 User Exit Coding Example

���

� LIBRARY EXIT �

� - Process required request type �

���

LIBRARY DS �H

L R15,AXPRTYP Get the request type value (1-8)

BCTR R15,� Decrement by 1

SLL R15,1 Multiply by 2

LH R15,LIBRARY_ADDR(R15) Index into Address list

AR R15,R12 Calculate the address

BR R15 Branch to applicable routine

LIBRARY_ADDR DC Y(LIBRARY_OPEN-MYEXIT)

 DC Y(LIBRARY_CLOSE-MYEXIT)

 DC Y(LIBRARY_READ-MYEXIT)

 DC Y(LIBRARY_WRITE-MYEXIT)

 DC Y(LIBRARY_PR_MAC-MYEXIT)

 DC Y(LIBRARY_PR_CPY-MYEXIT)

 DC Y(LIBRARY_FIND_MAC-MYEXIT)

 DC Y(LIBRARY_FIND_CPY-MYEXIT)

 DC Y(LIBRARY_EOM-MYEXIT)

 DC Y(�-�)

 SPACE 1

���

� LIBRARY EXIT - Process OPEN request �

� - Pick up character string if it is supplied. �

� - Set return code indicating whether the assembler, user exit or �

� both will process the library. �

� - Open data set if required. �

���

LIBRARY_OPEN DS �H

MVI OPENPARM,C' ' Clear open parm

 MVC OPENPARM+1(L'OPENPARM-1),OPENPARM

L R1,AXPBUFL Get the Buffer length

LTR R1,R1 Is string length zero?

BZ LIBRARY_NOSTR Yes, no string passed

BCTR R1,� Decrement for execute

EX R1,UPPERSTR Move and uppercase string

LIBRARY_NOSTR DS �H

CLC OPENPARM(4),=CL8'EXIT' Will user exit process library

 BE LIBRARY_OPEN_EXIT Yes

CLC OPENPARM(4),=CL8'BOTH' Will Both process library

 BE LIBRARY_OPEN_BOTH Yes

MVC AXPRETC,=A(�) assembler to process library

 B EXIT1 Return

LIBRARY_OPEN_EXIT DS �H

 OI OPENFLAG,EXIT Set flag

MVC AXPRETC,=A(AXPCOPN) User exit to process library

MVC AXPREAC,=A(AXPEEOM) EXIT to get End of member calls

 B EXIT1 Return

LIBRARY_OPEN_BOTH DS �H

 OI OPENFLAG,BOTH Set flag

MVC AXPRETC,=A(AXPCOPL) Both to process library

MVC AXPREAC,=A(AXPEEOM) EXIT to get End of member calls

 B EXIT1 Return

 SPACE 1

Figure 47 (Part 6 of 17). Example of a User Exit

132 HLASM V1R5 Programmer’s Guide

 User Exit Coding Example

���

� LIBRARY EXIT - Process CLOSE request �

� - Close data set if required. �

� - Free storage and return. �

���

LIBRARY_CLOSE DS �H

USING LIBSTACK,R2 Map stack entries

ICM R2,B'1111',STACKPTR Check that stack is empty

BZ FREESTOR It should be!

LIBRARY_FREE_LOOP DS �H

LTR R1,R2 Load address for FREEMAIN

 BZ FREESTOR Finished here

L R2,NEXT_MEM Prepare for next loop

LA R�,LIBSTACK_LEN Load length for FREEMAIN

FREEMAIN R,A=(1),LV=(�) Free the storage acquired

 B LIBRARY_FREE_LOOP

 SPACE 1

���

� LIBRARY EXIT - Process READ request �

� - Read copy/macro source and place in buffer. �

� - Set return code to 16 at end of member. �

���

LIBRARY_READ DS �H

ICM R2,B'1111',STACKPTR Is the stack empty?

BZ LIBRARY_STACK_ERR It shouldn't be!

L R1,MEM_PTR Get record address

CLI �(R1),X'FF' Is it EOF?

BE LIBRARY_EOF Yes, set return code

 MVC �(8�,BUFREG),�(R1)

LA R1,8�(,R1) Point to next record address

ST R1,MEM_PTR and save in stack entry

 MVC WTOL+4(8�),�(BUFREG)

WTO MF=(E,WTOL) Issue WTO for library record

 L R1,AXPRELREC Update

 LA R1,1(R1) Relative Record

 ST R1,AXPRELREC Number

ST R1,MEM_RELREC and save in stack entry

 L R1,AXPABSREC Update

 LA R1,1(R1) Absolute Record

 ST R1,AXPABSREC Number

 B EXIT1

LIBRARY_EOF DS �H

MVC AXPRETC,=A(AXPCEOD) End of file on input

 B EXIT1

 SPACE 1

���

� LIBRARY EXIT - Process WRITE request �

� - Not valid for LIBRARY exit. �

� - Set return code to 2� and set up error message. �

���

LIBRARY_WRITE DS �H

 B LOGICERR

 SPACE 1

���

� LIBRARY EXIT - Process PROCESS MACRO/COPY request �

� - Exit may modify the record, have the assembler discard the �

� record or insert additional records by setting the return code �

� and/or reason code. �

���

LIBRARY_PR_MAC DS �H

LIBRARY_PR_CPY DS �H

 MVC WTOL+4(8�),�(BUFREG)

WTO MF=(E,WTOL) Issue WTO for library record

 B EXIT1

 SPACE 1

Figure 47 (Part 7 of 17). Example of a User Exit

 Chapter 4. Providing User Exits 133

 User Exit Coding Example

���

� LIBRARY EXIT - Process FIND MACRO/COPY request �

� - Search for the member. Set the return code to indicate �

� whether the member was found. �

� - If the member is found, the source information is returned. �

���

LIBRARY_FIND_MAC DS �H

LIBRARY_FIND_CPY DS �H

CLC AXPOPTS,=A(AXPORES) Is it a resume request?

BE LIBRARY_RESUME Yes, resume member

 LA R3,MACA1

 CLC AXPMEMN(8),=CL8'OUTER'

 BE LIBRARY_FOUND

 LA R3,MACB1

 CLC AXPMEMN(8),=CL8'INNER'

 BE LIBRARY_FOUND

 LA R3,CPYA1

 CLC AXPMEMN(8),=CL8'TINY'

 BE LIBRARY_FOUND

 LA R3,CPYB1

 CLC AXPMEMN(8),=CL8'TINY1'

 BE LIBRARY_FOUND

MVC AXPRETC,=A(AXPCMNF) Indicate member not found

 B EXIT1

LIBRARY_FOUND DS �H

ICM R2,B'1111',STACKPTR Is the stack empty?

 BZ LIBRARY_GET_STACK

CLC AXPOPTS,=A(AXPONEST) Is it a nested COPY/MACRO?

BNE LIBRARY_STACK_ERR NO - report an error

LIBRARY_GET_STACK DS �H

LA R�,LIBSTACK_LEN Load reg with length

GETMAIN R,LV=(�) and getmain storage

XC �(LIBSTACK_LEN,R1),�(R1) Clear the storage

NEW_LIBSTACK USING LIBSTACK,R1 Map the new stack entry

ST R2,NEW_LIBSTACK.NEXT_MEM Add new link to top of stack

 DROP NEW_LIBSTACK

ST R1,STACKPTR Re-anchor the stack

LR R2,R1 Make the new entry current

ST R3,MEM_PTR Save current record pointer

MVC MEM_NAME,AXPMEMN Save name in stack entry

MVC AXPREAC,=A(AXPEISA) Indicate source info available

 MVC AXPMEMT,=CL255'None'

 MVC AXPDSN,=CL255'LIBRARY.data set.NAME'

 MVC AXPVOL,=CL255'VOL��2'

XC AXPRELREC,AXPRELREC Set relative record No to zero

 B EXIT1

���

� LIBRARY EXIT - Process FIND (resume) request �

� - Set the relative record number in the parameter list �

� N.B. if the EXIT read the records from disk, at this point it would �

� use the information saved in the stack to reposition itself �

� ready for the next read. (i.e. a FIND and POINT) �

���

LIBRARY_RESUME DS �H Stack Management now in EOM call

MVC AXPRETC,=A(AXPCMNF) Assume member not found

ICM R2,B'1111',STACKPTR Is the stack empty?

BZ LIBRARY_CHECK_BOTH Yes - check open option

CLC MEM_NAME,AXPMEMN Compare name with stack entry

BNE LIBRARY_CHECK_BOTH Not equal - check open option

MVC AXPRETC,=A(�) Correct our assumption

L R�,MEM_RELREC Get saved rel rec no from stack

ST R�,AXPRELREC Set relative record No

 B EXIT1

 SPACE 1

Figure 47 (Part 8 of 17). Example of a User Exit

134 HLASM V1R5 Programmer’s Guide

 User Exit Coding Example

���

� LIBRARY EXIT - Use End of Member calls to perform stack management �

� - Compare member name, if equal unstack the top entry �

���

LIBRARY_EOM DS �H

ICM R2,B'1111',STACKPTR Is the stack empty?

BZ LIBRARY_CHECK_BOTH Yes - check open option

CLC MEM_NAME,AXPMEMN Compare name with stack entry

BNE LIBRARY_CHECK_BOTH Not equal - check open option

LR R1,R2 Load address for FREEMAIN

L R2,NEXT_MEM Get address of next entry

ST R2,STACKPTR and save it.

 DROP R2

LA R�,LIBSTACK_LEN Load length for FREEMAIN

FREEMAIN R,A=(1),LV=(�) Free the storage acquired

LIBRARY_CHECK_BOTH DS �H

CLI OPENFLAG,BOTH Did EXIT open with BOTH option

BE EXIT1 Yes - don't issue error msg

���

� LIBRARY EXIT - Stack Error Routine �

� - If an error occurred, set up the error message in the buffer �

� and length in AXPERRL. Set the severity code. �

� - Set the return code to 2�. �

� - Return to the caller. �

���

LIBRARY_STACK_ERR DS �H

MVC AXPRETC,=A(AXPCBAD) Severe error occurred

MVC ERRBUFF(ERRMSGL),STKMSG Set up error message

MVC AXPERRL,=A(STKMSGL) Set up error message length

MVC AXPSEVC,=A(2�) Set up error message severity

 B EXIT1

 EJECT

���

� LISTING EXIT �

� - Process required request type �

���

LISTING DS �H

L R15,AXPRTYP Get the request type value (1-5)

BCTR R15,� Decrement by 1

SLL R15,1 Multiply by 2

LH R15,LISTING_ADDR(R15) Index into Address list

AR R15,R12 Calculate the address

BR R15 Branch to applicable routine

LISTING_ADDR DC Y(LISTING_OPEN-MYEXIT)

 DC Y(LISTING_CLOSE-MYEXIT)

 DC Y(LISTING_READ-MYEXIT)

 DC Y(LISTING_WRITE-MYEXIT)

 DC Y(LISTING_PROCESS-MYEXIT)

 DC Y(�-�)

 SPACE 1

Figure 47 (Part 9 of 17). Example of a User Exit

 Chapter 4. Providing User Exits 135

 User Exit Coding Example

���

� LISTING EXIT - Process OPEN request �

� - Pick up character string if it is supplied. �

� - Set return code indicating whether the assembler or the user exit �

� will write the listing. �

� - Open data set if required. �

���

LISTING_OPEN DS �H

MVI OPENPARM,C' ' Clear open parm

 MVC OPENPARM+1(L'OPENPARM-1),OPENPARM

L R1,AXPBUFL Get the Buffer length

LTR R1,R1 Is string length zero?

BZ LISTING_NOSTR Yes, no string passed

BCTR R1,� Decrement for execute

EX R1,UPPERSTR Move and uppercase string

LISTING_NOSTR DS �H

CLC OPENPARM(4),=CL8'EXIT' Will user exit process listing

 BE LISTING_OPEN_EXIT Yes

MVC AXPRETC,=A(�) assembler to write listing

 B EXIT1 Return

LISTING_OPEN_EXIT DS �H

 OI OPENFLAG,EXIT Set flag

MVC AXPRETC,=A(AXPCOPN) User exit to write listing

 MVC AXPMEMN,=CL255' '

 MVC AXPMEMT,=CL255' '

 MVC AXPDSN,=CL255'LISTING.data set.NAME'

 MVC AXPVOL,=CL255'VOL��1'

MVC AXPREAC,=A(AXPEISA) Indicate data set info available

XC AXPRELREC,AXPRELREC Set Relative Record No. to �

XC AXPABSREC,AXPABSREC Set Absolute Record No. to �

 B EXIT1 Return

 SPACE 1

���

� LISTING EXIT - Process CLOSE request �

� - Close data set if required �

� - Free storage and return. �

���

LISTING_CLOSE DS �H

 B FREESTOR

 SPACE 1

���

� LISTING EXIT - Process READ request �

� - Not valid for LISTING exit. �

� - Set return code to 2� and set up error message. �

���

LISTING_READ DS �H

 B LOGICERR

���

� LISTING EXIT - Process WRITE request �

� - Write the listing record passed. �

���

LISTING_WRITE DS �H

 MVC WTOL+4(8�),�(BUFREG)

WTO MF=(E,WTOL) Issue WTO for listing record

 L R1,AXPRELREC Update

 LA R1,1(R1) Relative Record

 ST R1,AXPRELREC Number

 L R1,AXPABSREC Update

 LA R1,1(R1) Absolute Record

 ST R1,AXPABSREC Number

 B EXIT1

 SPACE 1

Figure 47 (Part 10 of 17). Example of a User Exit

136 HLASM V1R5 Programmer’s Guide

 User Exit Coding Example

���

� LISTING EXIT - Process PROCESS request �

� - Exit may modify the record, have the assembler discard the �

� record or insert additional records by setting the return code �

� and/or reason code. �

���

LISTING_PROCESS DS �H

 MVC WTOL+4(8�),�(BUFREG)

WTO MF=(E,WTOL) Issue WTO for listing record

 B EXIT1

 EJECT

���

� OBJECT EXIT �

� - Process required request type �

���

PUNCH DS �H

OBJECT DS �H

L R15,AXPRTYP Get the request type value (1-5)

BCTR R15,� Decrement by 1

SLL R15,1 Multiply by 2

LH R15,OBJECT_ADDR(R15) Index into Address list

AR R15,R12 Calculate the address

BR R15 Branch to applicable routine

OBJECT_ADDR DC Y(OBJECT_OPEN-MYEXIT)

 DC Y(OBJECT_CLOSE-MYEXIT)

 DC Y(OBJECT_READ-MYEXIT)

 DC Y(OBJECT_WRITE-MYEXIT)

 DC Y(OBJECT_PROCESS-MYEXIT)

 DC Y(�-�)

 SPACE 1

���

� OBJECT EXIT - Process OPEN request �

� - Pick up character string if it is supplied. �

� - Set return code indicating whether the assembler or the user exit �

� will write the object/punch records. �

� - Open data set if required �

���

OBJECT_OPEN DS �H

MVI OPENPARM,C' ' Clear open parm

 MVC OPENPARM+1(L'OPENPARM-1),OPENPARM

L R1,AXPBUFL Get the Buffer length

LTR R1,R1 Is string length zero?

BZ OBJECT_NOSTR Yes, no string passed

BCTR R1,� Decrement for execute

EX R1,UPPERSTR Move and uppercase string

OBJECT_NOSTR DS �H

CLC OPENPARM(4),=CL8'EXIT' Will user exit process object

 BE OBJECT_OPEN_EXIT Yes

MVC AXPRETC,=A(�) assembler to write object/punch

 B EXIT1 Return

OBJECT_OPEN_EXIT DS �H

 OI OPENFLAG,EXIT Set flag

MVC AXPRETC,=A(AXPCOPN) User exit to write object/punch

 MVC AXPMEMN,=CL255'Member'

 MVC AXPMEMT,=CL255' '

 MVC AXPDSN,=CL255'OBJECT.data set.NAME'

 MVC AXPVOL,=CL255'VOL��1'

MVC AXPREAC,=A(AXPEISA) Indicate data set info available

XC AXPRELREC,AXPRELREC Set Relative Record No. to �

XC AXPABSREC,AXPABSREC Set Absolute Record No. to �

 B EXIT1 Return

 SPACE 1

Figure 47 (Part 11 of 17). Example of a User Exit

 Chapter 4. Providing User Exits 137

 User Exit Coding Example

���

� OBJECT EXIT - Process CLOSE request �

� - Close data set if required. �

� - Free storage and return. �

���

OBJECT_CLOSE DS �H

 B FREESTOR

 SPACE 1

���

� OBJECT EXIT - Process READ request �

� - Not valid for OBJECT exit. �

� - Set return code to 2� and set up error message. �

���

OBJECT_READ DS �H

 B LOGICERR

���

� OBJECT EXIT - Process WRITE request �

� - Write the source record passed. �

���

OBJECT_WRITE DS �H

 MVC WTOL+4(8�),�(BUFREG)

WTO MF=(E,WTOL) Issue WTO for object record

 L R1,AXPRELREC Update

 LA R1,1(R1) Relative Record

 ST R1,AXPRELREC Number

 L R1,AXPABSREC Update

 LA R1,1(R1) Absolute Record

 ST R1,AXPABSREC Number

 B EXIT1

 SPACE 1

���

� OBJECT EXIT - Process PROCESS request �

� - Exit may modify the record, have the assembler discard the �

� record or insert additional records by setting the return code �

� and/or reason code. �

���

OBJECT_PROCESS DS �H

 MVC WTOL+4(8�),�(BUFREG)

WTO MF=(E,WTOL) Issue WTO for object record

 B EXIT1

 EJECT

���

� ADATA EXIT �

� - Process required request type �

���

ADATA DS �H

L R15,AXPRTYP Get the request type value (1-5)

BCTR R15,� Decrement by 1

SLL R15,1 Multiply by 2

LH R15,ADATA_ADDR(R15) Index into Address list

AR R15,R12 Calculate the address

BR R15 Branch to applicable routine

ADATA_ADDR DC Y(ADATA_OPEN-MYEXIT)

 DC Y(ADATA_CLOSE-MYEXIT)

 DC Y(ADATA_READ-MYEXIT)

 DC Y(ADATA_WRITE-MYEXIT)

 DC Y(ADATA_PROCESS-MYEXIT)

 DC Y(�-�)

 SPACE 1

Figure 47 (Part 12 of 17). Example of a User Exit

138 HLASM V1R5 Programmer’s Guide

 User Exit Coding Example

���

� ADATA EXIT - Process OPEN request �

� - Pick up character string if it is supplied. �

� - Set return code indicating whether the assembler or the user exit �

� will write the associated data. �

� - Open data set if required. �

���

ADATA_OPEN DS �H

MVI OPENPARM,C' ' Clear open parm

 MVC OPENPARM+1(L'OPENPARM-1),OPENPARM

L R1,AXPBUFL Get the Buffer length

LTR R1,R1 Is string length zero?

BZ ADATA_NOSTR Yes, no string passed

BCTR R1,� Decrement for execute

EX R1,UPPERSTR Move and uppercase string

ADATA_NOSTR DS �H

| CLC OPENPARM(4),=CL8'EXIT' Will user exit process adata

| BE ADATA_OPEN_EXIT Yes

| MVC AXPRETC,=A(�) assembler to write adata

| B EXIT1 Return

| ADATA_OPEN_EXIT DS �H

| OI OPENFLAG,EXIT Set flag

| MVC AXPRETC,=A(AXPCOPN) User exit to write adata

| MVC AXPMEMN,=CL255' '

| MVC AXPMEMT,=CL255' '

| MVC AXPDSN,=CL255'ADATA.data set.NAME'

| MVC AXPVOL,=CL255'VOL��1'

| MVC AXPREAC,=A(AXPEISA) Indicate data set info available

| XC AXPRELREC,AXPRELREC Set Relative Record No. to �

| XC AXPABSREC,AXPABSREC Set Absolute Record No. to �

| B EXIT1 Return

| SPACE 1

���

� ADATA EXIT - Process CLOSE request �

� - Close data set if required. �

� - Free storage and return. �

���

ADATA_CLOSE DS �H

 B FREESTOR

 SPACE 1

���

� ADATA EXIT - Process READ request �

� - Not valid for ADATA exit. �

� - Set return code to 2� and set up error message. �

���

ADATA_READ DS �H

 B LOGICERR

���

� ADATA EXIT - Process WRITE request �

� - Write the adata record passed. �

���

ADATA_WRITE DS �H

| MVC WTOL+4(8�),�(BUFREG)

| WTO MF=(E,WTOL) Issue WTO for adata record

| L R1,AXPRELREC Update

| LA R1,1(R1) Relative Record

| ST R1,AXPRELREC Number

| L R1,AXPABSREC Update

| LA R1,1(R1) Absolute Record

| ST R1,AXPABSREC Number

| B EXIT1

 SPACE 1

Figure 47 (Part 13 of 17). Example of a User Exit

 Chapter 4. Providing User Exits 139

 User Exit Coding Example

���

� ADATA EXIT - Process PROCESS request �

� - Exit may modify the record, have the assembler discard the �

� record or insert additional records by setting the return code �

� and/or reason code. �

���

ADATA_PROCESS DS �H

 MVC WTOL+4(8�),�(BUFREG)

WTO MF=(E,WTOL) Issue WTO for ADATA record

 B EXIT1

 EJECT

���

� TERM EXIT �

� - Process required request type �

���

TERM DS �H

L R15,AXPRTYP Get the request type value (1-5)

BCTR R15,� Decrement by 1

SLL R15,1 Multiply by 2

LH R15,TERM_ADDR(R15) Index into Address list

AR R15,R12 Calculate the address

BR R15 Branch to applicable routine

TERM_ADDR DC Y(TERM_OPEN-MYEXIT)

 DC Y(TERM_CLOSE-MYEXIT)

 DC Y(TERM_READ-MYEXIT)

 DC Y(TERM_WRITE-MYEXIT)

 DC Y(TERM_PROCESS-MYEXIT)

 DC Y(�-�)

 SPACE 1

���

� TERM EXIT - Process OPEN request �

� - Pick up character string if it is supplied. �

� - Set return code indicating whether the assembler or the user exit �

� will write the terminal records. �

� - Open data set if required. �

���

TERM_OPEN DS �H

MVI OPENPARM,C' ' Clear open parm

 MVC OPENPARM+1(L'OPENPARM-1),OPENPARM

L R1,AXPBUFL Get the Buffer length

LTR R1,R1 Is string length zero?

BZ TERM_NOSTR Yes, no string passed

BCTR R1,� Decrement for execute

EX R1,UPPERSTR Move and uppercase string

TERM_NOSTR DS �H

CLC OPENPARM(4),=CL8'EXIT' Will user exit process records?

 BE TERM_OPEN_EXIT Yes

MVC AXPRETC,=A(�) assembler to write records

 B EXIT1 Return

TERM_OPEN_EXIT DS �H

 OI OPENFLAG,EXIT Set flag

MVC AXPRETC,=A(AXPCOPN) User exit to write records

 MVC AXPMEMN,=CL255' '

 MVC AXPMEMT,=CL255' '

 MVC AXPDSN,=CL255'TERM.data set.NAME'

 MVC AXPVOL,=CL255'VOL��1'

MVC AXPREAC,=A(AXPEISA) Indicate data set info available

XC AXPRELREC,AXPRELREC Set Relative Record No. to �

XC AXPABSREC,AXPABSREC Set Absolute Record No. to �

 B EXIT1 Return

 SPACE 1

Figure 47 (Part 14 of 17). Example of a User Exit

140 HLASM V1R5 Programmer’s Guide

 User Exit Coding Example

���

� TERM EXIT - Process CLOSE request �

� - Close data set if required. �

� - Free storage and return. �

���

TERM_CLOSE DS �H

 B FREESTOR

 SPACE 1

���

� TERM EXIT - Process READ request �

� - Not valid for TERM exit. �

� - Set return code to 2� and set up error message. �

���

TERM_READ DS �H

 B LOGICERR

���

� TERM EXIT - Process WRITE request �

� - Write the terminal record passed. �

���

TERM_WRITE DS �H

 MVC WTOL+4(68),�(BUFREG)

WTO MF=(E,WTOL) Issue WTO for terminal record

 L R1,AXPRELREC Update

 LA R1,1(R1) Relative Record

 ST R1,AXPRELREC Number

 L R1,AXPABSREC Update

 LA R1,1(R1) Absolute Record

 ST R1,AXPABSREC Number

 B EXIT1

 SPACE 1

���

� TERM EXIT - Process PROCESS request �

� - Exit may modify the record, have the assembler discard the �

� record or insert additional records by setting the return code �

� and/or reason code. �

���

TERM_PROCESS DS �H

 MVC WTOL+4(68),�(BUFREG)

WTO MF=(E,WTOL) Issue WTO for terminal record

 B EXIT1

STKMSG DC C'LIBRARY EXIT encountered a stack error'

STKMSGL EQU �-ERRMSG

ERRMSG DC C'Invalid EXIT type or Request type passed to exit'

ERRMSGL EQU �-ERRMSG

WTOL WTO '123456789�123456789�123456789�123456789�123456789�12345X

 6789�123456789�123456789�',MF=L

UPPERSTR OC OPENPARM(�-�),�(BUFREG) Move and uppercase string

 SPACE 1

Figure 47 (Part 15 of 17). Example of a User Exit

 Chapter 4. Providing User Exits 141

 User Exit Coding Example

SRC1 DC CL8�'SMALL TITLE ''Test the assembler exits'''

SRC2 DC CL8�' MACRO'

SRC3 DC CL8�' LITTLE'

SRC4 DC CL8�' BSM �,14 Return'

SRC5 DC CL8�' MEND'

SRC6 DC CL8�' START'

SRC7 DC CL8�' OUTER'

SRC8 DC CL8�' LITTLE'

SRC9 DC CL8�' REPRO'

SRC1� DC CL8�'This is to be written to the punch data set'

SRC11 DC CL8�' COPY TINY'

SRC12 DC CL8�' END'

SRCEND DC X'FF' END OF SOURCE STMTS

 SPACE 1

MACA1 DC CL8�' MACRO'

MACA2 DC CL8�' OUTER'

MACA3 DC CL8�' XR 15,15'

MACA4 DC CL8�' INNER'

MACA5 DC CL8�' LTR 15,15'

MACA6 DC CL8�' MEND'

MACAEND DC X'FF' END OF MACRO STMTS

 SPACE 1

MACB1 DC CL8�' MACRO'

MACB2 DC CL8�' INNER'

MACB3 DC CL8�' LR 12,15'

MACB4 DC CL8�' MEND'

MACBEND DC X'FF' END OF MACRO STMTS

 SPACE 1

CPYA1 DC CL8�'TINY DSECT LINE 1 TINY'

CPYA2 DC CL8�' DS C''TINY'' LINE 2 TINY'

CPYA3 DC CL8�' COPY TINY1 LINE 3 TINY'

CPYA4 DC CL8�' DS CL1�''TINY'' LINE 4 TINY'

CPYA5 DC CL8�' DS CL8� LINE 5 TINY'

CPYEND DC X'FF' END OF COPY STMTS

CPYB1 DC CL8�'TINY1 DSECT LINE 1 TINY1'

CPYB2 DC CL8�' DS C''TINY1'' LINE 2 TINY1'

CPYB3 DC CL8�' DS CL1�''TINY1'' LINE 3 TINY1'

CPYBEND DC X'FF' END OF COPY STMTS

 SPACE 1

R� EQU �

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R1� EQU 1�

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

DCBREG EQU 5 Address of DCB

SRCREG EQU 6 Address of Source Information

ERRREG EQU 7 Address of Error Buffer

BUFREG EQU 8 Address of buffer

REQREG EQU 9 Address of request information

PARMREG EQU 1� Address or parameter

Figure 47 (Part 16 of 17). Example of a User Exit

142 HLASM V1R5 Programmer’s Guide

 User Exit Coding Example

 LTORG ,

 SPACE 1

 DCBD DSORG=PS,DEVD=DA

 SPACE 1

ASMAXITP , Mapping for exit parameter list

 SPACE 1

BUFF DSECT ,

 DS CL255 Record buffer

 SPACE 1

ERRBUFF DSECT ,

DS CL255 Error message buffer

 SPACE 1

WORKAREA DSECT

SAVEAREA DS 18F Save area

OPENPARM DS CL64 Character string passed at open time

OPENFLAG DS X Type of Operation requested at OPEN

EXIT EQU X'8�'

BOTH EQU X'C�'

LASTOP DS X Previous request type

CURR_PTR DS A Current record pointer

STACKPTR DS A Address of top of Lib status stack

WORKLEN EQU �-WORKAREA

LIBSTACK DSECT Library status stack entry

NEXT_MEM DS A Address of entry next in stack

MEM_PTR DS A Current record pointer

MEM_RELREC DS F Current relative record number

MEM_NAME DS CL64 Stack of saved member names

LIBSTACK_LEN EQU �-LIBSTACK

 END MYEXIT

Figure 47 (Part 17 of 17). Example of a User Exit

 Chapter 4. Providing User Exits 143

 External Function Processing

Chapter 5. Providing External Functions

Two conditional assembly instructions, SETAF and SETCF, let you call routines
written in a programming language that conforms to standard OS Linkage
conventions. The assembler calls the external function load module and passes
the address of an external function parameter list in Register 1. Each
differently-named external function called in the same assembly is provided with a
separate parameter list.

The SETAF instruction calls an external function module, and passes to the module
any number of parameters containing arithmetic values. The SET symbol in the
instruction is assigned the fullword value returned by the external function module.

The SETCF instruction calls an external function module, and passes to the module
any number of parameters containing character values. The SET symbol in the
instruction is assigned the character string value returned by the external function

| module. The character string value can be up to 1024 characters long.

This chapter describes the external function processing requirements, the linkage
conventions for generating an external function module, and the contents of the
parameter list that the assembler passes to the module

External Function Processing
The assembler calls an external function each time it processes a SETAF or
SETCF instruction. The assembler loads the external function module when the
first call to the module is encountered. The assembler expects the external
function module to be generated in 31-bit addressing mode (AMODE 31). The
external function must return to the assembler in the same addressing mode from
which it was called after restoring the registers to the values they contained at the
time of the call. Only one copy of the load module is loaded, so it must be serially
reusable. The assembler must be able to locate the external function module as
follows:

 The external function must be a link-edited load module in a partitioned
data set, or a program object in a PDSE, that is in the standard search sequence.
The external function can also be located in the Link Pack Area (LPA)

 The external function must have a file type of MODULE and be located
on one of the accessed disks. To generate the module, use the CMS LOAD and
GENMOD commands. When the LOAD command is issued, specify the RLDSAVE
option to make the module relocatable. If RLDSAVE is not specified, the
assembler program or data storage might be overlaid during execution.

 The external function must be a relocatable phase in a sublibrary that is
specified in the LIBDEF phase search chain. The external function can also be
located in the Shared Virtual Area (SVA).

Using the SIZE Option to Reserve Storage: External function modules are
loaded by the assembler during the assembly, which is after the assembler
completes initialization. Therefore, you should allow enough virtual storage in the
address space (MVS and CMS) or the partition (VSE) in which the assembler runs,

144 Copyright IBM Corp. 1982, 2004

 External Function Parameter List

so that the external function modules can be loaded successfully, and for any
storage that your external function might acquire. You can reserve storage for your
external function modules by reducing the amount of storage the assembler uses.
Use the SIZE assembler option to control the amount of storage the assembler
uses.

 Linkage Conventions
External function modules are called by the assembler using standard OS Linkage
conventions. The external function can be written in any language that:

� Uses standard OS linkage conventions.

� Can be called many times using the module (or phase) entry point.

� Retains storage for variables across invocations and does not require a
run-time environment to be maintained across invocations.

See the specific programming language Programmer's Guide to determine if you
can use the programming language to write an external function for the High Level
Assembler.

The contents of the registers upon entry to the external function are as follows:

Register 0 Undefined

Register 1 Address of external function parameter list

Registers 2 through 12 Undefined

Register 13 Address of the 72 byte register save area

Register 14 Return address

Register 15 Address of entry point of external function

External Function Parameter List
The assembler passes a parameter list to the external function module. Register 1
points to the parameter list, and macro ASMAEFNP maps the parameter list.
Figure 48 on page 146 shows the SETAF parameter list, and Figure 49 on
page 147 shows the SETCF parameter list. A separate copy of the external
function parameter list is passed to each external function. The sections following
the figures describe each of the parameters in detail.

 Chapter 5. Providing External Functions 145

 External Function Parameter List

 � 31

 ┌─────────────────────────┐

┌───────────────�│ Parameter List Version │

 │ ├─────────────────────────┤

│ │ Function Type │

 │ ├─────────────────────────┤

│ │ Number of Parameters │

 │ ├─────────────────────────┤

│ │ Return Code │

 │ ├─────────────────────────┤

│ │ Flag byte │

 │ ├─────────────────────────┤

 │ │ Reserved │

 │ ├────────────┴────────────┤

│ │ Msg Length │Msg Severity│

 │ ├────────────┬────────────┤

│ │ Return Value │

 │ ├─────────────────────────┤

│ │ Parm Value 1 │

 │ ├─────────────────────────┤

│ │ Parm Value 2 │

 │ ├─────────────────────────┤

│ │ . │

│ │ . │

│ │ . │

 │ ├─────────────────────────┤

│ │ Parm Value n │

 │ └─────────────────────────┘

 � 31 │

 ┌────────────┐ ┌───────────────────────┐ │

│ Register 1 ├────�│ Ptr to Request Info ├──────┘

 └────────────┘ ├───────────────────────┤ ┌─────────────────────────┐

│ Ptr to User Work Area ├──────────────────────�│ User Work Area 32 Bytes │

 ├───────────────────────┤ └─────────────────────────┘

│ Ptr to Static │ ┌─────────────────────────┐

│ Assembler Information ├──────────────────────�│ Static Assembler Info. │

 ├───────────────────────┤ └─────────────────────────┘

 │ Reserved │

 ├───────────────────────┤ ┌─────────────────────────┐

│ Ptr to Msg Buffer ├──────────────────────�│ Msg Buffer (255 Bytes) │

 └───────────────────────┘ └─────────────────────────┘

Figure 48. SETAF External Function Parameter List Format

146 HLASM V1R5 Programmer’s Guide

 External Function Parameter List

 � 31

 ┌─────────────────────────┐

┌───────────────�│ Parameter List Version │

 │ ├─────────────────────────┤

│ │ Function Type │

 │ ├─────────────────────────┤

│ │ Number of Parameters │

 │ ├─────────────────────────┤

│ │ Return Code │

 │ ├─────────────────────────┤

│ │ Flag byte │

 │ ├─────────────────────────┤

 │ │ Reserved │

 │ ├────────────┬────────────┤

│ │ Msg Length │Msg Severity│

 │ ├────────────┴────────────┤

│ │ Return String Length │

 │ ├─────────────────────────┤

│ │ Parm String 1 Length │

 │ ├─────────────────────────┤

│ │ Parm String 2 Length │

 │ ├─────────────────────────┤

 │ │ . │

 │ │ . │

 │ │ . │

 │ ├─────────────────────────┤

│ │ Parm String n Length │

 │ └─────────────────────────┘

 � 31 │

 ┌────────────┐ ┌───────────────────────┐ │

│ Register 1 ├────�│ Ptr to Request Info ├──────┘

 └────────────┘ ├───────────────────────┤ ┌─────────────────────────┐

│ Ptr to User Work Area ├──────────────────────�│ User Work Area 32 Bytes │

| ├───────────────────────┤ └─────────────────────────┘

| │ Ptr to Static │ ┌─────────────────────────┐

| │ Assembler Information ├──────────────────────�│ Static Assembler Info. │

| ├───────────────────────┤ └─────────────────────────┘

 │ Reserved │ ┌─────────────────────────┐

├───────────────────────┤ ┌───────────�│Msg Buffer (255 Bytes) │

│ Ptr to Msg Buffer ├──────────┘ └─────────────────────────┘

 ├───────────────────────┤ ┌─────────────────────────┐

| │ Ptr to Return String ├──────────────────────�│Return Str. (1�24 Bytes) │

 ├───────────────────────┤ └─────────────────────────┘

│ Ptr to Parm String 1 ├──────────┐ ┌─────────────────────────┐

| ├───────────────────────┤ └───────────�│Parm Str. 1 (1�24 Bytes) │

│ Ptr to Parm String 2 ├──────────┐ └─────────────────────────┘

 ├───────────────────────┤ │ ┌─────────────────────────┐

| │ . │ └───────────�│Parm Str. 2 (1�24 Bytes) │

 │ . │ └─────────────────────────┘

 │ . │ .

 │ . │ .

 │ . │

 ├───────────────────────┤ ┌─────────────────────────┐

| │ Ptr to Parm String n ├──────────────────────�│Parm Str. n (1�24 Bytes) │

 └───────────────────────┘ └─────────────────────────┘

Figure 49. SETCF External Function Parameter List Format

 Chapter 5. Providing External Functions 147

 External Function Parameter List

The external function parameter list consists of the following addresses:

Request Information List
Pointer to a list of binary fullword items that describe the external function request.
The assembler sets this pointer, which is always valid.

The Request Information List consists of the following fields:

Parameter List Version
A fullword identifying which version of the parameter list is
provided to the external function. Only one value is allowed
in this field:
2

 Function Type
A fullword, set by the assembler to indicate the function type:

0 CLOSE call

1 SETAF function

2 SETCF function

Number of Parameters
A fullword indicating the number of parameters provided on
the call to this external function.

The assembler always sets this field.

 Return Code
A fullword, set by the external function, indicating success or
failure of the operation, and action to be taken by the
assembler on return from the external function:

0 Operation successful. Value or string returned.

>0 Operation failed. Request assembler to terminate
immediately.

When the return code is greater than 0 the assembler issues
diagnostic error message ASMA941U.

 Flag Byte
X'80' Function requests a CLOSE call.

The CLOSE call is not enabled by default. Each
time the external function is called, it is able to set
(or reset) this flag to indicate that it needs to
perform some extra processing (releasing storage,
for example) before being deleted. The external
function may therefore set the flag on one call and
reset it on another.

If the flag is set at the end of the assembly, HLASM
will call the function with a CLOSE code to allow it
to release resources.

148 HLASM V1R5 Programmer’s Guide

 External Function Parameter List

The assembler maintains the Flag Byte and provides it to the
external function on all calls.

 Reserved
This storage is reserved for future use by IBM. The external
function should not use this field, nor should it rely on the
contents of this field (which are liable to change without
notice).

External functions can request that a message be issued on their behalf. The
function provides the text of the message, and the assembler inserts the function's
name and the supplied text into one of five messages. The relevant information is
contained in two fields, Message Length and Message Severity:

 Msg Length
A halfword, set by the external function, indicating the length
of the message to be issued.

 Msg Severity
A halfword, set by the external function, from which the
assembler determines the associated message number. The
severity code returned by the function is rounded up to a
multiple of four as shown in Figure 50.

Figure 50. Message Severity and Associated Messages

Severity Code
Specified

Severity Code
Used

Associated
Message

0 0 ASMA710I

1–4 4 ASMA711W

5–8 8 ASMA712E

9–12 12 ASMA713S

>12 16 ASMA714C

Return Value (SETAF)
A fullword, set by the external function. This field is set to
zero by the assembler before the external function call.

Parm Value n (SETAF)
A fullword, set by the assembler, containing the value of the
parameter passed to the external function.

The Number of Parameters field indicates the number of
Parm Value n fields in the Request Information List.

Return String Length (SETCF)
An unsigned fullword, set by the external function, containing
the length of the string pointed to by the Pointer to Parm
String field.

The assembler uses this field as the length of the returned
string.

 Chapter 5. Providing External Functions 149

 External Function Parameter List

| If the length is greater than 1024, it is reset to 1024 by the
assembler. The consequence of returning a string longer
than 1024 bytes is unpredictable.

Parm String n Length (SETCF)
An unsigned fullword, set by the assembler, containing the
length of the string pointed to by the Ptr to Parm String n
field.

The external function should use this length to determine the
length of the Parm String n passed by the assembler.

| The assembler sets this field to a value between 0 and 1024
inclusive.

The Number of Parameters field indicates the number of
Parm String n Length fields in the Request Information List.

Pointer to User Work Area
Pointer to the User Work Area.

The assembler provides four double words of storage for use by the external
function. This storage is double-word aligned and the assembler initializes it to zero
for the first call to the external function.

It can be used by the external function to store information (such as the address of
acquired storage) between calls. The contents of this storage area are preserved
across all call types (SETAF, SETCF, and CLOSE) until the assembly completes.
The assembler does not use or modify the work area.

| Pointer to Static Assembler Information
| Pointer to the Static Assembler Information.

| This is pointed to by the Static Assembler Information Pointer. See “Static
| Assembler Information Pointer” on page 98.

Pointer to Msg Buffer
Pointer to the “function-supplied message” area.

The assembler always sets this pointer before invoking an external function. The
external function can put up to 255 bytes of message text into the area addressed
by this field.

Pointer to Return String (SETCF)
Pointer to the string returned by the external function.

The assembler always sets this pointer before invoking an external function. The
| external function can put up to 1024 bytes of character string data into the area

addressed by this field.

150 HLASM V1R5 Programmer’s Guide

 External Function Parameter List

Pointer to Parm String n (SETCF)
Pointer to Parm String n passed to the external function.

The assembler always sets this pointer before invoking an external function. The
length of the string pointed to by this field is contained in the Parm String n
Length field.

The Number of Parameters field in the Request Information List indicates the
number of Pointer to Parm String n fields in the External Function Parameter List.

 Chapter 5. Providing External Functions 151

 Assembly Error Diagnostic Messages

Chapter 6. Diagnosing Assembly Errors

The diagnostic facilities for High Level Assembler include:

� Diagnostic messages for assembly errors.
� A macro trace and dump facility (MHELP).
� Messages and dumps issued by the assembler if it ends abnormally.
� Diagnostic or explanatory messages issued by the source program or by macro

definitions (MNOTEs).

This chapter provides an overview of these facilities. The assembly error
diagnostic messages and abnormal assembly termination messages are described
in detail in Appendix G, “High Level Assembler Messages” on page 336.

Assembly Error Diagnostic Messages
High Level Assembler prints most error messages in the listing immediately
following the statement in error. It also prints the total number of flagged
statements and their statement numbers in the Diagnostic Cross Reference and
Assembler Summary section of the assembler listing.

The messages do not follow the statement in error when:

� Errors are detected during editing of macro definitions read from a library. A
message for such an error appears after the first call in the source program to
that macro definition. You can, however, bring the macro definition into the
source program with a COPY statement or using the LIBMAC assembler
option. The editing error messages then follow immediately after the
statements in error.

� Errors are detected by the lookahead function of the assembler. (For attribute
references, look-ahead processing scans for symbols defined on statements
after the one being assembled.) Messages for these errors appear after the
statements in which they occur. The messages may also appear at the point at
which lookahead was called.

� Errors are detected on conditional assembler statements during macro
generation or MHELP testing. Such a message follows the most recently
generated statement or MHELP output statement.

A typical error diagnostic message is:

�� ASMA�57E UNDEFINED OPERATION CODE — xxxxxxxx

A copy of a segment of the statement in error, represented above by xxxxxxxx, is
appended to the end of many messages. Normally this segment begins at the bad
character or term. For some errors, however, the segment begins after the bad
character or term.

152 Copyright IBM Corp. 1982, 2004

 Assembly Error Diagnostic Messages

If a diagnostic message follows a statement generated by a macro definition, the
following items might be appended to the error message:

� The number of the model statement in which the error occurred, or the first five
characters of the macro name.

� The SET symbol, system variable, macro parameter, or value string associated
with the error.

Macro Parameters: Messages may reference three types of macro parameter:
the name field parameter, keyword parameters, and positional parameters. A
reference to the name field parameter is indicated by the word “NAME” appended
to the message. References to keyword and positional parameters (for which there
may be multiple occurrences) are in the form “KPARMnnnn” and “PPARMnnnn”
respectively, where nnnn is the relative number of the parameter within the macro
definition.

Figure 51 shows an example of a macro with messages referencing each type of
variable or parameter.

Active Usings: None

Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 1 MACRO ����1���

 �3� �4� �4� �5�
 2 &z parms &kw1=a,&kw2=b,&kw3=c,&kw4=d,&kw5=e,&kw6=f,&pp1,&pp2 ����2���

3 &c SETC 'just a string' ����3���

4 &ss SETA &c ����4���

5 &sv SETA &sysasm �2� ����5���

6 &z1 SETA &z �3� ����6���

7 &k1 SETA &kw1 �┬� �4� ����7���

8 &k5 SETA &kw5 �┘ ����8���

 9 &n SETA n'&syslist ����9���

1� &pn SETA &syslist(&n) �─┬� �5� ���1����

 11 &p2 SETA &pp2 �┘ ┌� �5� ���11���

 12 MEND ┌┴────┐ ���12���

 ������ ����� ����� 13 default CSECT ���13���

 14 n parms pp1,pp2,kw5=z,pp3,kw1=y,pp4,pp5,pp6 ���14���

 ASMA1�2E Arithmetic term is not self-defining term; default=� - ����4/C �1�
 ASMA1�2E Arithmetic term is not self-defining term; default=� - ����5/SYSASM �2�
 ASMA1�2E Arithmetic term is not self-defining term; default=� - ����6/Z �3�
 ASMA1�2E Arithmetic term is not self-defining term; default=� - ����7/KPARM����1 �┬� �4�
 ASMA1�2E Arithmetic term is not self-defining term; default=� - ����8/KPARM����5 �┘

 ASMA1�2E Arithmetic term is not self-defining term; default=� - ���1�/PPARM����6 �┬� �5�
 ASMA1�2E Arithmetic term is not self-defining term; default=� - ���11/PPARM����2 �┘

 15 END ���15���

Figure 51. Sample Macro Parameter Messages

Notes to Figure 51:

�1� SET symbol, and related message

�2� System variable symbol, and related message

�3� The name field parameter, and related message

�4� Keyword parameters, and related messages

�5� Positional parameters, and related messages

Conditional Assembly: If a diagnostic message follows a conditional assembly
statement in the source program, the following items are appended to the error
message:

� The word “OPENC”, meaning “open code”.
� The SET symbol, or value string, associated with the error.

 Chapter 6. Diagnosing Assembly Errors 153

 MNOTE Statements

Multiple Messages: Several messages can be issued for a single statement or
even for a single error within a statement. This happens because each statement
is usually evaluated on more than one level (for example, term level, expression
level, and operand level) or by more than one phase of the assembler. Each level
or phase can diagnose errors; therefore, most or all of the errors in the statement
are flagged. Occasionally, duplicate error messages may occur. This is a normal
result of the error detection process.

Figure 52 on page 155 is an example of High Level Assembler handling of error
messages, and includes message ASMA435I to show the effect of the
FLAG(RECORD) assembler option.

 MNOTE Statements
An MNOTE statement is included in a macro definition or in the source program. It
causes the assembler to generate an inline error or informational message.

An MNOTE appears in the listing as follows:

ASMA254I ���MNOTE��� statement number, severity code, message

Unless the severity code is shown as an asterisk (�), or the severity code is
omitted, the statement number of the MNOTE is listed in the diagnostic
cross-reference.

154 HLASM V1R5 Programmer’s Guide

 MNOTE Statements

Active Usings: None

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

1 ��� DIA���1�

2 � SAMPLE ERROR DIAGNOSTIC MESSAGES � DIA���2�

3 � IN SOURCE PROGRAM (OPEN CODE) AND GENERATED BY MACRO CALLS � DIA���3�

4 ��� DIA���4�

������ ����� ���3C 5 A CSECT DIA���5�

������ ���� ���� ����� 6 STM 14,U2,12(13(DIA���6�

�� ASMA�44E Undefined symbol - U2

�� ASMA�29E Incorrect register specification - U2

�� ASMA179S Delimiter error, expected right parenthesis - (

�� ASMA435I Record 6 in DIAGMSG ASSEMBLE A1 on volume: ADISK

�����4 �5C� 7 BALR 12,� DIA���7�

 R:C ����6 8 USING �,12 DIA���8�

�����6 ���� ���� ����� 9 ST 13,SAVE+4 DIA���9�

�� ASMA�44E Undefined symbol - SAVE

�� ASMA435I Record 9 in DIAGMSG ASSEMBLE A1 on volume: ADISK

 1� OPEN (CRDIN,(INPUT),CRDOUT,(OUTPUT) DIA��1��

�� ASMA�88E Unbalanced parentheses in macro call operand - OPEN /(CRDIN,(INPUT),CRDOUT,(OUTPUT)

�� ASMA435I Record 323 in OSMACRO MACLIB S2(OPEN) on volume: MNT19�

�����A �7�� 11+ CNOP �,4 ALIGN LIST TO FULLWORD �1-OPEN

�����C 411� C��E ���14 12+ LA 1,�+8 LOAD R1 W/LIST ADR @V6PXJRU �1-OPEN

����1� 47F� C��E ���14 13+ B �+4 BRANCH AROUND LIST @V6PXJRU �1-OPEN

�� ASMA254I ��� MNOTE ��� 14+ 12,��� IHB��1 DCB OPERAND REQ'D-NOT SPECIFIED �2-IHBER

 15 DROP 11 DIA��11�

�� ASMA�45W Register or label not previously used - 11

�� ASMA435I Record 11 in DIAGMSG ASSEMBLE A1 on volume: ADISK

16 ��� DIA��12�

17 � EDITING AND GENERATION ERRORS AND MNOTES FROM A LIBRARY MACRO � DIA��13�

18 ��� DIA��14�

 19 LOADR REG1=1�,REG2=8,WOOSHA,SUMA DIA��15�

����14 58A� C�2E ���34 2�+ L 1�,WOOSHA �1-LOADR

����18 588� C�32 ���38 21+ L 8,SUMA �1-LOADR

 22 LOADR REG1=25,REG2=8,WOOSHA,MAINY DIA��16�

����1C ���� ���� ����� 23+ L 25,WOOSHA �1-LOADR

�� ASMA�29E Incorrect register specification - 25

�� ASMA435I Record 5 in TEST MACLIB A1(LOADR) on volume: ADISK

����2� ���� ���� ����� 24+ L 8,MAINY �1-LOADR

�� ASMA�44E Undefined symbol - MAINY

�� ASMA435I Record 6 in TEST MACLIB A1(LOADR) on volume: ADISK

 25 LOADR REG2=1�,SUMA,MAINY DIA��17�

�� ASMA254I ��� MNOTE ��� 26+ 36,YOU LEFT OUT THE FIRST REGISTER �1-LOADR

Figure 52 (Part 1 of 2). Sample Error Diagnostic Messages

 Chapter 6. Diagnosing Assembly Errors 155

 Reference Information for Statements in Error

27 ��� DIA��18�

28 � SAMPLE IN-LINE MACRO DEFINITION � DIA��19�

29 ��� DIA��2��

 3� MACRO DIA��21�

 31 &NAME LOADR ®1=,®2=,&OP1,&OP2 DIA��22�

 32 &R(1) SETA ®1,®2 DIA��23�

33 AIF (T'®1 EQ 'O').ERR DIA��24�

 34 L &R(1),&OP1 DIA��25�

 35 L &R(2),&OP2 DIA��26�

 36 MEXIT DIA��27�

37 .ERR MNOTE 36,'YOU LEFT OUT THE FIRST REGISTER' DIA��28�

 38 MEND DIA��29�

39 ��� DIA��3��

4� � SAMPLE MACRO CALLS WITH GENERATION ERRORS AND MNOTES � DIA��31�

41 ��� DIA��32�

 Page 4

Active Usings: A+X'6',R12

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 42 LOADR REG1=1�,REG2=8,WOOSHA,SUMA DIA��33�

����24 58A� C�2E ���34 43+ L 1�,WOOSHA �1-���34

����28 588� C�32 ���38 44+ L 8,SUMA �1-���35

 45 LOADR REG1=25,REG2=8,WOOSHA,&MAINY DIA��34�

�� ASMA��3E Undeclared variable symbol; default=�, null, or type=U - OPENC/MAINY

�� ASMA435I Record 34 in DIAGMSG ASSEMBLE A1 on volume: ADISK

����2C ���� ���� ����� 46+ L 25,WOOSHA �1-���34

�� ASMA�29E Incorrect register specification - 25

�� ASMA435I Record 25 in DIAGMSG ASSEMBLE A1 on volume: ADISK

����3� ���� ���� ����� 47+ L 8, �1-���35

�� ASMA�74E Illegal syntax in expression -

�� ASMA435I Record 26 in DIAGMSG ASSEMBLE A1 on volume: ADISK

 48 LOADR REG2=8,SUMA,MAINY DIA��35�

�� ASMA254I ��� MNOTE ��� 49+ 36,YOU LEFT OUT THE FIRST REGISTER �1-���37

����34 5� WOOSHA DS F DIA��36�

����38 51 SUMA DS F DIA��37�

 52 END DIA��38�

Figure 52 (Part 2 of 2). Sample Error Diagnostic Messages

Suppression of Error Messages and MNOTE Statements
Optionally, you can suppress error messages and MNOTE statements below a
specified severity level by specifying the assembler option FLAG(n) (where n is the
lowest severity message that the assembler issues).

Reference Information for Statements in Error
The FLAG(RECORD) assembler option instructs the assembler to issue message
ASMA435I after the last error message for each statement in error. This message
shows reference information, including the data set name, and member name (if
applicable), and the input record number of the statement in error. When you
specify this option, the assembler includes reference information with the flagged
statements in the Diagnostic Cross Reference and Assembler Summary section of
the assembler listing. The reference information includes:

� The member name (if applicable).
� The input record number of the statement in error.
� The input data set concatenation value.

156 HLASM V1R5 Programmer’s Guide

 MHELP—Macro Trace Facility

Abnormal Assembly Termination
Whenever the assembly cannot complete, High Level Assembler provides a
message and, in some cases, a specially formatted dump for diagnostic
information. This might indicate an assembler malfunction or it might indicate a
programmer error. The statement causing the error is identified and, if possible,
the assembly listing up to the point of the error is printed. Appendix G, “High Level
Assembler Messages” on page 336 describes the abnormal termination messages.
The messages give enough information to enable you (1) to correct the error and
reassemble your program, or (2) to determine that the error is an assembler
malfunction.

MHELP—Macro Trace Facility
The MHELP instruction controls a set of trace and dump facilities. You select
options by specifying an absolute expression in the MHELP operand field. MHELP
statements can occur anywhere in open code or in macro definitions. MHELP
options remain in effect until superseded by another MHELP statement.

Format of MHELP:

Name Operation Operand

MHELP Absolute expression, (the sum of binary or decimal options)

The options are:

B'1' or 1 Macro Call Trace
B'10' or 2 Macro Branch Trace
B'100' or 4 Macro AIF Dump
B'1000' or 8 Macro Exit Dump
B'10000' or 16 Macro Entry Dump
B'100000' or 32 Global Suppression
B'1000000' or 64 Macro Hex Dump
B'10000000' or 128 Suppression
Other values Control on &SYSNDX

Refer to Appendix F, “MHELP Sample Macro Trace and Dump” on page 328 for
complete details about this facility.

 Chapter 6. Diagnosing Assembly Errors 157

 MHELP—Macro Trace Facility

158 HLASM V1R5 Programmer’s Guide

 Part 2. Developing Assembler Programs on MVS

Part 2. Developing Assembler Programs on MVS

Chapter 7. Assembling Your Program on MVS 161
Input to the Assembler . 161
Output from the Assembler . 161
Invoking the Assembler on MVS . 161
Invoking the Assembler on TSO . 163
Invoking the Assembler Dynamically . 164
Batch Assembling . 166
Input and Output Data Sets . 167

Specifying the Source Data Set: SYSIN . 169
Specifying the Option File: ASMAOPT . 170
Specifying Macro and Copy Code Libraries: SYSLIB 170
Specifying the Listing Data Set: SYSPRINT 170
Directing Assembler Messages to Your Terminal: SYSTERM 170
Specifying Object Code Data Sets: SYSLIN and SYSPUNCH 171
Specifying the Associated Data Data Set: SYSADATA 171

Return Codes . 171

Chapter 8. Linking and Running Your Program on MVS 172
The Program Management Binder . 172
The Loader . 174
Creating a Load Module . 174

Creating a Load Module on MVS . 174
Creating a Load Module on TSO . 175

Input to the Binder . 175
Data Sets for Binder Processing . 176
Additional Object Modules as Input . 177

Output from the Binder . 178
Binder Processing Options . 178
Specifying Binder Options Through JCL . 179
Specifying Binder Options Using the TSO LINK Command 180
AMODE and RMODE Attributes . 180
Overriding the Defaults . 181
Detecting Binder Errors . 181

Running Your Assembled Program . 181
Running Your Assembled Program in Batch 181
Running Your Assembled Program on TSO 181

Chapter 9. MVS System Services and Programming Considerations . . . 183
Adding Definitions to a Macro Library . 183
Using Cataloged Procedures . 184

Cataloged Procedure for Assembly (ASMAC) 184
Cataloged Procedure for Assembly and Link (ASMACL) 186
Cataloged Procedure for Assembly, Link, and Run (ASMACLG) 188
Cataloged Procedure for Assembly and Run (ASMACG) 190
Overriding Statements in Cataloged Procedures 191

EXEC Statements . 192
DD Statements . 192

Examples of Cataloged Procedures . 192
Operating System Programming Conventions . 194

Saving and Restoring General Register Contents 194

 Copyright IBM Corp. 1982, 2004 159

 Part 2. Developing Assembler Programs on MVS

Ending Program Execution . 195
Accessing Execution Parameters . 195

| Object Program Linkage . 196
Modifying Program Modules . 196

160 HLASM V1R5 Programmer’s Guide

 Invoking the Assembler on MVS

Chapter 7. Assembling Your Program on MVS

This chapter describes how to invoke the assembler on MVS. It describes:

� The input to the assembler.
� The output from the assembler.
� How to invoke the assembler on MVS and TSO.
� How to invoke the assembler dynamically from a program.
� How to assemble multiple source programs using the BATCH option.
� The data sets used by the assembler.
� The assembler return codes.
� The cataloged procedures of job control language supplied by IBM.

Input to the Assembler
As input, the assembler accepts a program written in the assembler language as
defined in the HLASM Language Reference. This program is referred to as a
source module. Some statements in the source module (macro or COPY
instructions) may cause additional input to be obtained from a macro library.

Input can also be obtained from user exits. See Chapter 4, “Providing User Exits”
on page 85 for more information.

Output from the Assembler
The output from the assembler can consist of an object module, a program listing,
terminal messages, and an associated data file. The object module can be written
to a data set residing on a direct access device or a magnetic tape. If you specify
the GOFF assembler option, the assembler produces a generalized object format
module. Both formats of the object module are written to the same data set,
however only one format can be produced at a time. From that data set, the object
module can be read and processed by the linkage editor, the batch loader, or the
z/OS binder. See Appendix C, “Object Deck Output” on page 261 for the format of
the object module. The format of the generalized object format module is

| described in z/OS MVS Program Management: Advanced Facilities.

The program listing shows all the statements in the module, both in source and
machine language format, and gives other important information about the
assembly, such as error messages and cross reference information. The listing is
described in detail in Chapter 2, “Using the Assembler Listing” on page 8.

Invoking the Assembler on MVS
The JCL for running an assembly includes:

� A job description.
� A statement to run the assembler.
� Definitions for the data sets needed.

The simplest way to assemble your program on MVS is to code JCL that uses the
cataloged procedure shown in Figure 53 on page 162.

 Copyright IBM Corp. 1982, 2004 161

 Invoking the Assembler on MVS

//jobname JOB accountno,progrname,MSGLEVEL=1 �1�
//stepname EXEC ASMAC �2�
//SYSIN DD � �3�
...

Assembler source statements
...

/�

Figure 53. JCL for Assembly, Using Cataloged Procedure

�1� Identifies the beginning of your job to the operating system. jobname is the
name you assign to the job. accountno specifies the account to which your job
is charged, and progrname is the name of the programmer responsible for the
job. MSGLEVEL=1 specifies that the job control statements connected with this
job are to be listed. Check what parameters are required at your installation
and how they must be specified.

�2� Calls the cataloged procedure ASMAC. As a result, a number of job control
statements are included in the job from the procedure library. ASMAC is
described under “Cataloged Procedure for Assembly (ASMAC)” on page 184;
an expanded job stream is shown there.

�3� Specifies that the assembler language source program follows immediately
after this statement.

These statements cause the assembler to assemble your program, produce a
listing and write an object module to the SYSLIN data set. If you do not want an
object module written to the SYSLIN data set, use the following job control
statements to assemble the program:

//jobname JOB accountno,progrname,MSGLEVEL=1
//stepname EXEC ASMAC,PARM=NOOBJECT
//SYSIN DD �
...

Assembler source statements
...

/�

Figure 54. JCL for Assembly, Using Cataloged Procedure, with NOOBJECT

Assembler Options: The second parameter (PARM) specifies the assembler option
NOOBJECT, which tells the assembler not to write the object module to SYSLIN. For
a full discussion of assembler options, see Chapter 3, “Controlling Your Assembly
with Options” on page 41.

Using your own JCL: The cataloged procedures might not comply with your data
processing requirements. Figure 55 on page 163 shows sample job control
statements that you can use instead to assemble your program.

162 HLASM V1R5 Programmer’s Guide

 Invoking the Assembler on TSO

//ASMJOB JOB 1,MSGLEVEL=1

//ASSEMBLY EXEC PGM=ASMA9�,PARM=OBJECT

//SYSPRINT DD SYSOUT=A

//SYSTERM DD SYSOUT=A

//ASMAOPT DD DSNAME=PROG.OPTIONS,DISP=OLD

//SYSLIN DD DSNAME=PROG.OBJ,DISP=OLD

//SYSPUNCH DD DSNAME=PROG.DECK,DISP=OLD

//SYSADATA DD DSNAME=PROG.ADATA,DISP=OLD

//SYSIN DD DSNAME=PROG.SOURCE,DISP=SHR

Figure 55. JCL for Assembly

Refer to “Bibliography” on page 429 for a list of JCL manuals that describe
additional techniques for specifying job control statements and overriding cataloged
procedures.

Invoking the Assembler on TSO
On TSO, you can use TSO commands, command lists (CLISTs), REXX EXECs, or
ISPF to assemble your program. Figure 56 shows how to allocate the data sets
and assemble the source program using the ALLOCATE and CALL commands.
The commands are shown in bold text.

� �
READY

ALLOCATE FILE(SYSPRINT) DATASET(�) REUSE
READY

ALLOCATE FILE(SYSTERM) DATASET(�) REUSE
READY

ALLOCATE FILE(SYSLIN) DATASET(PROG.OBJ) NEW TRACKS SPACE(3,3)
BLKSIZE(8�) LRECL(8�) RECFM(F B) CATALOG REUSE

READY

ALLOCATE FILE(SYSADATA) DATASET(PROG.ADATA) NEW CYLINDERS
| SPACE(1 1) BLKSIZE(3276�) LRECL(32756) RECFM(V B)

 REUSE CATALOG
READY

ALLOCATE FILE(SYSIN) DATASET(PROG.ASSEMBLE) SHR REUSE
READY

ALLOCATE FILE(ASMAOPT) DATASET(PROG.OPTIONS) SHR REUSE
READY

| CALL �(ASMA9�) ‘ADATA,LIST(133),OBJECT,TERM’
...

| Assembler listing and messages
...

| READY

| FREE FILE(SYSADATA,SYSPRINT,SYSTERM,SYSLIN,SYSIN)
READY

� �

Figure 56. Assembling on TSO

You can enter ALLOCATE commands in any order; however, you must enter all of
them before you start the assembly. Figure 57 shows the data sets you must
allocate when you specify particular assembler options.

 Chapter 7. Assembling Your Program on MVS 163

 Invoking the Assembler Dynamically

Exit Option: If you specify the EXIT option, the user exit program module must be
in a partitioned data set that is in the standard search sequence, including the Link
Pack Area (LPA).

Figure 57. Assembler Options and Data Sets Required

Option Specified Data Sets Required

Any SYSUT1 and SYSIN

LIST SYSPRINT

TERM SYSTERM

OBJECT SYSLIN

DECK SYSPUNCH

ADATA SYSADATA

Invoking the Assembler Dynamically
You can invoke High Level Assembler from a running program using the CALL,
LINK, XCTL, or ATTACH system macro instructions.

| Note: If the program that invokes the High Level Assembler is APF-authorized,
| then ensure that the High Level Assembler product resides in an Authorized
| Program Facility (APF) authorized library.

When you use CALL, LINK, or ATTACH, you can supply:

� The assembler options.
� The ddnames of the data sets to be used during processing.

If you use XCTL, you cannot pass options to the assembler. The assembler uses
the installation default options. Figure 58 shows how to invoke the assembler
dynamically.

ASMA90 The load module name and entry point to invoke the assembler.
ASMA90 may be invoked in either 24-bit or 31-bit addressing mode.

EP Specifies the symbolic name of the assembler load module and entry
point.

PARAM Specifies, as a sublist, address parameters to be passed from the
program to the assembler. The first word in the address parameter list
(optionlist) contains the address of the option list. The second word
(ddnamelist) contains the address of the ddname list.

Figure 58. Invoking the Assembler Dynamically

Name Operation Operand

symbol CALL

��─ ──ASMA9�,(optionlist ──┬ ┬─────────────),VL ─��
└ ┘──,ddnamelist

LINK

or
ATTACH

��─ ──EP=ASMA9�,PARAM=(optionlist ──┬ ┬─────────────),VL=1 ─��
└ ┘──,ddnamelist

164 HLASM V1R5 Programmer’s Guide

 Invoking the Assembler Dynamically

optionlist
Specifies the address of a variable-length list containing the options.
The address of an option list must be provided even if no options are
required.

The option list must begin on a halfword boundary. The first two
bytes contain the number of bytes in the remainder of the list. If no
options are specified, the count must be zero. The option list is free
form, with each field separated from the next by a comma. No
spaces should appear in the list, except within the string specified for
the EXIT or SYSPARM options, providing the string is enclosed
within single quotes.

ddnamelist
Specifies the address of a variable-length list containing alternative
ddnames for the data sets used during assembler processing. If
standard ddnames are used, this operand can be omitted.

The ddname list must begin on a halfword boundary. The first two
bytes contain the number of bytes in the remainder of the list. Each
name of less than 8 bytes must be left-justified and padded to 8
bytes with spaces. If an alternative ddname is omitted, the standard
name is assumed. If the name is omitted within the list, the 8-byte
entry must contain binary zeros. Names can be omitted from the
end merely by shortening the list. The sequence of the 8-byte
entries in the ddname list is as follows:

Entry Alternative
1 SYSLIN
2 Not applicable
3 Not applicable
4 SYSLIB
5 SYSIN
6 SYSPRINT
7 SYSPUNCH
8 SYSUT1
9 Not applicable
10 Not applicable
11 Not applicable
12 SYSTERM
13 Not applicable
14 Not applicable
15 Not applicable
16 SYSADATA
17 Not applicable
18 Not applicable
19 Not applicable
20 ASMAOPT

Overriding ddname: Any overriding ddname specified when High
Level Assembler was installed, occupies the corresponding position
in the above list. The overriding ddname can also be overridden
during invocation. For example, if SYSWORK1 replaced SYSUT1, it
occupies position 8 in the above list. However, SYSWORK1 can be
overridden by another name during invocation.

 Chapter 7. Assembling Your Program on MVS 165

 Batch Assembling

VL specifies that the sign bit is to be set to 1 in the last word of the
parameter address list. VL must be specified for the CALL macro and
VL=1 for the LINK or ATTACH macros.

DYNAMICM CSECT

DYNAMICM RMODE 24

DYNAMICM AMODE ANY

BEGIN SAVE (14,12)

 USING BEGIN,15

 ST 13,SAVEAREA+4

 LA 13,SAVEAREA

 CALL ASMA9�,(OPTIONS),VL

 L 13,SAVEAREA+4

 RETURN (14,12)

SAVEAREA DS 18F

OPTIONS DC Y(OPTIONSL)

OPTS DC C'XREF(SHORT)'

OPTIONSL EQU �-OPTS

 END

Figure 59. Sample Program to Call the Assembler Dynamically

 Batch Assembling
A sequence of separate assembler programs may be assembled with a single
invocation of the assembler when the BATCH option is specified. The object
programs produced from this assembly may be linked into either a single program
module or separate program modules.

When the BATCH option is specified, each assembler program in the sequence
must be terminated by an END statement, including the last program in the batch.
If an END statement is omitted, the program will be assembled with the next
program in the sequence. If the END statement is omitted from the last program in
the sequence, an END statement will be generated by the assembler.

| If you want to produce more than one program module, you must either separate
| the object modules, or write a NAME linkage editor control statement for each load
| module. The NAME statement must be written at the end of the object module.

The following example shows how to create two program modules, SECT1 and
SECT2.

SECT1 CSECT Start of first load module
...

 Source instructions
 . . .

END End of first load module

PUNCH ' NAME SECT1(R)'

 END

SECT2 CSECT Start of second load module
...

 Source instructions
 . . .

END End of second load module

PUNCH ' NAME SECT2(R)'

 END

166 HLASM V1R5 Programmer’s Guide

 Input and Output Data Sets

Input and Output Data Sets
Depending on the options in effect, High Level Assembler requires the following
data sets, as shown in Figure 60:

 ┌──────────────┐

│ SYSIN │ ┌─────────────┐

└───────────┬──┘ ┌──┤ ASMAOPT │

 │ │ └─────────────┘

 │ │

 ┌──────────────┐ ┌──────────────┐

│ SYSLIB ├──────────�│ Assembler │

 └──────────────┘ └───────┬──────┘

 │

 ┌──────────────┬──────────────┬──────────────┬──────────────┐

│ │ │ │ │

┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐

│ SYSPRINT │ │ SYSTERM │ │ SYSLIN │ │ SYSPUNCH │ │ SYSADATA │

└───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘

Figure 60. High Level Assembler Files

You can override the ddnames during installation or when invoking the assembler
dynamically (see “Invoking the Assembler Dynamically” on page 164).

High Level Assembler requires the following data set:

SYSIN An input data set containing the source statements to be
processed.

In addition, the following seven data sets might be required:

ASMAOPT An input data set containing an assembler option list.

SYSLIB A data set containing macro definitions (for macro definitions not
defined in the source program), source code to be called through
COPY assembler instructions, or both.

SYSPRINT A data set containing the assembly listing (if the LIST option is in
effect).

SYSTERM A data set containing a condensed form of SYSPRINT, principally
flagged statements and their error messages (only if the TERM
option is in effect).

SYSPUNCH A data set containing object module output (only if the DECK
option is in effect).

SYSLIN A data set containing object module output usually for the linkage
editor, loader, or binder (only if the OBJECT option is in effect).

SYSADATA A data set containing associated data output (only if the ADATA
option is in effect).

The data sets listed above are described on page 169. Figure 61 describes the
characteristics of these data sets, including the characteristics set by the assembler
and those you can override. The standard ddname that defines the data set
appears as the heading for each data set description.

 Chapter 7. Assembling Your Program on MVS 167

 Input and Output Data Sets

Notes to Figure 61:

�1� If you specify EXIT(PRTEXIT) and the user exit specifies the logical record
length, the logical record length returned is used, unless the SYSPRINT data
set has a variable-length record format in which case the LRECL used is 4
bytes greater than the value returned by the exit. If EXIT(PRTEXIT) has not
been specified or the user exit does not specify a record length, the record
length from the DD statement or data set label is used if present. Otherwise,
the record length defaults to 133, or 137 if the record format is variable-length.

The minimum record length allowed for SYSPRINT is 121, and the maximum
allowed is 255. If the record format is variable-length, the LRECL should be at
least 125 or 137 depending on the LIST option.

�2� If you specify EXIT(TRMEXIT) and the user exit specifies the logical record
length, the logical record length returned is used. If EXIT(TRMEXIT) has not
been specified or the user exit does not specify a record length, the record
length from the DD statement or data set label is used if present. If not
present, the record length defaults to the record length for SYSPRINT (if the
LIST option is in effect) or 133 otherwise.

The maximum record length allowed for SYSTERM is 255.

�3� If you specify the OBJECT option the logical record length must be 80. If you
specify the GOFF option the object module can be generated with either
fixed-length records of 80 bytes, or variable-length records up to BLKSIZE of
32720.

Hierarchical File System: If you wish to copy the object data set to a file in a
Hierarchical File System, for example under UNIX System Services, the object
data set must be created with fixed-length records.

�4� Both fixed and variable formats are supported; the default is fixed.

�5� If specified, the BLKSIZE must equal the LRECL or be a multiple of the
LRECL. If BLKSIZE is not specified, it is set to LRECL.

Refer to the applicable Linkage Editor and Loader manual, or DFSMS/MVS
Program Management manual, for the block size requirements of SYSPUNCH
and SYSLIN, if you use them as input to the linkage editor, or to the z/OS
binder.

Figure 61. Assembler Data Set Characteristics

Data Set Access
Method

Logical Record
Length (LRECL)

Block Size
(BLKSIZE)

Record Format
(RECFM)

SYSIN QSAM 80 �5� �9�

ASMAOPT QSAM �12� �7� Fixed/Variable

SYSLIB BPAM 80 �6� �9�

SYSPRINT QSAM �1� �7��8� �1��

SYSTERM QSAM �2� �5��8� �11�

SYSPUNCH QSAM 80 �5� �4�

SYSLIN QSAM �3� �5� �4�

SYSADATA QSAM 32756 32760 or
greater�8�

VB

168 HLASM V1R5 Programmer’s Guide

 Input and Output Data Sets

�6� The BLKSIZE on the DD statement or the data set label must be equal to, or
be a multiple of, the LRECL.

�7� The blocksize must be equal to or a multiple of the record length if the record
format is fixed. If the record format is variable the blocksize must be at least 4
bytes greater than the record length.

�8� High Level Assembler supports MVS System-Determined Blocksize (SDB) for
all output data sets except SYSLIN and SYSPUNCH.

System-Determined Blocksize is applicable when all of the following conditions
are true:

� The operating system is MVS/ESA with a MVS level of 3.1 or higher.
� The data set is NOT allocated to SYSOUT.
� A block size of zero is specified or the blocksize is not specified in the JCL.
� A record length (LRECL) is specified.
� A record format (RECFM) is specified.
� A data set organization (DSORG) is specified.

If these conditions are met, MVS selects the appropriate blocksize for a new
data set depending on the device type selected for output.

If the System-Determined Blocksize feature is not available, and your JCL
omits the blocksize, or specifies a blocksize of zero, the assembler uses the
logical record length as the blocksize.

�9� Set by the assembler to F (or FB) if necessary.

�1�� Both fixed and variable formats are supported; the default is fixed. If the DD
statement or data set label specifies machine or ASA control characters, the
ASA option is set or reset accordingly. If machine or ASA control characters
are not specified on the DD statement or data set label, the record format is
modified according to the ASA option.

�11� Set by the assembler to F (or FB) if necessary. The record format is set to
FA (or FBA) if the ASA option is specified or FM (or FBM) otherwise.

�12� The minimum record length allowed for ASMAOPT is 5 if the record format is
variable-length or 1 if the record format is fixed-length. The maximum record
length allowed is 32756 if the record format is variable length or 32760 if the
record format is fixed-length.

Specifying the Source Data Set: SYSIN
Define the data sets that contain your source code with the SYSIN DD statement:

//SYSIN DD DSN=datasetname,DISP=SHR

This data set contains the input to the assembler; that is, the assembler language
source statements to be processed.

You can place your assembler source code in the input stream. To do this, use
this SYSIN DD statement:

//SYSIN DD �

When you use the (*) DD parameter, the source code must follow the DD
statement. If another job step follows the assembly, the EXEC statement for that
step must follow the last source statement, or end-of-file (/*) statement.

 Chapter 7. Assembling Your Program on MVS 169

 Input and Output Data Sets

The IBM-supplied High Level Assembler procedures do not contain the SYSIN DD
statement. The DD statement for SYSIN must be provided in the input stream:

//STEP1 EXEC ASMAC

//SYSIN DD �
...

assembler source statements
...

/�

Specifying the Option File: ASMAOPT
Define the data set that contains the options with the ASMAOPT DD statement:

//ASMAOPT DD DSN=datasetname,DISP=SHR

This data set contains the option list for the assembler.

Specifying Macro and Copy Code Libraries: SYSLIB
Define the partitioned data sets that contain your macro or copy members with the
SYSLIB DD statement:

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

From this data set, the assembler obtains macro definitions and assembler
language statements to be called by the COPY assembler instruction. Each macro
definition or sequence of assembler language statements is a separate member in
a partitioned data set. The member name is the operation code used to invoke the
macro in a macro instruction, or the operand name in a COPY instruction.

The data set can be defined as SYS1.MACLIB, or your private macro definition or
COPY library. SYS1.MACLIB contains macro definitions for the system macro
instructions provided by IBM. Your private library may be concatenated with
SYS1.MACLIB. The two libraries must have the same logical record length (80
bytes), but the blocking factors may be different. The applicable JCL Reference
explains the concatenation of data sets.

Specifying the Listing Data Set: SYSPRINT
Define the data set that contains your listing output with the SYSPRINT DD
statement:

//SYSPRINT DD SYSOUT=A

The assembler uses this data set to produce a listing. You can direct output to a
printer, a magnetic tape, or a direct-access storage device. The assembler uses
ASA or machine control characters for this data set according to the ASA option.

Directing Assembler Messages to Your Terminal: SYSTERM
Define the data set that contains your terminal message's output with the
SYSTERM DD statement:

//SYSTERM DD SYSOUT=A

On TSO, the terminal messages can be sent to your terminal by using the following
ALLOC statement:

ALLOC F(SYSTERM) DA(�)

170 HLASM V1R5 Programmer’s Guide

 Return Codes

This data set is used by the assembler to store a condensed form of SYSPRINT
containing flagged statements and their associated error messages. It is intended
for output to a terminal, but can also be routed to a printer, a magnetic tape, or a
direct-access storage device. Depending on the ASA option, the assembler uses
ASA or machine control characters to skip to a new line for this data set.

Specifying Object Code Data Sets: SYSLIN and SYSPUNCH
Define the data set that contains your object output with the SYSLIN and
SYSPUNCH DD statements. When the OBJECT option is in effect, the object
module is written to SYSLIN. When the DECK option is in effect, the object module
is written to SYSPUNCH. When both OBJECT and DECK options are in effect, the
object module is written to both SYSLIN and SYSPUNCH.

You can direct the SYSLIN data set to either a card punch or an intermediate
storage device capable of sequential access:

//SYSLIN DD DSN=dsname,UNIT=SYSALLDA,

// SPACE=(subparms),DISP=(MOD,PASS)

You can direct the SYSPUNCH data set to either a card punch or an intermediate
storage device capable of sequential access:

//SYSPUNCH DD SYSOUT=B

Specifying the Associated Data Data Set: SYSADATA
Define the data set that contains your associated data output with the SYSADATA
DD statement:

//SYSADATA DD DSN=dsname,UNIT=SYSALLDA,

// SPACE=(subparms),DISP=(MOD,PASS)

The associated data data set contains information regarding the assembly. It
provides information for use by symbolic debugging and cross-reference tools. The
SYSADATA data set must be directed to an intermediate storage device capable of
sequential access.

 Return Codes
High Level Assembler issues return codes for use with the IF job control statement
and the COND parameter of the JOB and EXEC job control language statements.
The IF statement and the COND parameter enable you to skip or to run a job step,
depending on the results (indicated by the return code) of a previous job step. It is
explained in the applicable JCL Reference.

The return code issued by the assembler is the highest severity code that is
associated with any error detected in the assembly or with any MNOTE message
produced by the source program or macro instructions. The return code can be
controlled by the FLAG(n) assembler option described on page 55. See
Appendix G, “High Level Assembler Messages” on page 336 for a listing of the
assembler errors and their severity codes.

 Chapter 7. Assembling Your Program on MVS 171

 The Program Management Binder

Chapter 8. Linking and Running Your Program on MVS

The output from an assembly is an object module. An object module is a
relocatable module of machine code that is not executable.

Before an object module can be executed, you must use the binder to convert it
into executable machine code.

The Program Management Binder
The binder converts object modules into an executable program unit that can either
be read directly into virtual storage for execution, or stored in a program library.
Executable program units can either be load modules, or program objects. You
can use the binder to:

� Convert object or load modules, or program objects, into a program object and
store it in a PDSE program library.

� Convert object or load modules, or program objects, into a load module and
store it in a partitioned data set program library.

� Convert object or load modules, or program objects, into an executable
program in virtual storage and execute the program.

For the remainder of this section, the binder is referred to as the binder, unless
otherwise stated.

For more information, see the z/OS MVS Program Management: User's Guide and
Reference.

172 Copyright IBM Corp. 1982, 2004

 The Program Management Binder

 ┌──────────────────────┐

 │ │

 │ Source Programs │

 │ │

 └──────────┬───────────┘

 │

 ┌──────────────────────┐

 │ │

 │ ASSEMBLER │

 │ │

 └──────────┬───────────┘

 │

 ┌──────────────────────┐

 │ │

 │ Object Modules ├─────────────────┐

 │ │ │

 └──────────┬───────────┘ │

 │ │

 ┌──────────────────────┐ ┌──────────────────────┐

 │ Program Management │ │ │

┌──────�│ BINDER ├──┐ │ BATCH LOADER │

 │ │ │ │ │ │

 │ └──────────────────────┘ │ └──────────┬───────────┘

│ � │ │

│ │ │ │

 │ │

 ┌──────────────────────┐ ┌──────────────────────┐ │ │

│ Load Module │ │ Program Object │ │ │

 │ in │ │ in │ │ │

│ PDS Program Library │ │ PDSE Program Library │ │ │

 └──────────┬───────────┘ └──────────┬───────────┘ │ │

 │ │ │

┌──────────────────────┐ │ │ │

│ Program Management │ │ │ │

│ LOADER │�─────────────┘ │ │

 │ (Fetch) │ │ │

 └──────────┬───────────┘ │ │

 │ │ │

 │ │

 │ ┌──────────────────────┐ │

│ │ Loaded Module in │ │

 └─────────────────────────────�│ Virtual Storage │�─┘

│ Ready for Execution │

 └──────────────────────┘

 Components are shown in uppercase.

 �──� = Two-way relationship.

Indicates a component can

produce that structure as

output or accept it as input.

Figure 62. Using the Program Management Components

 Chapter 8. Linking and Running Your Program on MVS 173

 Creating a Load Module

 The Loader
The loader component of MVS, and the batch loader component of DFSMS/MVS
perform the same task. Given this, the batch loader is hereafter referred to as the
loader, unless otherwise stated.

The loader combines the basic editing and loading services, that can also be
provided by the linkage editor and program fetch, into one step. The loader
accepts object modules and load modules, and loads them into virtual storage for
execution. The loader does not produce load modules that can be stored in
program libraries.

To keep a load module for later execution, use the linkage editor or binder.

Creating a Load Module
The binder processes your object module (assembled source program) and
prepares it for execution. The processed object module becomes a load module or
program object.

Optionally, the binder can process more than one object module, or load module,
and convert them into one or more load modules, or program objects, by using the
NAME control statement. See “Batch Assembling” on page 166 for an example
that uses the NAME control statement.

Creating a Load Module on MVS
Figure 63 shows the general job control for creating a load module or program
object.

//jobname JOB acctno,name,MSGLEVEL=1
...

//stepname EXEC PGM=HEWL,PARM=(options)

//SYSPRINT DD SYSOUT=A

//SYSLMOD DD DSN=&&name(member),UNIT=SYSALLDA,

// DISP=(NEW,PASS),SPACE=(subparms)

//SYSLIB DD DSN=dsname,DISP=SHR

//SYSUT1 DD UNIT=SYSALLDA,SPACE=(subparms)

//SYSLIN DD DSN=MYOBJ,DISP=SHR

Figure 63. Sample Job Control for Creating a Load Module

The SYSUT1 DD statement is used by the linkage editor, and ignored by the
binder.

High Level Assembler provides cataloged procedures for the following:

� Assembly and link.
� Assembly, link, and go (to execute your program).
� Assembly and go using the loader.

See “Using Cataloged Procedures” on page 184.

174 HLASM V1R5 Programmer’s Guide

 Input to the Binder

Creating a Load Module on TSO
You can invoke the binder on TSO (Time Sharing Option) with the LINK and
LOADGO commands.

The LINK command creates a program module and saves it in either a partitioned
data set or PDSE program library. If you run the LINK command in a system with
DFSMS/MVS, you can use the BINDER and NOBINDER option on the LINK
command to control whether your object module is linked using the binder or the
MVS linkage editor.

The LOADGO command creates and executes a program module. The module is
not saved in a program library.

Examples Using the LINK Command: If your assembly produced an object
module in a data set called PROGRAM1.OBJ, issue the following LINK command at
your terminal:

LINK PROGRAM1

The program module is placed by default in member TEMPNAME of a partitioned
data set, or PDSE program library called userid.PROGRAM1.LOAD. If you want to
put the program module in a different data set, issue the following LINK command:

LINK PROGRAM1 LOAD(data-set-name(member-name))

where data-set-name is a program library, and member-name is the name of the
program module.

The following example shows how to link two object modules and place the
resulting program module in member TEMPNAME of the userid.LM.LOAD data set:

LINK PROGRAM1,PROGRAM2 LOAD(LM)

If your program refers to other modules (that is, external references), you can
instruct the binder to search for them by including the LIB parameter on the LINK
command. The LIB parameter specifies one or more names of library data sets to
search. For example:

LINK PROGRAM1 LIB('SALESLIB.LIB.SUBRT2')

This request searches library SALESLIB.LIB.SUBRT2.

You can also specify link options on the LINK and LOADGO commands. See
“Specifying Binder Options Using the TSO LINK Command” on page 180.

Binder options are discussed in “Binder Processing Options” on page 178.

For more information about using the LINK and LOADGO commands, see the
TSO/E Command Reference.

Input to the Binder
Your input to the binder can be:

� One or more object modules.

� Binder control statements (that you can generate using the PUNCH assembler
statement).

 Chapter 8. Linking and Running Your Program on MVS 175

 Input to the Binder

� Previously linked program modules you want to combine into one load module.

The primary input to the binder can be:

� A sequential data set.

� A member of a partitioned data set.

� A member of a PDSE (if you are using the binder to link your program).

� Concatenated data sets of any combination of the above.

The primary input data set can contain object modules, binder control statements,
and linked program modules.

You specify the primary input data set with the SYSLIN DD statement.

Secondary input to the binder can consist of object modules or program modules
that are not part of the primary input data set, but are included explicitly or
automatically in the program module using the automatic call library process.

An automatic call library contains modules that you can use as secondary input to
the linkage editor to resolve external symbols left undefined after all primary input
has been processed.

The automatic call library may be in the form of:

� Libraries containing object modules, with or without linkage editor control
statements.

� Libraries containing linked program modules.

Secondary input for the linkage editor is composed of either all object modules or
all load modules, but it cannot contain both types. Secondary input for the binder
can be any combination of object modules, load modules libraries, and program
object libraries.

You specify the secondary input data sets with a SYSLIB DD statement and, if the
data sets are object modules, the LIBRARY and INCLUDE control statements. If
you have multiple secondary input data sets, concatenate them as follows:

//SYSLIB DD DSNAME=ORDERLIB,DISP=SHR

// DD DSNAME=SALESLIB,DISP=SHR

In this case, both the partitioned data sets (library) named ORDERLIB and
SALESLIB are available as the automatic call library. The LIBRARY control
statement has the effect of concatenating any specified member names with the
automatic call library.

Data Sets for Binder Processing
You need the following data sets for binder processing. Others may be necessary
if you have several additional libraries or object modules. If you need additional
libraries and object modules, include a DD statement for them in your JCL.
Figure 64 summarizes the data sets that you need for linking.

176 HLASM V1R5 Programmer’s Guide

 Input to the Binder

Figure 64. Data Sets Used for Linking

DD name Type Function

SYSLIN1 Input Primary input data, normally the output of the
assembler

SYSPRINT1 Output Diagnostic messages
Informative messages
Module map
Cross reference list

SYSLMOD1 Output Output data set for the program module

SYSUT11 Utility Work data set. Not used by the binder.

SYSLIB Library Automatic call library

SYSTERM2 Output Numbered error or warning messages

User specified3 Additional object modules and program modules

Notes:

1 Required data set
2 Required if TERM option is specified
3 Optional data set

Additional Object Modules as Input
You can use the INCLUDE and LIBRARY control statements to:

1. Specify additional object modules you want included in the program module
(INCLUDE statement).

2. Specify additional libraries to search for object modules to include in the
program module (LIBRARY statement). This statement has the effect of
concatenating any specified member names with the automatic call library.

Figure 65 shows an example that uses the INCLUDE and LIBRARY control
statements.

...

//SYSLIN DD DSNAME=&&GOFILE,DISP=(SHR,DELETE)

// DD �

 INCLUDE MYLIB(ASMLIB,ASSMPGM)

 LIBRARY ADDLIB(COBREGN�)

/�

Figure 65. INCLUDE and LIBRARY Control Statements

Data sets you specify on the INCLUDE statement are processed as the binder
encounters the statement. In contrast, data sets you specify on the LIBRARY
statement are used only when there are unresolved references after all the other
input is processed.

For more information, see the z/OS MVS Program Management: User's Guide and
Reference.

 Chapter 8. Linking and Running Your Program on MVS 177

 Output from the Binder

Output from the Binder
SYSLMOD and SYSPRINT are the data sets used for binder output. The output
varies depending on the options you select, as shown in Figure 66.

You always receive diagnostic and informative messages as the result of linking.
You can get the other output items by specifying options in the PARM parameter of
the EXEC statement in your JCL.

The program modules are written to the data set defined by the SYSLMOD DD
statement in your JCL. Diagnostic output is written to the data set defined by the
SYSPRINT DD statement.

Figure 66. Options for Controlling Binder Output

To Get This Output Use This Option

A map of the program modules generated by the
binder.

MAP

A cross-reference list of data variables XREF

Informative messages Default

Diagnostic messages Default

Listing of the binder control statements LIST

One or more program modules (which you must
assign to a library)

Default

Binder Processing Options
Binder options can be specified either:

� In your JCL,
or
� When you invoke the LINK or LOADGO command on TSO.

Figure 67 describes some of these options.

Figure 67 (Page 1 of 2). Link Processing Options

Option Action Comments

LET Lets you specify the severity level of an error, to
control whether the binder marks the program module
as non-executable.

The LET option is used differently
between the linkage editor and the
binder.

MAP NOMAP Use MAP if you want to get a map of the generated
program modules. NOMAP suppresses this map
listing.

The map of the program module gives
the length and location (absolute
addresses) of the main program and
all subprograms. NOMAP is the
default.

NCAL When you use the no automatic library call option
(NCAL), the binder does not search for library
members to resolve external references.

If you specify NCAL, you don't need to
use the LIBRARY statement, and you
don't need to supply the SYSLIB DD
statement.

178 HLASM V1R5 Programmer’s Guide

 Output from the Binder

Figure 67 (Page 2 of 2). Link Processing Options

Option Action Comments

RENT
NORENT

The RENT option indicates to the binder that the object
module is reenterable and can be used by more than
one task at a time. This type of module cannot be
modified by itself or any other module when it is
running. The assembler RENT option can be used to
assist in determining whether the object module is
reentrant. NORENT indicates that the object module is
not reentrant.

The assembler RENT option and
binder RENT option are independent
of each other. NORENT is the default
binder option.

AMODE
24 | 31 | ANY

Use AMODE (addressing mode) to override the default
AMODE attribute established by the assembler.

See “AMODE and RMODE Attributes”
on page 180.

RMODE
24 | ANY

Use RMODE (residence mode) to override the default
RMODE attribute established by the assembler.

See “AMODE and RMODE Attributes”
on page 180.

PRINT When you use the TSO commands LINK or LOADGO,
the PRINT option specifies where to print diagnostic
messages and the module map.

PRINT is also an option of the loader, and controls
whether diagnostic messages are produced.

See also “Specifying Binder Options
Using the TSO LINK Command” on
page 180.

Specifying Binder Options Through JCL
In your link JCL, use the PARM statement to specify options:

PARM=(binder-options)
PARM.stepname=('binder-options')

binder-options
A list of binder options (see Figure 67 on page 178). Separate the options
with commas.

stepname
The name of the step in the cataloged procedure that contains the PARM
statement.

Figure 68 shows the job control to pass PARM.C and PARM.L options.

//� ASSEMBLE USING ASMACL

// JCLLIB ORDER=(ASM.SASMSAM1)

//HLASM EXEC ASMACL,PARM.C='NODECK,OBJ',

// PARM.L='LIST,LET,XREF,MAP'

//STEPLIB DD DISP=SHR,DSN=ASM.SASMMOD1

//C.SYSIN DD �

BR 14 < ASSEMBLER PROGRAM GOES HERE

 END

/�

� � � End of File � � �

Figure 68. Job Control to pass PARM.C and PARM.L options

For more information, see the HLASM Installation and Customization Guide.

 Chapter 8. Linking and Running Your Program on MVS 179

 Output from the Binder

Specifying Binder Options Using the TSO LINK Command
You specify binder options on the LINK and LOADGO commands. The following
example shows you how to specify the LET, MAP, and NOCALL options when you
issue the LINK command:

LINK PROGRAM1 LET MAP NOCALL

You can use the PRINT option to display the module map at your terminal:

LINK PROGRAM1 MAP PRINT(�)

The � indicates that the output from the binder is displayed at your terminal.
NOPRINT suppresses any messages.

AMODE and RMODE Attributes
Every program that runs in MVS/ESA is assigned two attributes, an AMODE
(addressing mode) and an RMODE (residency mode):

AMODE Specifies the addressing mode in which the program is designed to
receive control. Generally, the program is also designed to run in that
mode, although a program can switch modes and can have different
AMODE attributes for different entry points within a program module.

MVS/ESA uses a program's AMODE attribute to determine whether a
program invoked using ATTACH, LINK, or XCTL is to receive control in
24-bit or 31-bit addressing mode.

RMODE Indicates where the program can reside in virtual storage.

MVS/ESA uses the RMODE attribute to determine whether a program
must be loaded into virtual storage below 16 megabytes, or can reside
anywhere in virtual storage (above or below 16 megabytes).

Valid AMODE and RMODE specifications are:

If you don't specify the AMODE or RMODE in the assembler program or when you
link the program, both AMODE and RMODE default to 24.

Attribute Meaning

AMODE=24 24-bit addressing mode

AMODE=31 31-bit addressing mode

| AMODE=64| 64-bit addressing mode

AMODE=ANY Either 24-bit or 31-bit addressing mode

RMODE=24 The module must reside in virtual storage below 16
megabytes. Use RMODE=24 for programs that
have 24-bit dependencies.

RMODE=ANY Indicates that the module can reside anywhere in
storage, which includes addresses above the 16
megabyte line.

180 HLASM V1R5 Programmer’s Guide

 Running Your Assembled Program

Overriding the Defaults
The following examples show you how to override the default AMODE and RMODE
values:

� Using the EXEC JCL statement:

 //LKED EXEC PGM=IEWBLINK,

 // PARM='AMODE=31,RMODE=ANY'

� Using the TSO commands LINK or LOADGO:

LINK PROGRAM1 AMODE(31) RMODE(ANY)

or
LOADGO PROGRAM1 AMODE(31) RMODE(ANY)

You can also use binder control statements to override the default AMODE and
RMODE values.

Detecting Binder Errors
The binder produces a listing in the data set defined by the SYSPRINT DD
statement. The listing includes any informational or diagnostic messages issued by
the binder. You should check the load map to make sure that all the modules you
expected were included.

For more information, see the z/OS MVS Program Management: User's Guide and
Reference.

Running Your Assembled Program
When you've completed the preparatory work for your assembler program
(designing, coding, assembling, and linking), the program is ready to run.

You can use cataloged procedures to combine the assemble, link, and go
procedures in your programs. See “Using Cataloged Procedures” on page 184.

Running Your Assembled Program in Batch
Figure 69 shows the general job control to run your program in batch.

//stepname EXEC PGM=progname[,PARM='user-parameters']
//STEPLIB DD DSN=library.dsname,DISP=SHR
//ddname DD (parameters for user-specified data sets)
...

Figure 69. General Job Control to Run a Program on MVS

For more information, see the HLASM Installation and Customization Guide.

Running Your Assembled Program on TSO
You use the CALL command to run your program on TSO, as follows:

CALL 'JRL.LIB.LOAD(PROGRAM1)'

If you omit the descriptive qualifier (LOAD) and the member name (PROGRAM1),
the system assumes LOAD and TEMPNAME, respectively. If your program module
is in the data set JRL.LIB.LOAD(TEMPNAME), and your TSO userid is JRL, enter:

 Chapter 8. Linking and Running Your Program on MVS 181

 Running Your Assembled Program

CALL LIB

182 HLASM V1R5 Programmer’s Guide

 Adding Definitions to a Macro Library

Chapter 9. MVS System Services and Programming
Considerations

This chapter describes some of the MVS system services and program
development facilities that assist you in developing your assembler program. It
provides the following information:

� Adding definitions to a macro library.
� Using cataloged procedures.
� Overriding statements in cataloged procedures.
� Saving and restoring general register contents.
� Ending program execution.
� Accessing execution parameters.
� Combining object modules to form a single program module.
� Modifying program modules.

Adding Definitions to a Macro Library
You can add macro definitions, and members containing assembler source
statements that can be read by a COPY instruction, to a macro library. You can
use the system utility IEBUPDTE for this purpose. You can find the details of

| IEBUPDTE and its control statements in z/OS DFSMSdfp Utilities.

Figure 70 shows how a new macro definition, NEWMAC, is added to the system
library, SYS1.MACLIB.

//CATMAC JOB 1,MSGLEVEL=1

//STEP1 EXEC PGM=IEBUPDTE,PARM=MOD

//SYSUT1 DD DSNAME=SYS1.MACLIB,DISP=OLD �1�
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD �1�
//SYSPRINT DD SYSOUT=A �2�
//SYSIN DD DATA

./ ADD LIST=ALL,NAME=NEWMAC,LEVEL=�1,SOURCE=� �3�
 MACRO �4�
 NEWMAC &OP1,&OP2

 LCLA &PAR1,&PAR2

...

 MEND

./ ENDUP

/�

Figure 70. Macro Library Addition Procedure

Notes to Figure 70:

�1� The SYSUT1 and SYSUT2 DD statements indicate that SYS1.MACLIB, an
existing program library, is to be updated.

�2� Output from the IEBUPDTE program is printed on the Class A output device
(specified by SYSPRINT).

�3� The utility control statement, ./ ADD, and the macro definition follow the SYSIN
statement. The ./ ADD statement specifies that the statements following it are
to be added to the macro library under the name NEWMAC. When you
include macro definitions in the library, the name specified in the NAME

 Copyright IBM Corp. 1982, 2004 183

 Using Cataloged Procedures

parameter of the ./ ADD statement must be the same as the operation code of
the prototype statement of the macro definition.

�4� Following the ADD utility control statement is the macro definition itself.

Using Cataloged Procedures
Often you use the same set of job control statements repeatedly; for example, to
specify the assembly, linking, and running of many different programs. To save
programming time and to reduce the possibility of error, standard sets of EXEC and
DD statements can be prepared once and cataloged in a procedure library. Such a
set of statements is termed a cataloged procedure and can be invoked by either of
the following statements:

//stepname EXEC procname
//stepname EXEC PROC=procname

The specified procedure (procname) is read from the procedure library
(SYS1.PROCLIB) and merged with the job control statements that follow this EXEC
statement.

This section describes four IBM cataloged procedures: a procedure for assembling
(ASMAC); a procedure for assembling and linking (ASMACL); a procedure for
assembling, linking, and running (ASMACLG); and a procedure for assembling and
running the loader (ASMACG).

Cataloged Procedure for Assembly (ASMAC)
This procedure consists of one job step: assembly. Use the name ASMAC to call
this procedure. The result of running this procedure is an object module written to
SYSPUNCH and an assembler listing. (See “Invoking the Assembler on MVS” on
page 161 for more details and another example.)

In the following example, input is provided in the input stream:

//jobname JOB

//stepname EXEC PROC=ASMAC

//SYSIN DD �
...

assembler source statements
...

/� (delimiter statement)

The statements of the ASMAC procedure are read from the procedure library and
merged into the input stream.

Figure 71 on page 185 shows the statements that make up the ASMAC procedure.

184 HLASM V1R5 Programmer’s Guide

 Using Cataloged Procedures

| //ASMAC PROC

| //�

| //��

| //� Licensed Materials - Property of IBM �

| //� �

| //� 5696-234 5647-A�1 �

| //� �

| //� (C) Copyright IBM Corp. 1992, 2��4. All Rights Reserved. �

| //� �

| //� US Government Users Restricted Rights - Use, �

| //� duplication or disclosure restricted by GSA ADP �

| //� Schedule Contract with IBM Corp. �

| //� �

| //��

| //� �

| //� ASMAC �

| //� �

| //� THIS PROCEDURE RUNS THE HIGH LEVEL ASSEMBLER AND CAN BE USED �

| //� TO ASSEMBLE PROGRAMS. �

| //� �

| //��

| //C EXEC PGM=ASMA9�

| //SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR �1�
| //SYSUT1 DD DSN=&&SYSUT1,SPACE=(4�96,(12�,12�),,,ROUND), �2�
| // UNIT=SYSALLDA,DCB=BUFNO=1

| //SYSPRINT DD SYSOUT=� �3�
| //SYSLIN DD DSN=&&OBJ,SPACE=(3�4�,(4�,4�),,,ROUND), �4�
| // UNIT=SYSALLDA,DISP=(MOD,PASS),

| // DCB=(BLKSIZE=3�4�,LRECL=8�,RECFM=FB,BUFNO=1)

| Figure 71. Cataloged Procedure for Assembly (ASMAC)

Notes to Figure 71:

�1� This statement identifies the macro library data set. The data set name
SYS1.MACLIB is an IBM designation.

�2� This statement specifies the assembler work data set. The device class name
used here, SYSALLDA, represents a direct-access unit The I/O unit assigned
to this name is specified by the installation when the operating system is
generated. A unit name such as 3390 or SYSDA can be substituted for
SYSALLDA.

�3� This statement defines the standard system output class, SYSOUT=*, as the
destination for the assembler listing.

�4� This statement describes the data set that contains the object module
produced by the assembler.

 Chapter 9. MVS System Services and Programming Considerations 185

 Using Cataloged Procedures

Cataloged Procedure for Assembly and Link (ASMACL)
This procedure consists of two job steps: assembly and link. Use the name
ASMACL to call this procedure. This procedure produces an assembler listing, the
binder listing, and a program module.

The following example shows input to the assembler in the input job stream.
SYSLIN contains the output from the assembly step and the input to the link step.
It can be concatenated with additional input to the binder as shown in the example.
This additional input can be binder control statements or other object modules.

An example of the statements entered in the input stream to use this procedure is:

//jobname JOB

//stepname EXEC PROC=ASMACL

//C.SYSIN DD �
...

assembler source statements
...

/�

//L.SYSIN DD �
...

object module or binder control statements

/�

//L.SYSIN is necessary only if the binder is to combine modules or read editor
control information from the job stream.

Figure 72 on page 187 shows the statements that make up the ASMACL
procedure. Only those statements not previously discussed are explained in the
figure.

186 HLASM V1R5 Programmer’s Guide

 Using Cataloged Procedures

| //ASMACL PROC

| //�

| //��

| //� Licensed Materials - Property of IBM �

| //� �

| //� 5696-234 5647-A�1 �

| //� �

| //� (C) Copyright IBM Corp. 1992, 2��4. All Rights Reserved. �

| //� �

| //� US Government Users Restricted Rights - Use, �

| //� duplication or disclosure restricted by GSA ADP �

| //� Schedule Contract with IBM Corp. �

| //� �

| //��

| //� �

| //� ASMACL �

| //� �

| //� THIS PROCEDURE RUNS THE HIGH LEVEL ASSEMBLER, LINK-EDITS THE �

| //� NEWLY ASSEMBLED PROGRAM. �

| //� �

| //��

| //�

| //C EXEC PGM=ASMA9�

| //SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

| //SYSUT1 DD DSN=&&SYSUT1,SPACE=(4�96,(12�,12�),,,ROUND), �1�
| // UNIT=SYSALLDA,DCB=BUFNO=1

| //SYSPRINT DD SYSOUT=�

| //SYSLIN DD DSN=&&OBJ,SPACE=(3�4�,(4�,4�),,,ROUND),

| // UNIT=SYSALLDA,DISP=(MOD,PASS),

| // DCB=(BLKSIZE=3�4�,LRECL=8�,RECFM=FB,BUFNO=1)

| //L EXEC PGM=HEWL,PARM='MAP,LET,LIST,NCAL',COND=(8,LT,C) �2�
| //SYSLIN DD DSN=&&OBJ,DISP=(OLD,DELETE) �3�
| // DD DDNAME=SYSIN �4�
| //SYSLMOD DD DISP=(,PASS),UNIT=SYSALLDA,SPACE=(CYL,(1,1,1)), �5�
| // DSN=&&GOSET(GO)

| //SYSUT1 DD DSN=&&SYSUT1,SPACE=(1�24,(12�,12�),,,ROUND), �6�
| // UNIT=SYSALLDA,DCB=BUFNO=1

| //SYSPRINT DD SYSOUT=� �7�

| Figure 72. Cataloged Procedure for Assembling and Linking (ASMACL)

Notes to Figure 72:

�1� In this procedure, the SYSLIN DD statement describes a temporary data set,
the object module, which is passed to the binder.

�2� This statement runs the binder. The binder options in the PARM field cause
the binder to produce a cross-reference table, a module map, and a list of all
control statements processed by the binder. The NCAL option suppresses the
automatic library call function of the binder.

�3� This statement identifies the binder input data set as the same one (SYSLIN)
produced as output from the assembler.

�4� This statement is used to concatenate any input to the binder from the input
stream (object decks, binder control statements, or both) with the input from
the assembler.

 Chapter 9. MVS System Services and Programming Considerations 187

 Using Cataloged Procedures

�5� This statement specifies the binder output data set (the program load module).
As specified, the data set is deleted at the end of the job. If it is required to
retain the program module, the DSN parameter must be respecified and a
DISP parameter added. See “Overriding Statements in Cataloged Procedures”
on page 191. If you want to retain the output of the binder, the DSN
parameter must specify a library name and a member name at which the
program module is to be placed. The DISP parameter must specify either
KEEP or CATLG.

�6� This statement specifies the work data set for the binder.

�7� This statement identifies the standard output class as the destination for the
binder listing.

Cataloged Procedure for Assembly, Link, and Run (ASMACLG)
This procedure consists of three job steps: assembly, link, and run. Use the name
ASMACLG to call this procedure. It produces an assembler listing, an object
module, and a binder listing.

The statements entered in the input stream to use this procedure are:

//jobname JOB

//stepname EXEC PROC=ASMACLG

//C.SYSIN DD �
...

assembler source statements
...

/�

//L.SYSIN DD �
...

object module or binder control statements
...

/�

//G.ddname DD (parameters)

//G.ddname DD (parameters)

//G.ddname DD �
...

program input
...

/�

//L.SYSIN is necessary only if the binder is to combine modules or read binder
control information from the job stream.

//G.ddname statements are included only if necessary.

Figure 73 shows the statements that make up the ASMACLG procedure. Only
those statements not previously discussed are explained in the figure.

188 HLASM V1R5 Programmer’s Guide

 Using Cataloged Procedures

| //ASMACLG PROC

| //�

| //��

| //� Licensed Materials - Property of IBM �

| //� �

| //� 5696-234 5647-A�1 �

| //� �

| //� (C) Copyright IBM Corp. 1992, 2��4. All Rights Reserved. �

| //� �

| //� US Government Users Restricted Rights - Use, �

| //� duplication or disclosure restricted by GSA ADP �

| //� Schedule Contract with IBM Corp. �

| //� �

| //��

| //� �

| //� ASMACLG �

| //� �

| //� THIS PROCEDURE RUNS THE HIGH LEVEL ASSEMBLER, LINK-EDITS THE �

| //� NEWLY ASSEMBLED PROGRAM AND RUNS THE PROGRAM AFTER �

| //� THE LINK-EDIT IS ACCOMPLISHED. �

| //� �

| //��

| //�

| //C EXEC PGM=ASMA9�

| //SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

| //SYSUT1 DD DSN=&&SYSUT1,SPACE=(4�96,(12�,12�),,,ROUND),

| // UNIT=SYSALLDA,DCB=BUFNO=1

| //SYSPRINT DD SYSOUT=�

| //SYSLIN DD DSN=&&OBJ,SPACE=(3�4�,(4�,4�),,,ROUND),

| // UNIT=SYSALLDA,DISP=(MOD,PASS),

| // DCB=(BLKSIZE=3�4�,LRECL=8�,RECFM=FB,BUFNO=1)

| //L EXEC PGM=HEWL,PARM='MAP,LET,LIST',COND=(8,LT,C) �1�
| //SYSLIN DD DSN=&&OBJ,DISP=(OLD,DELETE)

| // DD DDNAME=SYSIN

| //SYSLMOD DD DISP=(,PASS),UNIT=SYSALLDA,SPACE=(CYL,(1,1,1)), �2�
| // DSN=&&GOSET(GO)

| //SYSUT1 DD DSN=&&SYSUT1,SPACE=(1�24,(12�,12�),,,ROUND),

| // UNIT=SYSALLDA,DCB=BUFNO=1

| //SYSPRINT DD SYSOUT=�

| //G EXEC PGM=�.L.SYSLMOD,COND=((8,LT,C),(8,LT,L)) �3�

| Figure 73. Cataloged Procedure for Assembly, Link, and Run (ASMACLG)

Notes to Figure 73:

�1� The LET binder option specified in this statement causes the binder to mark
the program module as executable, even if errors are encountered during
processing.

�2� The output of the binder is specified as a member of a temporary data set,
residing on a direct-access device, and is to be passed to a following job step.

�3� This statement runs the assembled and binder program. The notation
*.L.SYSLMOD identifies the program to be run as being in the data set
described in job step L by the DD statement named SYSLMOD.

 Chapter 9. MVS System Services and Programming Considerations 189

 Using Cataloged Procedures

Cataloged Procedure for Assembly and Run (ASMACG)
This procedure consists of two job steps: assembly and run, using the loader.
Program modules for program libraries are not produced.

Enter these statements in the input stream to use this procedure:

//jobname JOB

//stepname EXEC PROC=ASMACG

//C.SYSIN DD �
...

assembler source statements
...

/�

//G.ddname DD (parameters)

//G.ddname DD (parameters)

//G.ddname DD �
...

program input
...

/�

//G.ddname statements are included only if necessary.

Figure 74 on page 191 shows the statements that make up the ASMACG
procedure. Only those statements not previously discussed are explained in the
figure.

Use the name ASMACG to call this procedure. Assembler and loader listings are
produced. See Figure 74 on page 191.

190 HLASM V1R5 Programmer’s Guide

 Using Cataloged Procedures

| //ASMACG PROC

| //�

| //��

| //� Licensed Materials - Property of IBM �

| //� �

| //� 5696-234 5647-A�1 �

| //� �

| //� (C) Copyright IBM Corp. 1992, 2��4. All Rights Reserved. �

| //� �

| //� US Government Users Restricted Rights - Use, �

| //� duplication or disclosure restricted by GSA ADP �

| //� Schedule Contract with IBM Corp. �

| //� �

| //��

| //� �

| //� ASMACG �

| //� �

| //� THIS PROCEDURE RUNS THE HIGH LEVEL ASSEMBLER AND WILL USE �

| //� THE LOADER PROGRAM TO RUN THE NEWLY ASSEMBLED PROGRAM. �

| //� �

| //��

| //�

| //C EXEC PGM=ASMA9�

| //SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

| //SYSUT1 DD DSN=&&SYSUT1,SPACE=(4�96,(12�,12�),,,ROUND),

| // UNIT=SYSALLDA,DCB=BUFNO=1

| //SYSPRINT DD SYSOUT=�

| //SYSLIN DD DSN=&&OBJ,SPACE=(3�4�,(4�,4�),,,ROUND),

| // UNIT=SYSALLDA,DISP=(MOD,PASS),

| // DCB=(BLKSIZE=3�4�,LRECL=8�,RECFM=FB,BUFNO=1)

| //G EXEC PGM=LOADER,PARM='MAP,LET,PRINT',COND=(8,LT,C) �1�
| //SYSLIN DD DSN=&&OBJ,DISP=(OLD,DELETE) �2�
| // DD DDNAME=SYSIN

| //SYSLOUT DD SYSOUT=� �3�

| Figure 74. Cataloged Procedure for Assembly and Running Using the Loader (ASMACG)

Notes to Figure 74:

�1� This statement runs the loader. The loader options in the PARM field cause
the loader to produce a map and print the map and diagnostics. The NOCALL
option is the same as NCAL for the binder, and the LET option is the same as
for the binder.

�2� This statement defines the loader input data set as the same one produced as
output by the assembler.

�3� This statement identifies the standard output class as the destination for the
loader listing.

Overriding Statements in Cataloged Procedures
You can override any parameter in a cataloged procedure except the PGM=
parameter in the EXEC statement. Overriding of statements or fields is effective
only for the duration of the job step in which the statements appear. The
statements, as stored in the procedure library of the system, remain unchanged.

 Chapter 9. MVS System Services and Programming Considerations 191

 Using Cataloged Procedures

To respecify, add, or nullify statements, include statements in the input stream that
contain the required changes and identify the statements to be overridden.

 EXEC Statements
Any EXEC parameter (except PGM) can be overridden. For example, the PARM=
and COND= parameters can be added or, if present, respecified by including them
in the EXEC statement calling the procedure. The JCL notation to specify these
parameters is:

| //ASM EXEC PROC=ASMACLG,PARM.C=(NOOBJECT),COND.L=(8,LT,stepname.c)

stepname identifies the EXEC statement within the catalogued procedure
(ASMACLG) to which the modification applies.

If the procedure consists of more than one job step, a PARM.procstepname= or
COND.procstepname= parameter can be entered for each step. The entries must
be in order (PARM.procstepname1=, PARM.procstepname2=, ...).

 DD Statements
All parameters in the operand field of DD statements can be overridden by
including in the input stream (following the EXEC statement calling the procedure) a
DD statement with the notation //procstepname.ddname in the name field.
procstepname refers to the job step in which the statement identified by ddname
appears.

If more than one DD statement in a procedure is to be overridden, the overriding
statements must be in the same order as the statements in the procedure.

Examples of Cataloged Procedures
1. In the assembly procedure ASMAC (Figure 71 on page 185), you might want

to suppress the object module to SYSPUNCH and respecify the UNIT= and
SPACE= parameters of data set SYSUT1. In this case, the following
statements are required:

//stepname EXEC PROC=ASMAC,

// PARM=NODECK

//SYSUT1 DD UNIT=339�,

// SPACE=(4�96,(3��,4�))

//SYSIN DD �
...

assembler source statements
...

/�

2. In procedure ASMACLG (Figure 73 on page 189), you might want to suppress
the assembler listing, and add the COND= parameter to the EXEC statement
that invokes the binder. In this case, the EXEC statement in the input stream
are:

//stepname EXEC PROC=ASMACLG,

// PARM.C=(NOLIST,OBJECT),

// COND.L=(8,LT,stepname.C)

For this run of procedure ASMACLG, no assembler listing is produced, and
running of the binder job step //L would be suppressed if the return code issued
by the assembler (step C) were greater than 8.

192 HLASM V1R5 Programmer’s Guide

 Using Cataloged Procedures

When you override the PARM field in a procedure, the whole PARM field is
overridden. Thus, in this example, overriding the LIST parameter effectively
deletes PARM=(OBJECT,NODECK). PARM=(OBJECT,NODECK) must be
repeated in the override statement; otherwise, the assembler default values are
used.

3. The following example shows how to use the procedure ASMACL (Figure 72
on page 187) to:

�1� Read input from a nonlabeled 9-track tape in unit 282 that has a standard
blocking factor of 10.

�2� Put the output listing on a tape labeled TAPE10, with a data set name of
PROG1 and a blocking factor of 5.

�3� Block the SYSLIN output of the assembler and use it as input to the binder
with a blocking factor of 10.

�4� Link the module only if there are no errors in the assembly (COND=0).

�5� Link onto a previously allocated and cataloged data set USER.LIBRARY
with a member name of PROG.

//jobname JOB

//stepname EXEC PROC=ASMACL,

// COND.L=(�,NE,stepname.C) �4�
//C.SYSPRINT DD DSNAME=PROG1,UNIT=TAPE, �2�
// VOLUME=SER=TAPE1�,DCB=(BLKSIZE=665)

//C.SYSLIN DD DCB=(BLKSIZE=8��) �3�
//C.SYSIN DD UNIT=282,LABEL=(,NL), �1�
// DCB=(RECFM=FBS,BLKSIZE=8��)

//L.SYSLIN DD DCB=stepname.C.SYSLIN �3�
//L.SYSLMOD DD DSNAME=USER.LIBRARY(PROG),DISP=OLD �5�
/�

The order of appearance of overriding ddnames for job step C corresponds to
the order of ddnames in the procedure; that is, SYSPRINT precedes SYSLIN
within step C. The ddname C.SYSIN was placed last because SYSIN does not
occur at all within step C. These points are covered in the applicable JCL
Reference.

4. The following example shows assembly of two programs, link of the two object
modules produced by the assemblies into one program module, and running
the generated program. The input stream appears as follows:

//stepname1 EXEC PROC=ASMAC,PARM=OBJECT

//SYSIN DD �
...

assembler source statements for program 1
...

/�

//stepname2 EXEC PROC=ASMACLG

//C.SYSIN DD �
...

assembler source statements for program 2
...

/�

//L.SYSIN DD �

 ENTRY PROG

/�

//G.ddname DD dd statements for G step

 Chapter 9. MVS System Services and Programming Considerations 193

 Operating System Programming Conventions

The applicable JCL Reference provides additional descriptions of overriding
techniques.

Operating System Programming Conventions
Assembler programs executing on MVS must follow a set of programming
conventions to save and restore registers, and access execution parameters.
These conventions are described in the following sections.

Saving and Restoring General Register Contents
A program should save the values contained in the general registers when it
receives control and, on completion, restore these same values to the general
registers. Thus, as control is passed from the operating system to a program and,
in turn, to a subprogram, the status of the registers used by each program is
preserved. This is done through use of the SAVE and RETURN system macro
instructions.

Saving Register Contents: The SAVE macro instruction should be the first
statement in the program. It stores the contents of registers 14, 15, and 0 through
12 in an area provided by the program that passes control. When a program is
given control, register 13 contains the address of an area in which the general
register contents should be saved.

If the program calls any subprograms, or uses any operating system services other
than GETMAIN, FREEMAIN, ATTACH, and XCTL, it must first save the contents of
register 13 and then load the address of an 18-fullword save area into register 13.

Restoring Register Contents: At completion, the program restores the contents
of general registers 14, 15, and 0 through 12 by use of the RETURN system macro
instruction (which also indicates program completion). The contents of register 13
must be restored before issuing the RETURN macro instruction.

Example: The coding sequence that follows shows the basic process of saving
and restoring the contents of the registers. A complete discussion of the SAVE and
RETURN macro instructions and the saving and restoring of registers is contained

| in the z/OS MVS Programming: Assembler Services Guide.

Name Operation Operand

BEGIN SAVE (14,12)

 USING BEGIN,15
 . . .

 ST 13,SAVEBLK+4

 LA 13,SAVEBLK
 . . .

program function source statements
...

 L 13,SAVEBLK+4

 RETURN (14,12)

SAVEBLK DC 18F'�'
...

 END

194 HLASM V1R5 Programmer’s Guide

 Operating System Programming Conventions

Ending Program Execution
You indicate completion of an assembler language source program by using the
RETURN system macro instruction to pass control from the terminating program to
the program that initiated it. The initiating program might be the operating system
or, if a subprogram issued the RETURN, the program that called the subprogram.

In addition to indicating program completion and restoring register contents, the
RETURN macro instruction can also pass a return code—a condition indicator that
can be used by the program receiving control.

If the program returns to the operating system, the return code can be compared
against the condition stated in the COND= parameter of the JOB or EXEC
statement.

If the program returns to another program, the return code is available in general
register 15 and can be used as required. Your program should restore register 13
before issuing the RETURN macro instruction.

| The RETURN system macro instruction is discussed in detail in the z/OS MVS
| Programming: Assembler Services Reference, Volume 2 (IARR2V-XCTLX).

Accessing Execution Parameters
You access information in the PARM field of an EXEC statement by referring to the
contents of general register 1. When control is given to the program, general
register 1 contains the address of a fullword which, in turn, contains the address of
the data area containing the information.

The data area consists of a halfword containing the count (in binary) of the number
of information characters, followed by the information field. The information field is
aligned to a fullword boundary. Figure 75 shows how the PARM field information
is structured.

General register 1
 ┌──────────────────────────────────────┐

┌────────────┤ Address of Fullword │

 │ └──────────────────────────────────────┘

│ Points to

 │ ┌──────────────────────────────────────┐

└───────────�│ Address of Data Area ├───────────┐

 └──────────────────────────────────────┘ │

Points to │

 ┌───┘

 │

 │ ┌─────────────────┬────────────────────┐

└───────────�│ Count in Binary │ Information Field │

 └─────────────────┴────────────────────┘

Figure 75. Access to PARM Field

 Chapter 9. MVS System Services and Programming Considerations 195

 Modifying Program Modules

| Object Program Linkage
You can combine two or more object modules, whether generated by the
assembler or by another language processor, to produce a single load module.

| The object modules can be combined by the linkage editor, or z/OS binder,
provided each object module conforms to the data formats and the required linkage
conventions. This makes it possible for you to use different programming
languages for different parts of your program, allowing each part to be written in the
language best suited for it. Use the CALL system macro instruction to link an
assembler language main program to subprograms produced by another language
processor. Refer to the z/OS MVS Programming: Assembler Services Reference
for details about linkage conventions and the CALL system macro instruction.

Figure 76 is an example of statements used to establish the assembler language
program linkage to subprograms. See the applicable language programmer's guide
for information about calling the language from an assembler language program.

If any input or output operations are performed by called subprograms supply the
correct DD statements for the data sets used by the subprograms. See the
applicable language programmer's guide for an explanation of the DD statements
and special data set record formats used for the language.

ENTRPT SAVE (14,12)

 LR 12,15

 USING ENTRPT,12

 ST 13,SVAREA+4

 LA 15,SVAREA

 ST 15,8(,13)

 LR 13,15
 . . .

 CALL subprogram-name,(V1,V2,V3),VL
 . . .

 L 13,SVAREA+4

 RETURN (14,12)

SVAREA DC 18F'�'

V1 DC CL5'Data1'

V2 DC CL5'Data2'

V3 DC CL5'Data3'

 END

Figure 76. Sample Assembler Linkage Statements for Calling Subprograms

Modifying Program Modules
If the editing functions of the binder are used to modify a program module, the
entry point to the program module must be restated when the program module is
reprocessed by the binder. Otherwise, the first byte of the first control section
processed by the binder becomes the entry point. To enable restatement of the
original entry point, or designation of a new entry point, the entry point must have
been identified originally as an external symbol; that is, it must have appeared as
an entry in the external symbol dictionary. The assembler automatically identifies
external symbols if the entry point is the name of a control section or START
statement; otherwise, you must use an assembler ENTRY statement to identify the
entry point as an external symbol.

196 HLASM V1R5 Programmer’s Guide

 Modifying Program Modules

When a new object module is added to or replaces part of the load module, the
entry point is restated in one of three ways:

� By placing the entry point symbol in the operand field of an EXTRN statement
and an END statement in the new object module,

or
� By using an END statement in the new object module to designate a new entry

point in the new object module,
or
� By using a binder ENTRY statement to designate either the original entry point

or a new entry point for the program module.

| Further discussion of program module entry points is contained in the z/OS MVS
| Program Management: User's Guide and Reference.

 Chapter 9. MVS System Services and Programming Considerations 197

 Modifying Program Modules

198 HLASM V1R5 Programmer’s Guide

 Part 3. Developing Assembler Programs on CMS

Part 3. Developing Assembler Programs on CMS

Chapter 10. Assembling Your Program on CMS 200
Input to the Assembler . 200
Output from the Assembler . 200
Accessing the Assembler . 200
Invoking the Assembler on CMS . 201
Batch Assembling . 202
Controlling Your Assembly . 202
Input and Output Files . 203

Specifying the Source File: SYSIN . 205
Specifying the Option File: ASMAOPT . 207
Specifying Macro and Copy Code Libraries: SYSLIB 207
Specifying the Listing File: SYSPRINT . 207
Directing Assembler Messages to Your Terminal: SYSTERM 208
Specifying Object Code Files: SYSLIN and SYSPUNCH 208
Specifying the Associated Data File: SYSADATA 208

Return Codes . 208
Diagnostic Messages Written by CMS . 209

Chapter 11. Running Your Program on CMS 210
Using the CMS LOAD and START Commands 210
Using the CMS GENMOD Command . 210
Using the CMS LKED and OSRUN Commands 211
Using the CMS Batch Facility . 212

Chapter 12. CMS System Services and Programming Considerations . . 213
Using Macros . 213

Assembler Macros Supported by CMS . 213
Adding Definitions to a Macro Library . 213

Operating System Programming Conventions . 213
Saving and Restoring General Register Contents 213
Ending Program Execution . 214
Passing Parameters to Your Assembler Language Program 215

 Copyright IBM Corp. 1982, 2004 199

 Accessing the Assembler

Chapter 10. Assembling Your Program on CMS

This chapter describes how to invoke the assembler on CMS (Conversational
Monitor System). It describes:

� The input to the assembler.
� The output from the assembler
� How to gain access to the High Level Assembler product files.
� How to invoke the assembler on CMS.
� How to assemble multiple source programs using the BATCH option.
� Special options for invoking the assembler on CMS.
� The data sets used by the assembler.
� The assembler return codes.
� Special diagnostic messages when invoking the assembler on CMS.

To use this section effectively, you should be familiar with the assembler language
described in the HLASM V1R5 Language Reference.

The assembler language program can be run under control of CMS. For more
information about CMS, refer to the applicable CP Command Reference for
General Users and CMS Command and Macro Reference.

Input to the Assembler
As input, the assembler accepts a program written in the assembler language as
defined in the HLASM V1R5 Language Reference. This program is referred to as a
source module. Some statements in the source module (macro or COPY
instructions) can cause additional input to be obtained from a macro library.

Input can also be obtained from user exits. See Chapter 4, “Providing User Exits”
on page 85 for more information.

Output from the Assembler
The output from the assembler can consist of an object module, a program listing,
terminal messages and an associated data file. The object module is stored on
your virtual disk in a TEXT file. You can bring it into your virtual storage and run it
by using the CMS LOAD and START commands. The program listing lists all the
statements in the module, both in source and machine language format, and gives
other important information about the assembly, such as error messages. The
listing is described in detail in Chapter 2, “Using the Assembler Listing” on page 8.

Accessing the Assembler
To access the High Level Assembler on CMS, you must first link to the mini-disk
containing the assembler by issuing the CP LINK command. You must then issue
the ACCESS command to assign a file mode, and make the mini-disk available to
CMS. For example:

CP LINK PRODUCT 194 198 RR PASSWORD

ACCESS 198 B

200 Copyright IBM Corp. 1982, 2004

 Invoking the Assembler on CMS

In this example, you have linked to disk 194 of the virtual machine that contains the
High Level Assembler product, and whose user ID is PRODUCT. You have
defined disk 194 as 198 to your VM session. You have read access to the disk
(RR) and you specified the read-share password for the 194 disk (PASSWORD).

After you linked to the 194 disk as 198, you accessed the 198 disk as disk B on
your system. After you have access to the product disk, you can invoke the
assembler using the ASMAHL command (see “Invoking the Assembler on CMS”).

If High Level Assembler is stored on your A-disk, or another disk to which you
already have access, you can omit the CP LINK and ACCESS commands. If High
Level Assembler is not on a disk that you have accessed, you can put the CP LINK
and ACCESS commands into your PROFILE EXEC, which issues them for you
each time you log on. For more information on the CP LINK and ACCESS
commands, see the applicable CP Command Reference for your VM environment,
as listed under “Bibliography” on page 429.

Invoking the Assembler on CMS
Use the ASMAHL command to invoke and control assembly of assembler source
programs on CMS.

The format of the ASMAHL command is:

��─ ─ASMAHL─ ──┬ ┬────────── ──┬ ┬────────────────────── ─��
 └ ┘─filename─ │ │┌ ┐──┬ ┬─── ─
 │ ││ │└ ┘─,─
 └ ┘──(───

┴─option─ ──┬ ┬───

 └ ┘─)─

where:

filename Is the name of your assembler source program.

Use one of the three methods available for specifying your assembler
source program. See “Specifying the Source File: SYSIN” on page 205
for details on each of these methods.

option Represents one or more assembler options, separated by a space or
comma, that you want in effect during assembly. These assembler
options are equivalent to the options you would specify on the PARM
parameter of an EXEC job control statement, if you were invoking the
assembler on MVS.

A complete list and discussion of assembler options can be found under
Chapter 3, “Controlling Your Assembly with Options” on page 41.

The assembler options in effect are determined by the default options
that were set when High Level Assembler was installed, and by the
options you specify with the ASMAHL command. There are also several
assembler options that can only be specified when running on CMS; see
“Controlling Your Assembly” on page 202.

Synonym for ASMAHL Command: Your installation might have created a
synonym for ASMAHL when High Level Assembler was installed. See your system
programmer for the specific command name.

 Chapter 10. Assembling Your Program on CMS 201

 Controlling Your Assembly

 Batch Assembling
You can assemble a sequence of separate assembler programs with a single
invocation of the assembler, using the BATCH option. The object programs
produced from this assembly can be link-edited into either a single load module or
separate load modules.

When the BATCH option is specified, each assembler program in the sequence
must be terminated by an END statement, including the last program in the batch.
If an END statement is omitted, the program assembles with the next program in
the sequence. If the END statement is omitted from the last program in the
sequence, the assembler generates an END statement.

| If separate executable modules are to be produced, you must either separate the
| object modules, or write a NAME linkage editor control statement for each load
| module. The NAME statement must be written at the end of the object module.

Figure 77 shows how to create two load modules, SECT1 and SECT2.

SECT1 CSECT Start of first load module
...

 Source instructions
 . . .

END End of first load module

PUNCH ' NAME SECT1(R)'

 END

SECT2 CSECT Start of second load module
...

 Source instructions
 . . .

END End of second load module

PUNCH ' NAME SECT2(R)'

 END

Figure 77. Example of Creating Two Load Modules on CMS

| If separate TEXT files are required, you must either manually separate the BATCH-
| produced object modules into separate TEXT files, or issue two separate ASMAHL
| commands for separate source modules.

Controlling Your Assembly
The assembly options are specified on the ASMAHL command after the left
parenthesis. The options that can be specified to control your assembly are
described in Chapter 3, “Controlling Your Assembly with Options” on page 41.

On CMS, there are additional options that can be specified. These are described in
Chapter 3, “Controlling Your Assembly with Options” on page 41, and consist of:

ERASE Deletes LISTING, TEXT, and SYSADATA files before the assembly
begins.

| LINECOUNT Specifies the number of lines to be printed on each page of the
assembler listing.

202 HLASM V1R5 Programmer’s Guide

 Input and Output Files

NOSEG Specifies that the assembler load modules are loaded from disk.
The default is to load the modules from the Logical Saved Segment
(LSEG); but, if the LSEG is not available, then load the modules
from disk.

PRINT Directs the assembler listing to the virtual printer, instead of to disk.

SEG Specifies that the assembler load modules are loaded from the
Logical Saved Segment (LSEG). The default is to load the modules
from the LSEG; but, if the LSEG is not available, then load the
modules from disk.

SYSPARM A question mark (?) can be specified in the SYSPARM string, which
instructs the assembler to prompt you for a character string at your
terminal.

Input and Output Files
Depending on the options in effect, High Level Assembler requires the files as
shown in Figure 78.

 ┌──────────────┐

│ SYSIN │ ┌─────────────┐

└───────────┬──┘ ┌──┤ ASMAOPT │

 │ │ └─────────────┘

 │ │

 ┌──────────────┐ ┌──────────────┐

│ SYSLIB ├──────────�│ Assembler │

 └──────────────┘ └───────┬──────┘

 │

 ┌──────────────┬──────────────┬──────────────┬──────────────┐

│ │ │ │ │

┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐

│ SYSPRINT │ │ SYSTERM │ │ SYSLIN │ │ SYSPUNCH │ │ SYSADATA │

└───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘

Figure 78. High Level Assembler Files

The ddnames can be overridden during installation.

High Level Assembler requires the following files:

SYSIN An input file containing the source statements to be processed.

SYSLIB A file containing macro definitions (for macro definitions not
defined in the source program), source code to be called for
through COPY assembler instructions, or both.

SYSPRINT A file containing the assembly listing (if the LIST option is in
effect).

SYSTERM A file containing essentially a condensed form of SYSPRINT,
principally error flagged statements and their error messages (only
if the TERM option is in effect).

SYSPUNCH A file containing object module output, usually for punching (only if
the DECK option is in effect).

 Chapter 10. Assembling Your Program on CMS 203

 Input and Output Files

SYSLIN A file containing object module output usually for the linkage editor
(only if the OBJECT option is in effect).

SYSADATA A file containing associated data output (only if the ADATA option
is in effect).

The files listed above are described in the text following Figure 79. The
characteristics of these files, those set by the assembler and those you can
override, are shown in Figure 79.

Notes to Figure 79:

�1� If you specify EXIT(PRTEXIT) and the user exit specifies the logical record
length, the logical record length returned is used, unless the SYSPRINT data
set has a variable-length record format in which case the LRECL used is 4
bytes greater than the value returned by the exit. If EXIT(PRTEXIT) has not
been specified or the user exit does not specify a record length, the record
length from the FILEDEF command or file label is used, if present. Otherwise,
the record length defaults to 133, or 137 if the record format is variable-length.

The minimum record length allowed for SYSPRINT is 121, and the maximum
allowed is 255. If the record format is variable-length, the LRECL should be at
least 125 or 137 depending on the LIST option.

�2� If you specify EXIT(TRMEXIT) and the user exit specifies the logical record
length, the logical record length returned is used. If you do not specify
EXIT(TRMEXIT) or the user exit does not specify a record length, the record
length from the FILEDEF command or file label is used, if present. If not
present, the record length defaults to the record length for SYSPRINT (if the
LIST option is in effect) or 133 otherwise.

The maximum record length allowed for SYSTERM is 255.

�3� Both fixed and variable formats are supported; the default is fixed.

�4� If specified, the BLKSIZE must equal the LRECL, or be a multiple of the
LRECL. If BLKSIZE is not specified, it is set to LRECL.

�5� The BLKSIZE on the FILEDEF command or the file label must equal the
LRECL, or be a multiple of the LRECL.

Figure 79. Assembler File Characteristics

File Access
Method

Logical Record
Length (LRECL)

Block Size
(BLKSIZE)

Record Format
(RECFM)

SYSIN QSAM 80 �4� �7��1��

ASMAOPT QSAM �11� �6� Fixed/Variable

SYSLIB BPAM 80 �5� �7��1��

SYSPRINT QSAM �1� �6� �8��1��

SYSTERM QSAM �2� �4� �9��1��

SYSPUNCH QSAM �12� �4� �3�

SYSLIN QSAM �12� �4� �3�

SYSADATA QSAM| 32756| 32760 or
| greater

VB

204 HLASM V1R5 Programmer’s Guide

 Input and Output Files

�6� The blocksize must be equal to or a multiple of the record length if the record
format is fixed. If the record format is variable, then the blocksize must be at
least 4 bytes greater than the record length.

�7� Set by the assembler to F (or FB) if necessary.

�8� Both fixed and variable formats are supported; the default is variable. If the
FILEDEF command or file label specifies machine or ASA control characters,
the ASA option is set or reset accordingly. If machine or ASA control
characters are not specified on the FILEDEF command or file label, the record
format is modified according to the ASA option.

�9� Set by the assembler to F (or FB) if necessary. The record format is set to FA
(or FBA) if the ASA option is specified, or FM (or FBM) otherwise.

�1�� You can specify B, S, or T, or any combination of these.

�11� The minimum record length allowed for ASMAOPT is 5. The maximum record
length allowed is 32756 if the record format is variable-length or 32760 if the
record format is fixed-length.

�12� If you specify the OBJECT option,the logical record length must be 80. If you
specify the GOFF option, the object module can be generated with either
fixed-length records of 80 bytes, or variable-length records up to a BLKSIZE of
32720.

Specifying the Source File: SYSIN
Use one of the following methods for specifying your assembler source program:

� Specify the filename of the assembler source program on the ASMAHL
command line,

or
� Issue a FILEDEF for SYSIN before issuing the ASMAHL command,

or
� Supply source statements from a user-supplied module by using the EXIT

assembler option.

Specify the Filename on the Command Line: Using this method, you specify
the filename of your assembler source program on the ASMAHL command line.
For example:

ASMAHL PROG1 (LIST,XREF(SHORT))

assembles the source program named PROG1 using the assembler options LIST
and XREF(SHORT). The source program must have a filetype of ASSEMBLE.
The ASMAHL command issues the following FILEDEF command:

FILEDEF SYSIN DISK PROG1 ASSEMBLE � (RECFM FB LRECL 8� BLOCK 16���

Issue a FILEDEF for SYSIN: Another method you can use to specify the
assembler source program is to issue a FILEDEF for SYSIN before the assembly.
The assembler then assembles the program specified in the FILEDEF. For
example:

FILEDEF SYSIN DISK PROG2 ASSEMBLE A

ASMAHL (LIST,XREF)

assembles the program named PROG2, using the options specified on the ASMAHL
command line. When you issue a FILEDEF for SYSIN, the source program you
specify with the FILEDEF is the one used for input by the assembler.

 Chapter 10. Assembling Your Program on CMS 205

 Input and Output Files

If the FILEDEF for SYSIN is issued and the FILEDEF specifies a DISK file, the
filename on the ASMAHL command is optional. If the filename is specified on the
ASMAHL command, the filename must match the filename of the file specified on
the FILEDEF. Additionally, when using a FILEDEF, the file type need not be
ASSEMBLE.

You can read MVS data sets and VSE files as CMS files by defining those data
with the FILEDEF command. For example,

FILEDEF SYSIN DISK OSDS ASSEMBLE fm DSN OS DATASET (options...

You can also assemble a member of an OS partitioned data set or a CMS MACLIB
by using the MEMBER parameter of the FILEDEF command. When you specify
member parameter, the member name is used as the filename for the LISTING,
TEXT, and SYSADATA files.

If you want to assemble a source file that is in your CMS virtual reader, issue the
following FILEDEF command:

FILEDEF SYSIN READER

and then issue the ASMAHL command. You must specify the filename on the
ASMAHL command. The filename is used as the file name of the LISTING, TEXT,
and SYSADATA files.

Similarly, if you have a tape containing an assembler input file that you want to
assemble, you must issue the following command before issuing the ASMAHL
command:

FILEDEF SYSIN TAPn (RECFM F LRECL 8� BLOCK 8�

If the blocksize of the file were 800 bytes, you could specify BLOCK 800 as in the
preceding FILEDEF.

If the FILEDEF command specifies a tape file, the filename must be specified on
the ASMAHL command. The filename is used as the filename of the LISTING,
TEXT, and SYSADATA files.

Make sure that any attributes specified for a file conform to the attributes expected
by the assembler for the device.

Specify Source Using the EXIT Option: If you are using an input user exit to
provide source statements to the assembler, the FILEDEF for SYSIN is not
required. For example:

ASMAHL PROG2 (EXIT(INEXIT(INMOD1('ABCD'))),LIST,XREF(SHORT))

assembles the source statements provided by the input user module named INMOD1
using the character string ABCD, and also the assembler options LIST and
XREF(SHORT). (For specific details on using the EXIT assembler option, see
page 52).

Specify the filename on the ASMAHL command, or a FILEDEF for SYSIN, before
issuing the ASMAHL command as described above. This is required even if the
assembler does not read the input file. The filename specified on the ASMAHL
command, or from the FILEDEF for SYSIN, is used as the filename of the LISTING,
TEXT, and SYSADATA files.

206 HLASM V1R5 Programmer’s Guide

 Input and Output Files

If you specify the INEXIT option, the ASMAHL command does not check whether
the input file exists. If the SOURCE user exit instructs the assembler to open the
primary input file, the open fails if the file does not exist.

Specifying the Option File: ASMAOPT
You must issue an ASMAOPT FILEDEF command if you wish the assembler to use
the options in this file. For example

FILEDEF ASMAOPT DISK PROG1 OPTIONS �

Specifying Macro and Copy Code Libraries: SYSLIB
If you don't issue SYSLIB FILEDEF before the ASMAHL command, the ASMAHL
command issues the following FILEDEF command:

FILEDEF SYSLIB DISK CMSLIB MACLIB � (RECFM FB LRECL 8� BLOCK 8���

Use the GLOBAL command to identify which CMS libraries are to be searched for
macro definitions and COPY code. Private libraries and CMSLIB can be
concatenated with each other in any order by the GLOBAL command. The format
of this command is described in the applicable CMS Command and Macro
Reference.

You can concatenate a CMS MACLIB with an OS partitioned data set. When this
is required, the library with the largest blocksize must be specified first, as in the
following example:

FILEDEF SYSLIB DISK MYLIB MACLIB M DSN ATR��5.MACLIB

FILEDEF SYSLIB DISK OSMACRO MACLIB S (CONCAT

GLOBAL MACLIB MYLIB OSMACRO

Specifying the Listing File: SYSPRINT
If you specify the PRINT option, and you don't issue SYSPRINT FILEDEF before
the ASMAHL command, the ASMAHL command issues the following FILEDEF
command:

FILEDEF SYSPRINT PRINTER

If you specify the DISK option (which is the default), and you don't issue
SYSPRINT FILEDEF before the ASMAHL command, the ASMAHL command
issues the following FILEDEF command:

FILEDEF SYSPRINT DISK fn LISTING m1 (RECFM VB BLOCK 133��

where fn is the filename specified on the ASMAHL command. If the assembler
source file (SYSIN input) is not on disk or is on a read-only disk, the file mode m is
set to the first available read/write disk. If the source file is on a read/write disk, the
mode letter m is set to the mode of that read/write disk. For example, if the source
file were on a read/write B disk, the file mode m1 would be set to “B1”.

You can issue a FILEDEF command for SYSPRINT before the ASMAHL command
to direct the listing to the terminal, printer, or a disk file. See “PRINT (CMS)” on
page 70 for details about the CMS options for SYSPRINT.

 Chapter 10. Assembling Your Program on CMS 207

 Return Codes

Directing Assembler Messages to Your Terminal: SYSTERM
If you don't issue a SYSTERM FILEDEF command before the ASMAHL command,
the ASMAHL command issues the following FILEDEF command:

FILEDEF SYSTERM TERMINAL

You can issue a FILEDEF command for SYSTERM before the ASMAHL command
to direct the listing to the terminal, printer, or a disk file.

Specifying Object Code Files: SYSLIN and SYSPUNCH
If you don't issue a SYSPUNCH or SYSLIN FILEDEF command before the
ASMAHL command, the ASMAHL command issues the following FILEDEF
commands:

FILEDEF SYSPUNCH PUNCH

FILEDEF SYSLIN DISK fn TEXT m1 (RECFM FB LRECL 8� BLOCK 16���

where fn is the filename specified on the ASMAHL command. If the assembler
source file (SYSIN input) is not on disk or is on a read-only disk, the file mode m is
set to the first available read/write disk. If the source file is on a read/write disk, the
mode letter m is set to the mode of that read/write disk. For example, if the source
file were on a read/write B disk, the file mode m1 would be set to “B1”.

You can issue a FILEDEF command for SYSPUNCH or SYSLIN before the
ASMAHL command is issued to direct the object output to the punch or a disk file.

Specifying the Associated Data File: SYSADATA
If you don't issue a SYSADATA FILEDEF command before the ASMAHL
command, the ASMAHL command issues the following FILEDEF command:

| FILEDEF SYSADATA DISK fn SYSADATA m1 (RECFM VB LRECL 32756 BLOCK 3276�

where fn is the filename specified on the ASMAHL command, and if the assembler
source file (SYSIN input) is not on disk or is on a read-only disk, the file mode m is
set to the first available read/write disk. If the source file is on a read/write disk, the
mode letter m is set to the mode of that read/write disk. For example, if the source
file were on a read/write B disk, the file mode m1 would be set to “B1”.

A FILEDEF command for SYSADATA can be issued before the ASMAHL command
is issued to direct the associated data output to a different file.

 Return Codes
High Level Assembler issues return codes that are returned to the caller. If High
Level Assembler is called from an EXEC, the EXEC can check the return code.

The return code issued by the assembler is the highest severity code that is
associated with any error detected in the assembly, or with any MNOTE message
produced by the source program or macro instructions. The return code can be
controlled by the FLAG(n) assembler option described on page 55. See
Appendix G, “High Level Assembler Messages” on page 336 for a listing of the
assembler errors and their severity codes.

208 HLASM V1R5 Programmer’s Guide

 Diagnostic Messages Written by CMS

Diagnostic Messages Written by CMS
If an error occurs during the running of the ASMAHL command, a message might
be written at the terminal and, at completion of the command, register 15 contains
a non-zero return code.

Two types of messages might be issued:

� Messages that are issued by the assembler (see Appendix G, “High Level
Assembler Messages” on page 336).

� Messages that are issued by the ASMAHL command processor (see “ASMAHL
Command Error Messages (CMS)” on page 385).

The messages issued by the ASMAHL command processor are in two parts: a
message code and the message text. The message code is in the form
ASMACMSnnnt, where ASMACMS indicates that the message was generated by the
ASMAHL command program, nnn is the number of the message, and t is the type
of message. The message text describes the error condition.

You can use the CP command SET EMSG to control what part of the diagnostic
message to display. Figure 80 shows the SET EMSG options you can specify, and
how they affect the message display.

Refer to the applicable CP Command Reference for General Users for details about
the CP SET command.

When you specify the TERM assembler option, diagnostic messages are written to
the terminal in the form ASMAnnns. Errors detected by the ASMAHL command
program, which terminate the command before High Level Assembler is called,
result in error messages (type E).

Figure 80. CP SET EMSG Command Options

SET EMSG
Option

Part of Message Displayed

CODE Displays the message code only.

OFF Suppresses the entire message text and
message code.

ON Displays the entire message text and the
message code.

TEXT Displays the message text only.

 Chapter 10. Assembling Your Program on CMS 209

 Using the CMS GENMOD Command

Chapter 11. Running Your Program on CMS

| There are three ways to run your assembled program under any level of CMS:

� Using the CMS LOAD and START commands.

� Using the CMS GENMOD command to create a program module and then
using the module filename to cause the module to be run.

� Using the CMS LKED and OSRUN commands.

Any of these three methods can be used under the control of the CMS batch
facility.

Using the CMS LOAD and START Commands
After you have assembled your program, you can run the object program in the
TEXT file produced by the assembler. The TEXT file produced is relocatable and
can be run merely by loading it into virtual storage with the LOAD command and
using the START command to begin running. For example, if you have assembled
a source program named CREATE, you have a file named CREATE TEXT. Use
the LOAD command to load your program into storage, and then use the START
command to run the program:

LOAD CREATE

START

In this example, the file CREATE TEXT contains the object code from the
assembly.

The CMS START command can be used to pass user-defined parameters. For a
complete description of the START command, see the applicable CMS Command
Reference for your VM environment, as listed under “Bibliography” on page 429.

Using the CMS GENMOD Command
When your programs are debugged and tested, you can use the LOAD and
INCLUDE commands, in conjunction with the GENMOD command, to create
program modules. A module is a relocatable or non-relocatable object program
whose external references have been resolved. In CMS, these files must have a
filetype of MODULE.

To create a program module, load the TEXT files or TXTLIB members into storage
and issue the GENMOD command:

LOAD CREATE ANALYZE PRINT

GENMOD PROCESS

In this example, CREATE, ANALYZE, and PRINT are TEXT files that you are
combining into a module named PROCESS; PROCESS is the filename you are
assigning to the module, which has a filetype of MODULE. If you use the name of
an existing MODULE file, the old one is replaced.

210 Copyright IBM Corp. 1982, 2004

 Using the CMS LKED and OSRUN Commands

From then on, any time you want to run the program composed of the object files
CREATE, ANALYZE, and PRINT, enter:

PROCESS

If PROCESS requires input files, output files, or both, you must define these files
before PROCESS can run correctly.

For more information on creating program modules, see the applicable CMS User's
Guide for your particular VM environment, as listed under “Bibliography” on
page 429.

Using the CMS LKED and OSRUN Commands
A LOADLIB is another type of library available to you on CMS. LOADLIBs, like
MACLIBs and TXTLIBs, are in CMS-simulated partitioned data set formats. Unlike
TXTLIBs, which contain object programs that need to be link-edited when they are
loaded, LOADLIBs contain programs that have already been link-edited, thus
saving the overhead of the link-editing process every time the program is loaded.
You can load the members of TXTLIBs by both CMS loading facilities (LOAD or
INCLUDE command) and certain OS macros (such as LINK, LOAD, ATTACH, or
XCTL), but you can only load the members of LOADLIBs that use these OS
macros.

Use the LKED command to create a CMS LOADLIB. For example:

FILEDEF SYSLIB DISK USERTXT TXTLIB �

LKED TESTFILE

This example takes a CMS TEXT file with the filename of TESTFILE and creates a
file named TESTFILE LOADLIB, using the SYSLIB to resolve external references.
TESTFILE LOADLIB is a CMS-simulated partitioned data set containing one
member, named TESTFILE.

To use the OSRUN command to run TESTFILE, first use the GLOBAL command to
identify which libraries are to be searched when processing subsequent CMS
commands. For example:

GLOBAL LOADLIB TESTFILE

OSRUN TESTFILE

The OSRUN command causes the TESTFILE member of the TESTFILE LOADLIB
to be loaded, relocated, and run.

User parameters can be added on the line with the OSRUN command, but they are
passed in OS format. For a complete description of the OSRUN command, see the
applicable CMS Command Reference for your particular VM environment, as listed
under “Bibliography” on page 429.

 Chapter 11. Running Your Program on CMS 211

 Using the CMS Batch Facility

Using the CMS Batch Facility
The CMS batch facility provides a way of submitting jobs for batch processing in
CMS, and can be used to run an assembler program. You can use this facility
when either:

� You have a job that takes a lot of time, and you want to be able to use your
terminal for other work while the job is running,

or
� You do not have access to a terminal.

The CMS batch facility is really a virtual machine, generated and controlled by the
system operator, who logs onto VM using the batch user ID and invokes the
CMSBATCH command. All jobs submitted for batch processing are spooled to the
user ID of this virtual machine, which runs the jobs sequentially. To use the CMS
batch facility at your location, you must contact the system operator to learn the
user ID of the batch virtual machine.

You can run High Level Assembler under the control of the CMS batch facility.
Terminal input can be read from the console stack. In order to prevent your batch
job from being cancelled, make sure that stacked input is available if your program
requests input from the terminal. For further information on using the CMS batch
facility, see the applicable CMS User's Guide for your particular VM environment,
as listed under “Bibliography” on page 429.

212 HLASM V1R5 Programmer’s Guide

 Operating System Programming Conventions

Chapter 12. CMS System Services and Programming
Considerations

This chapter describes some of the CMS system services and program
development facilities that assist you in developing your assembler program. It
provides the following information:

� Assembler macros supported by CMS.
� Adding definitions to a macro library.
� Saving and restoring general register contents.
� Ending program execution.
� Passing parameters to your assembler language program.

 Using Macros

Assembler Macros Supported by CMS
There are several CMS assembler macros you can use in assembler programs.
Among the services provided by these macros are: the ability to write a record to
disk, to read a record from disk, to write lines to a virtual printer, and so on. All the
CMS assembler macros are described in the applicable CMS Command and Macro
Reference, listed under “Bibliography” on page 429.

Adding Definitions to a Macro Library
Macro definitions, and members containing assembler source statements that can
be read by a COPY instruction, can be added to a macro library. Use the CMS
MACLIB command to create and modify CMS macro libraries. In the following
example, a macro with a filename of NEWMAC and filetype of MACRO is added to
the MACLIB with a filename of MYLIB.

MACLIB ADD MYLIB NEWMAC

Details of this command are described in the applicable CMS Command and Macro
Reference, listed under “Bibliography” on page 429.

Operating System Programming Conventions
Assembler programs executing on CMS must follow a set of programming
conventions to save and restore registers, and access execution parameters.
These conventions are described in the following sections.

Saving and Restoring General Register Contents
A program should save the values contained in the general registers when it
receives control and, on completion, restore these same values to the general
registers. Thus, as control is passed from the operating system to a program and,
in turn, to a subprogram, the status of the registers used by each program is
preserved. This is done through use of the SAVE and RETURN system macro
instructions.

 Copyright IBM Corp. 1982, 2004 213

 Operating System Programming Conventions

Saving Register Contents: The SAVE macro instruction should be the first
statement in the program. It stores the contents of registers 14, 15, and 0 through
12 in an area provided by the program that passes control. When a program is
given control, register 13 contains the address of an area in which the general
register contents should be saved.

If the program calls any subprograms, or uses any operating system services other
than GETMAIN, FREEMAIN, ATTACH, and XCTL, it must first save the contents of
register 13 and then load the address of an 18-fullword save area into register 13.
This save area is in the program and is used by any subprograms or operating
system services called by the program.

Restoring Register Contents: At completion, the program restores the contents
of general registers 14, 15, and 0 through 12 by use of the RETURN system macro
instruction (which also indicates program completion). The contents of register 13
must be restored before issuing the RETURN macro instruction.

Example: The coding sequence that follows shows the basic process of saving
and restoring the contents of the registers. See the VM/ESA CMS Application
Development Reference for Assembler for further information about the SAVE and
RETURN macros.

Name Operation Operand

CSECTNAM SAVE (14,12)

 USING CSECTNAM,15
 . . .

 ST 13,SAVEAREA+4

 LA 13,SAVEAREA
 . . .

program function source statements
...

 L 13,SAVEAREA+4

 RETURN (14,12)

SAVEAREA DC 18F'�'
...

 END

Ending Program Execution
You indicate completion of an assembler language source program by using the
RETURN system macro instruction to pass control from the terminating program to
the program that initiated it. The initiating program may be the operating system or,
if a subprogram issued the RETURN, the program that called the subprogram.

In addition to indicating program completion and restoring register contents, the
RETURN macro instruction may also pass a return code—a condition indicator that
may be used by the program receiving control.

If the program returns to the operating system, the return code can be compared
against the condition stated in the COND= parameter of the JOB or EXEC
statement.

If return is to another program, the return code is available in general register 15,
and may be used as required. Your program should restore register 13 before
issuing the RETURN macro instruction.

214 HLASM V1R5 Programmer’s Guide

 Operating System Programming Conventions

The RETURN system macro instruction is discussed in detail in the VM/ESA CMS
Application Development Reference for Assembler.

Passing Parameters to Your Assembler Language Program
On CMS, you can pass parameters to an assembler language program by means
of the START command. The statement below shows how to pass parameters to
your program using the CMS START command:

START MYJOB PARM1 PARM2

The parameters must be no longer than 8 characters each, and must be separated
by spaces.

CMS creates a list of the parameters that are passed to the program when it is run.
The address of the parameters is passed in register 1. The parameter list for the
command above is:

PLIST DS �D

 DC CL8'MYJOB'

 DC CL8'PARM1'

 DC CL8'PARM2'

 DC 8X'FF'

where the list is terminated by hexadecimal FFs.

If your program is started using the CMS OSRUN command, the parameters are
| passed in the same way as described for MVS in “Accessing Execution

Parameters” on page 195.

If a module was created using the CMS GENMOD command and run using the
MODULE name, the parameters are passed in extended parameter list format. The
address of the parameter list is passed in register 0.

The format of the extended parameter list is:

Offset Field
0 Address of command name
4 Address of beginning of options
8 Address of end of options
12 User word
16 Reserved

 Chapter 12. CMS System Services and Programming Considerations 215

 Operating System Programming Conventions

216 HLASM V1R5 Programmer’s Guide

 Part 4. Developing Assembler Programs on VSE

Part 4. Developing Assembler Programs on VSE

Chapter 13. Assembling Your Program on VSE 218
Input to the Assembler . 218
Output from the Assembler . 218
Invoking the Assembler in Batch . 218
Invoking the Assembler on ICCF . 220
Invoking the Assembler Dynamically . 222
Batch Assembling . 222
Controlling Your Assembly . 223
Input and Output Files . 224

Specifying the Source File: SYSIPT . 226
Specifying Macro and Copy Code Libraries: LIBDEF Job Control Statement 226
Specifying the Listing File: SYSLST . 227
Directing Assembler Messages to Your Console Log: SYSLOG 227
Specifying Object Code Files: SYSLNK and SYSPCH 227
Specifying the Associated Data File: SYSADAT 228

Return Codes . 228

Chapter 14. Link-Editing and Running Your Program on VSE 229
The Linkage Editor . 229
Creating a Phase . 229
Input to the Linkage Editor . 230

Inputting Object Modules . 230
Files for Linkage Editor Processing . 230
Inputting additional Object Modules . 231
Linkage Editor Control Statements . 231

Output from the Linkage Editor . 232
Running your Assembled Program . 233

Chapter 15. VSE System Services and Programming Considerations . . . 234
Adding Definitions to a Macro Library . 234
Processing E-Decks . 234
Operating System Programming Conventions . 235

Saving and Restoring General Register Contents 235
Ending Program Execution . 236
Accessing Execution Parameters . 236

 Copyright IBM Corp. 1982, 2004 217

 Invoking the Assembler in Batch

Chapter 13. Assembling Your Program on VSE

This chapter describes how to invoke High Level Assembler on VSE. It describes
the job control required to run the assembler, files used by the assembler and
return codes. The job control language is described in detail in the applicable
System Control Statements manual.

Input to the Assembler
As input, the assembler accepts a program written in the assembler language as
defined in the HLASM V1R5 Language Reference. This program is referred to as a
source module. Some statements in the source module (macro or COPY
instructions) can cause additional input to be obtained from a macro library.

Output from the Assembler
The output from the assembler can consist of an object module, a program listing,
terminal messages, and an associated data file. The object module can be written
to a data set residing on a direct access device or a magnetic tape. From that file,
the object module can be read and processed by the linkage editor or the loader.
See Appendix C, “Object Deck Output” on page 261 for the format of the object
module.

The program listing lists all the statements in the module, both in source and
machine language format, and gives other important information about the
assembly, such as error messages. The listing is described in detail in Chapter 2,
“Using the Assembler Listing” on page 8.

Invoking the Assembler in Batch
The JCL for running an assembly includes:

� A job description.
� Definitions for the files needed.
� A statement to run the assembler.

The following example shows how to run the assembler.

218 Copyright IBM Corp. 1982, 2004

 Invoking the Assembler in Batch

// JOB jobname �1�
// DLBL IJSYS�3,'HLASM.WORK.IJSYS�3',�,VSAM,RECSIZE=4�96, �2�
 RECORDS=(1��,5�),DISP=(NEW,KEEP),CAT=VSESPUC

// DLBL IJSYSLN,'HLASM.WORK.IJSYSLN',�,VSAM,RECSIZE=322, �3�
 RECORDS=(1��,5�),DISP=(NEW,KEEP),CAT=VSESPUC

// LIBDEF PHASE,SEARCH=(PRD2.PROD) �4�
// LIBDEF SOURCE,SEARCH=(lib.sublib) �5�
// OPTION LINK �6�
// EXEC ASMA9�,SIZE=ASMA9� �7�
...

Assembler source statements
...

/� �8�
/& �9�

Figure 81. JCL to Assemble a Program

�1� Identifies the beginning of your job to the operating system. jobname is the
name you assign to the job.

�2� Defines the work file to be used by the assembler. The work file must be on a
direct-access storage device. The work file can be a SAM file or a SAM-ESDS
file. This statement is not required if IJSYS03 is defined in the System
Standard or Partition Standard labels.

�3� Defines the SYSLNK file that receives the object records produced from the
LINK option. This statement is not required if IJSYSLN is defined in the
System Standard or Partition Standard labels.

�4� Specifies the sublibrary where the assembler resides.

�5� Specifies the sublibraries that are to be searched to locate any macro and
copy members, and the ASMAOPT.USER member (if required).

�6� Sets the LINK option and the Assembler OBJECT option which causes the
assembler to write the object records produced to SYSLNK.

�7� Invokes the assembler to process the assembler source statements that follow
the EXEC statement.

The SIZE parameter of the EXEC statement specifies SIZE=ASMA9�. This sets
the size of program storage to the size of the phase ASMA90 and makes all
the remaining storage in the partition GETVIS storage. High Level Assembler
does not use program storage.

�8� The end-of-data statement indicates the end of input to the assembler (source
code), and separates data from subsequent job control statements in the input
stream.

�9� The end-of-job statement indicates the end of the job.

These statements cause the assembler to assemble your program and to produce
a listing (described in Chapter 2, “Using the Assembler Listing” on page 8) and an
object module (described in Appendix C, “Object Deck Output” on page 261).

 Chapter 13. Assembling Your Program on VSE 219

 Invoking the Assembler on ICCF

Invoking the Assembler on ICCF
To assemble your program on ICCF, use the job entry statements /LOAD,
/OPTION, /INCLUDE, and /RUN. To create and save an object module, you should
also use the /FILE job entry statement.

Before assembling your program on ICCF, ensure that your ICCF Administrator has
provided the following:

� LIBDEF statements for all librarian sublibraries that are accessed during
assembly, including the sublibrary where High Level Assembler and any user
exits reside. The LIBDEF statements must be provided in the VSE/ICCF
initialization job stream.

� Definitions for the assembler work file used by the assembler to process the
source program. All work files must be pre-allocated, and defined in the
VSE/ICCF initialization job stream. High Level Assembler does not recognize
work files defined using the /FILE job entry statement.

� An interactive partition with sufficient storage to run the assembly. The amount
of storage you need depends upon the size of your source program, and the
value you specify in the SIZE assembler option.

On ICCF, you can either enter the required ICCF commands, or you can write your
own procedure that can be used whenever you need to assemble a program.

Figure 82 shows an example of the ICCF commands you should enter to assemble
your program.

/INPUT

/LOAD ASMA9�,PARM='SIZE(8��K)'

/OPTION NOGO,RESET,DECK,GETVIS=P-24�

/FILE TYPE=ICCF,UNIT=SYSPCH,NAME=ASMOBJ

/INCLUDE ASMPROG

/END

/RUN

Figure 82. Entering ICCF Commands

Figure 83 on page 221 shows a working example of an ICCF procedure for
assembling a program, and generating an object module.

220 HLASM V1R5 Programmer’s Guide

 Invoking the Assembler on ICCF

 � -

 � ASMARUN NNNN (OBJ MMMM/�) OPTIONS

 �

 � PROCEDURE TO ASSEMBLE A HIGH LEVEL ASSEMBLER PROGRAM

 � -

 &&OPTIONS ��1��11

 &&IF &&PARMCT NE � &&GOTO START

 &&TYPE ENTER NAME (OBJ NAME/�) (OPTIONS)

 &&READ &&PARAMS

 &&IF &&PARMCT EQ � &&EXIT

 &&LABEL START

 /LIST 1 1 &&PARAM1 &&VARBL5

 &&IF &&RETCOD NE �FILE &&GOTO SOUR

 &&TYPE �SOURCE MEMBER &&PARAM1 NOT IN LIBRARY OR EMPTY

 &&EXIT

 &&LABEL SOUR

 &&IF &&RETCOD NE �INVALID &&GOTO YESOR

 &&TYPE �INVALID PASSWORD OR INVALID ACCESS TO MEMBER &&PARAM1

 &&EXIT

 &&LABEL YESOR

 &&IF &&RETCOD NE �MISSING &&GOTO OKSOR

 &&TYPE �ENTER PASSWORD FOR MEMBER &&PARAM1

 &&READ &&VARBL5

 &&IF &&VARBL5 NE ' ' &&GOTO -START

 &&EXIT

 &&LABEL OKSOR

 &&SET &&VARBL1 &&PARAM1

 &&SHIFT 1

 &&IF &&PARAM1 NE OBJ &&GOTO NOOBJ

 &&SET &&VARBL2 &&PARAM2 ''

 &&IF &&VARBL2 EQ '�' &&SET &&VARBL2 ' '

 &&IF &&VARBL2 EQ ' ' &&GOTO +INLIB

 /LIST 1 1 &&VARBL2

 &&IF &&RETCOD NE �FILE &&GOTO OVERW

 /INP NOPROMPT

 DUMMY RECORD TO CREATE A MEMBER FOR 'ASMARUN' PROCEDURE OUTPUT

 /SAVE &&VARBL2

 &&IF &&RETCOD NE �LIBRARY &&GOTO INLIB

 &&TYPE �LIBRARY DIRECTORY FULL

 &&EXIT

 &&LABEL OVERW

 &&TYPE �MEMBER &&VARBL2 ALREADY EXISTS. OVERWRITE? (Y/N)

 &&READ &&VARBL4

 &&IF &&VARBL4 EQ 'Y' &&GOTO INLIB

 &&TYPE �NO ASSEMBLY - TRY AGAIN WITH ANOTHER NAME

 &&EXIT

 &&LABEL INLIB

 &&SHIFT 1

 &&SHIFT 1

 &&LABEL NOOBJ

 /INP NOPROMPT

 &/LOAD ASMA9� PARM='&&PARAM1,&&PARAM2,&&PARAM3,&&PARAM4,&&PARAM5'

 /OPTION NOGO RESET GETVIS=P-24�

 &&IF &&VARBL2 NE ' ' /FILE TYPE=ICCF,UNIT=SYSPCH,NAME=&&VARBL2

 &/INCLUDE &&VARBL1 &&VARBL5

 /END

 /PEND

 /RUN

Figure 83. Sample Procedure for Assembling on ICCF

 Chapter 13. Assembling Your Program on VSE 221

 Batch Assembling

Invoking the Assembler Dynamically
To invoke High Level Assembler from a running program, use the CDLOAD and
CALL macro instructions.

You can supply assembler options in the CALL macro instruction as shown in
Figure 84

DYNAMICV CSECT

DYNAMICV RMODE 24

DYNAMICV AMODE ANY

BEGIN SAVE (14,12)

 USING BEGIN,15

 ST 13,SAVEAREA+4

 LA 13,SAVEAREA

 CDLOAD ASMA9� �1�
 LR 15,�

CALL (15),(OPTIONS) �2� �3�
 CDDELETE ASMA9�

 L 13,SAVEAREA+4

 RETURN (14,12)

SAVEAREA DS 18F

OPTIONS DC Y(OPTIONSL)

OPTS DC C'XREF(SHORT)'

OPTIONSL EQU �-OPTS

 END

Figure 84. Sample Program to Call the Assembler Dynamically

Notes on Figure 84:

�1� ASMA90 is the symbolic name of the assembler. The entry point address is
returned by CDLOAD in register 0.

�2� (15) specifies that the entry point address is in register 15.

�3� (OPTIONS) specifies the address of a variable-length list containing the
options. The address of an option list must be provided, even if no options are
required.

The option list must begin on a halfword boundary. The first two bytes contain
a count of the number of bytes in the remainder of the list. If no options are
specified, the count must be zero. The option list is free form, with each field
separated from the next by a comma. No spaces should appear in the list,
except within the string specified for the EXIT or SYSPARM options providing
the string is enclosed within single quotes.

 Batch Assembling
You can assemble a sequence of separate assembler programs with a single
invocation of the assembler by specifying the BATCH option. The object programs
produced from this assembly can be link-edited into either a single phase or
separate phases.

When the BATCH option is specified, each assembler program in the sequence
must be terminated by an END statement, including the last program in the batch.
If an END statement is omitted, the program is assembled with the next program in

222 HLASM V1R5 Programmer’s Guide

 Controlling Your Assembly

the sequence. If the END statement is omitted from the last program in the
sequence, the assembler generates an END statement.

If you need to produce separate phases, you must write a phase linkage editor
control statement for each phase. The phase statement must be written at the start
of the module. The following example shows how to create two phases, SECT1
and SECT2. When multiple phases are produced, they are link-edited as an
overlay.

PUNCH ' PHASE SECT1,�'

 END

SECT1 CSECT Start of first load module
...

 Source instructions
 . . .

END End of first load module

PUNCH ' PHASE SECT2,�'

 END

SECT2 CSECT Start of second load module
...

 Source instructions
 . . .

END End of second load module

Controlling Your Assembly
The assembler options are specified on the PARM parameter of the JCL EXEC
statement or the ICCF /LOAD job entry statement. The options must be enclosed
within single quotes and be separated by commas.

The assembler options are described in Chapter 3, “Controlling Your Assembly with
Options” on page 41. You can also specify some assembler options using the
// OPTION job control statement. These are described in Figure 85.

Figure 85 (Page 1 of 2). Assembler Options in JCL

Assembler
Option

JCL OPTION
Equivalent

Comments

ALIGN ALIGN

DECK DECK The DECK assembler option is always specified
using the JCL OPTION statement. If the DECK
option is specified on the PARM operand of the
JCL EXEC statement, error diagnostic message
ASMA4��W is issued, and the DECK option is
ignored.

LIST LIST The LIST assembler option is equivalent to
specifying LIST(121).

OBJECT LINK
CATAL

The OBJECT assembler option is always
specified using the LINK or CATAL option of the
JCL OPTION statement. If the OBJECT option
is specified on the PARM operand of the JCL
EXEC statement, error diagnostic message
ASMA4��W is issued, and the OBJECT option is
ignored.

 Chapter 13. Assembling Your Program on VSE 223

 Input and Output Files

Figure 85 (Page 2 of 2). Assembler Options in JCL

Assembler
Option

JCL OPTION
Equivalent

Comments

RLD RLD

SYSPARM SYSPARM The value specified in the SYSPARM option of
the JCL OPTION statement is limited to 8
characters. To provide longer values, use the
SYSPARM assembler option. The SYSPARM
value specified on the PARM operand of the JCL
EXEC statement overrides any value specified
on the JCL OPTION statement. A null value (//
OPTION SYSPARM='') is ignored by the
assembler.

TERMINAL TERM

XREF SXREF
XREF

The XREF option of the JCL OPTION statement
can be used to specify the XREF(FULL)
assembler option. The SXREF option of the JCL
OPTION statement can be used to specify the
XREF(SHORT) assembler option.

Input and Output Files
Depending on the options in effect, High Level Assembler requires the following
files, as shown in Figure 86:

 ┌──────────────┐

 │ SYSIPT │

 └───────┬──────┘

 │

 │

 ┌──────────────┐ ┌──────────────┐

 │ Library ├──────────�│ Assembler │

 └──────────────┘ └───────┬──────┘

 │

 ┌──────────────┬──────────────┬──────────────┬──────────────┐

│ │ │ │ │

┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐

│ SYSLST │ │ SYSLOG │ │ SYSLNK │ │ SYSPCH │ │ SYSADAT │

└───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘

Figure 86. High Level Assembler Files

High Level Assembler requires the following files:

SYSIPT An input file containing the source statements to be processed.

In addition, the following six files might be required:

Library Library sublibraries containing macro definitions (for macro
definitions not defined in the source program), source code to be
called for through COPY assembler instructions, or both. One of
the sublibraries may also contain a member (ASMAOPT.USER)
which contains an invocation assembler option list.

224 HLASM V1R5 Programmer’s Guide

 Input and Output Files

SYSLST A file containing the assembly listing (if the LIST option is in
effect).

SYSLOG A file containing flagged statements and diagnostic messages.
(only if the TERM option is in effect). SYSLOG is normally
assigned to the operator console.

SYSPCH A file containing object module output, usually for punching (only if
the DECK option is in effect).

SYSLNK A file containing object module output for input to the linkage editor
(only if the OBJECT option is in effect).

SYSADAT A file containing associated data output (only if the ADATA option
is in effect).

The files listed above are described in the text following Figure 87. The
characteristics of these files, those set by the assembler and those you can
override, are shown in Figure 87.

 Chapter 13. Assembling Your Program on VSE 225

 Input and Output Files

Notes to Figure 87:

�1� If you specify EXIT(PRTEXIT) and the user exit specifies the logical record
length, the logical record length returned is used. If you do not specify
EXIT(PRTEXIT) or the user exit does not specify a record length, the record
length is set to 121 if SYSLST is assigned to disk or 133 otherwise.

The minimum record length allowed for SYSPRINT is 121, and the maximum
allowed is 133.

�2� If you specify EXIT(TRMEXIT) and the user exit specifies the logical record
length, the logical record length returned is used. If you do not specify
EXIT(TRMEXIT) or the user exit does not specify a record length, the record
length is set to 68. The maximum record length allowed for SYSTERM is 125.

Figure 87. Assembler File Characteristics

File Access
Method

Logical Record
Length (LRECL)

Block Size
(BLKSIZE)

Record Format
(RECFM)

SYSIPT SAM 80 80 FIXED

Library LIBR
API

80 80 FIXED

Library
member
ASMAOPT.USER

LIBR
API

80 80 FIXED

SYSLST SAM �1� Same as record
size

FIXED

SYSLOG SAM �2� Same as record
size

FIXED

SYSPCH SAM 80 80 FIXED

SYSLNK SAM 80 80 FIXED

SYSADAT SAM| 32756| 32760 VARBLK

Specifying the Source File: SYSIPT
Define the file that contains your source code with the SYSIPT ASSGN statement.
If you include your source code in your job stream, it must immediately follow the
EXEC statement that invokes the assembler, and be terminated with a /* statement.

You can, however, use JCL statements to define a file that contains your source
code. For example, to define a direct-access device file, use the DLBL, EXTENT,
and ASSGN statements:

// DLBL IJSYSIN,'file-ID',�,SD
// EXTENT SYSIPT,volser,1,�,start,tracks
// ASSGN SYSIPT,DISK,VOL=volser,SHR

Specifying Macro and Copy Code Libraries: LIBDEF Job Control
Statement

Include the LIBDEF job control statement if your program contains any macro calls
to library macros, or any COPY instructions. LIBDEF statements define the
sublibraries that contain macro definition and COPY members.

// LIBDEF SOURCE,SEARCH=(lib.sublib)

226 HLASM V1R5 Programmer’s Guide

 Input and Output Files

The member name in the sublibrary must match the name you specify in the macro
call or COPY instruction. The member type must be A, unless the SUBLIB job
control option has changed it to D. See OPTION statement description in VSE/ESA
System Control Statements for further details.

High Level Assembler does not read edited macros (E-books). To read edited
macros from the library, provide a LIBRARY user exit using the EXIT option. See
“Processing E-Decks” on page 234.

You don't need the LIBDEF SOURCE statement if your assembler source code
does not contain any library macro calls or COPY instructions. You also don't need
the LIBDEF SOURCE statement if the library members are in a sub-library in the
permanent LIBDEF search chain.

Concatenate multiple sublibraries in the search chain if you have multiple macro or
copy sublibraries.

Specifying the Listing File: SYSLST
The assembler uses this file to produce a listing. You can then direct the output to
a printer, a direct access device, or a magnetic-tape device. The listing includes
the results of the default or specified options of the PARM parameter (for example,
diagnostic messages, the object code listing). For example:

// ASSGN SYSLST,PRT1

Directing Assembler Messages to Your Console Log: SYSLOG
If you specify the TERM assembler option, the assembler writes flagged statements
and diagnostic messages to the console log.

Specifying Object Code Files: SYSLNK and SYSPCH
When using the OBJECT assembler option, or DECK assembler option, you can
store the object code on disk or tape. The assembler uses the SYSLNK or
SYSPCH files you define in your JCL to store the object code.

In the example below, the created object module is ready to be passed to the
linkage editor:

// DLBL IJSYSLN,'file-ID',�,SD
// EXTENT SYSLNK,volser,1,�,start,tracks
// ASSGN SYSLNK,DISK,VOL=volser,SHR

You don't need to define SYSLNK in your JCL if the NOOBJECT option is in effect.

The following example defines SYSPCH as a direct-access device file:

// DLBL IJSYSPH,'file-ID',�,SD
// EXTENT SYSPCH,volser,1,�,start,tracks
ASSGN SYSPCH,DISK,VOL=volser,SHR

You don't need to define the SYSPCH file if the NODECK option is in effect.

 Chapter 13. Assembling Your Program on VSE 227

 Return Codes

Specifying the Associated Data File: SYSADAT
Use the SYSADAT DLBL statement to define your associated data output file
statement:

// DLBL SYSADAT,'HLASM.WORK.SYSADAT',�,VSAM,RECORDS=(1��,1��), X

| RECSIZE=3276�,DISP=(NEW,KEEP),CAT=VSESPUC

The associated data file contains information about the assembly. It provides
information for use by symbolic debugging and cross-reference tools. The
SYSADAT file must be directed to a direct-access storage device and can be a
SAM file or SAM-ESDS file.

 Return Codes
High Level Assembler issues return codes that you can check with the IF and ON
job control statements. The IF and ON job control statements let you skip or run a
job step, depending on the results (indicated by the return code) of a previous job
step. See the applicable System Control Statements manual for details about the
IF and ON job control statements.

The return code issued by the assembler is the highest severity code that is
associated with any error detected in the assembly, or with any MNOTE message
produced by the source program or macro instructions. The return code can be
controlled by the FLAG(n) assembler option described on page 55. See
Appendix G, “High Level Assembler Messages” on page 336 for a listing of the
assembler errors and their severity codes.

228 HLASM V1R5 Programmer’s Guide

 Creating a Phase

Chapter 14. Link-Editing and Running Your Program on VSE

If you produce an object module when you assemble your program, it needs further
processing before it can run. This further processing, the resolution of external
references inserted by the assembler, is performed by the linkage editor. The
linkage editor converts an object module into an executable program, which is
called a phase.

The Linkage Editor
The linkage editor converts an object module into a phase and catalogs it in a
library sublibrary. The phase then becomes a permanent member of that
sublibrary, with a member type of PHASE, and can be retrieved at any time and
run in either the job that created it or any other job.

Alternatively, you can request the linkage editor to store the phase temporarily, in
the virtual I/O area. The phase is then ready to run. Using this method, the
linkage editor does not save a permanent copy of the phase. Consequently, after
the phase has been run, it cannot be used again without creating another phase.
This method is useful during testing.

Creating a Phase
The linkage editor processes your assembled program (object module) and
prepares it for running. The processed object module becomes a phase.

Optionally, the linkage editor can process more than one object module, and
transform those object modules into a single phase.

Figure 88 shows the general job control procedure for creating a phase
(link-editing).

// JOB jobname
// DLBL IJSYSLN,'file-ID',�,SD
// EXTENT SYSLNK,volser,1,�,start,tracks
// ASSGN SYSLNK,DISK,VOL=volser,SHR
// LIBDEF OBJ,SEARCH=(lib.sublib)
// LIBDEF PHASE,CATALOG=(lib.sublib)
// OPTION CATAL

 ACTION MAP

 PHASE phasenam,�
...

// EXEC LNKEDT

/&

Figure 88. Sample Job Control for Creating a Phase

 Copyright IBM Corp. 1982, 2004 229

 Input to the Linkage Editor

Input to the Linkage Editor
Your input to the linkage editor can be:

� One or more object modules (created through the OBJECT or DECK assembler
option).

� Linkage editor control statements (including control statements generated using
the assembler PUNCH statement).

Inputting Object Modules
The main input to the linkage editor is the SYSLNK file that contains one or more
separately assembled object modules, possibly with a PHASE linkage editor control
statement.

Additional input to the linkage editor consists of object modules that are not part of
the SYSLNK file, but are to be included in the phase.

The additional input can come from sublibraries containing other application object
modules.

You can specify which sublibrary contains the additional object modules with the
LIBDEF job control statement. If you have multiple sublibraries containing object
modules to be included in the phase, concatenate them, as shown in the following
example:

// LIBDEF OBJ,SEARCH=(PRD2.PROD,SALES.LIB)

In this case, the sublibraries PRD2.PROD and SALES.LIB are available for
additional input to the linkage editor.

Files for Linkage Editor Processing
You need the following files for linkage editor processing. Figure 89 summarizes
the function, and permissible device types, for each file.

Figure 89 (Page 1 of 2). Files Used for Link-Editing

File

Type

Function

Permissible
Device Types

SYSIPT1 Input Additional object module input Card reader
Magnetic tape
Direct access

SYSLNK Input Object module input, normally the output of the
assembler

Direct access

SYSLST2 Output Diagnostic messages
Informative messages
Linkage editor map

Printer
Magnetic tape
Direct access

SYSLOG Output Operator messages Display console

SYSRDR Input Control statement input Card reader
Magnetic tape
Direct access

IJSYS01
(SYS001)

Work file Linkage editor work file Direct access

230 HLASM V1R5 Programmer’s Guide

 Input to the Linkage Editor

Figure 89 (Page 2 of 2). Files Used for Link-Editing

File

Type

Function

Permissible
Device Types

User-specified
Sublibrary

Library Catalog sublibrary for the phase3

External reference and INCLUDE statement
resolution4

Direct access

Notes:

1 Object modules read from SYSIPT are written to SYSLNK
2 If not provided, messages are written to SYSLOG
3 Required if the phase is to be cataloged
4 Required for additional object module input

Inputting additional Object Modules
You can use the INCLUDE linkage editor control statement to specify additional
object modules you want included in the phase.

Code the INCLUDE statements before the EXEC statement that invokes the linkage
editor:

// EXEC ASMA9�,SIZE=ASMA9�
...

/�

 INCLUDE ASSMPGM

 INCLUDE ASSMPGM1

// EXEC LNKEDT

/&

Object modules specified by the INCLUDE statement are written to SYSLNK as job
control encounters the statements.

Linkage Editor Control Statements
In addition to object modules, input to the linkage editor includes linkage editor
control statements. These statements are described in Figure 90.

 Chapter 14. Link-Editing and Running Your Program on VSE 231

 Output from the Linkage Editor

Figure 90. Linkage Editor Control Statements

Statement Action Comments

ACTION Use the ACTION statement to specify linkage editor
options. The options are:

� MAP—requests the linkage editor to write a linkage
editor map to SYSLST.

� NOMAP—suppresses the MAP option.

� NOAUTO—suppresses the automatic library look
up (AUTOLINK) function; the linkage editor does
not attempt to resolve external references using the
automatic library look-up function.

� CANCEL—requests the linkage editor to cancel the
job if a linkage editor error occurs.

� SMAP—request the linkage editor to produce a
sorted listing of CSECT names on SYSLST.

This statement must be the first
linkage editor statement in your input
stream.

ACTION MAP is the default, if
SYSLST is assigned.

ENTRY Use the ENTRY statement to specify the entry point of
a phase that has multiple possible entry points.

The default entry point is the load
address of the phase.

INCLUDE Use the INCLUDE statement to include additional
object modules in the phase that would not otherwise
be included.

You can use the INCLUDE statement
to include an object module that was
cataloged with a different name to the
name used in the CALL statement in
your program.

PHASE Use the PHASE statement to provide the linkage editor
with a phase name.

You must provide a PHASE statement
(and the job control option CATAL) if
you want to catalog the phase in a
library sublibrary.

For a complete description of these linkage editor control statements, see VSE/ESA
System Control Statements.

Output from the Linkage Editor
You can obtain a linkage editor storage map, and a listing of linkage editor
diagnostics, to help you determine the reasons for particular errors in your program.
To do this, use the ACTION MAP linkage editor control statement. If SYSLST is
assigned, ACTION MAP is the default. You can specify ACTION NOMAP if you do
not want the linkage editor to produce the storage map.

Detecting Link-Edit Errors: After link-editing, you receive a listing of diagnostic
messages on SYSLST. Check the linkage editor map to make sure that all the
object modules you expected were included.

Unresolved “weak” external references (WXTRN) can be ignored. However, all
“strong” external references (EXTRN) should be resolved for a phase to run
correctly.

You can find a description of linkage editor messages in VSE/ESA Diagnosis Tools.

232 HLASM V1R5 Programmer’s Guide

 Running your Assembled Program

Running your Assembled Program
The general job control procedure to run a program on VSE is:

// DLBL (JCL for user-specified files)
// EXEC progname[,PARM='parameters']

...

 Chapter 14. Link-Editing and Running Your Program on VSE 233

 Processing E-Decks

Chapter 15. VSE System Services and Programming
Considerations

This chapter describes some of the system services and program development
facilities that assist you in developing your assembler program on VSE. It provides
the following information:

� Adding definitions to a macro library.
� Saving and restoring general register contents.
� Ending program execution.
� Accessing execution parameters.

 � Processing E-Decks.

Adding Definitions to a Macro Library
You can add macro definitions, and members containing assembler source
statements that can be read by a COPY instruction, to a macro library. Use the
LIBR utility program for this purpose. Details of this program and its control
statements are contained in the applicable System Control Statements publication.
The following example adds a new macro definition, NEWMAC, to the system
library, PRD2.PROD.

// JOB CATMAC

// EXEC LIBR

ACCESS SUBLIB=PRD2.PROD

CATALOG NEWMAC.A REPLACE=YES

 MACRO

 NEWMAC &OP1,&OP2

 LCLA &PAR1,&PAR2
 . . .

 MEND

/+

/�

The ACCESS statement specifies the sublibrary into which the macro is cataloged.
The CATALOG statement specifies the member name and member type.
REPLACE=YES indicates that the member is replaced if it already exists.

 Processing E-Decks
An E-Deck refers to a macro source book of type E (or type F if SUBLIB=DF

specified on OPTION statement). You can use these types of macros in your
program; however, they must first be converted to source statement format.
E-Decks are stored in edited format, and High Level Assembler requires that library
macros be stored in source statement format.

You must use a library input exit to analyze a macro definition and, in the case of
an E-Deck, call the ESERV program to change, line by line, the E-Deck definition
back into source statement format.

See the section titled Using the High Level Assembler Library Exit for Processing
E-Decks in the IBM VSE/ESA Guide to System Functions manual. This section
describes how to set up the exit and how to use it.

234 Copyright IBM Corp. 1982, 2004

 Operating System Programming Conventions

Operating System Programming Conventions
Assembler programs executing on VSE must follow a set of programming
conventions to save and restore registers, and access execution parameters.
These are described in the following sections.

Saving and Restoring General Register Contents
A program should save the values contained in the general registers when it starts
to run and, on completion, restore these same values to the general registers.
Thus, as control is passed from the operating system to a program and, in turn, to
a subprogram, the status of the registers used by each program is preserved. This
is done through use of the SAVE and RETURN system macro instructions.

Saving Register Contents: The SAVE macro instruction should be the first
statement in the program. It stores the contents of registers 14, 15, and 0 through
12 in an area provided by the program that passes control. When a program is
given control, register 13 contains the address of an area in which the general
register contents should be saved.

If the program calls any subprograms, or uses any operating system services other
than GETVIS, FREEVIS, and CDLOAD, it must first save the contents of register
13 and then load the address of an 18-fullword save area into register 13. This
save area is in the program and is used by any subprograms or operating system
services called by the program.

Restoring Register Contents: At completion, the program restores the contents
of general registers 14, 15, and 0 through 12 by use of the RETURN system macro
instruction (which also indicates program completion). The contents of register 13
must be restored before issuing the RETURN macro instruction.

Example: The coding sequence that follows shows the basic process of saving
and restoring the contents of the registers. A complete discussion of the SAVE and
RETURN macro instructions and the saving and restoring of registers is contained
in the applicable VSE/ESA System Macros Reference.

Name Operation Operand

BEGIN SAVE (14,12)

 USING BEGIN,15
...

 ST 13,SAVEBLK+4

 LA 13,SAVEBLK
...

 L 13,SAVEBLK+4

 RETURN (14,12)

SAVEBLK DC 18F'�'
...

 END

 Chapter 15. VSE System Services and Programming Considerations 235

 Operating System Programming Conventions

Ending Program Execution
You indicate completion of an assembler language source program by using the
RETURN system macro instruction to pass control from the terminating program to
the program that initiated it. The initiating program might be the operating system
or, if a subprogram issued the RETURN, the program that called the subprogram.

In addition to indicating program completion and restoring register contents, the
RETURN macro instruction can also pass a return code—a condition indicator that
can be used by the program receiving control.

If the return is to the operating system, the return code is compared against the
condition stated in the IF and ON job control statements.

If return is to another program, the return code is available in general register 15,
and can be used as required. Your program should restore register 13 before
issuing the RETURN macro instruction.

The RETURN system macro instruction is discussed in detail in the applicable
Application Programming Macro Reference manual.

Accessing Execution Parameters
You access information in the PARM field of an EXEC statement by referring to the
contents of general register 1. If you do not specify the PARM field of the JCL
EXEC statement, register 1 and register 15 contain the same value on initial entry.

When control is given to the program, general register 1 contains the address of a
fullword which, in turn, contains the address of the data area containing the
information.

The data area consists of a halfword containing the count (in binary) of the number
of information characters, followed by the information field. The information field is
aligned to a fullword boundary. Figure 91 shows how the PARM field information
is structured.

General register 1
 ┌──────────────────────────────────────┐

┌────────────┤ Address of Fullword │

 │ └──────────────────────────────────────┘

│ Points to

 │ ┌──────────────────────────────────────┐

└───────────�│ Address of Data Area ├───────────┐

 └──────────────────────────────────────┘ │

Points to │

 ┌───┘

 │

 │ ┌─────────────────┬────────────────────┐

└───────────�│ Count in Binary │ Information Field │

 └─────────────────┴────────────────────┘

Figure 91. Access to PARM Field

236 HLASM V1R5 Programmer’s Guide

 Appendixes

 Appendixes

Appendix A. Earlier Assembler Compatibility and Migration 240
Comparison of Instruction Set and Assembler Instructions 240
Comparison of Macro and Conditional Assembly Statements 243
Comparison of Macro and Conditional Assembly 246
Comparison of Language Features . 249
Comparison of Assembler Options . 252
Comparison of Assembler Listing . 254
Comparison of Diagnostic Features . 256
Other Assembler Differences . 258

Appendix B. Cross-System Portability Considerations 259
| Using Machine Instructions . 259

Using System Macros . 259
Migrating Object Programs . 259

Appendix C. Object Deck Output . 261
ESD Record Format . 261
TXT Record Format . 263
RLD Record Format . 263
END Record Format . 264
SYM Record Format . 265

Appendix D. Associated Data File Output . 268
Record Types . 270

Macro-only Assemblies . 274
ADATA Record Layouts . 275
Common Header Section . 276
Job Identification Record—X'0000' . 277
ADATA Identification Record—X'0001' . 279
ADATA Compilation Unit Start/End Record—X'0002' 279

| Output File Information Record—X'000A' . 279
| Options File Information—X'000B' . 283

Options Record—X'0010' . 284
External Symbol Dictionary Record—X'0020' 289
Source Analysis Record—X'0030' . 290
Source Error Record—X'0032' . 293
DC/DS Record—X'0034' . 294
DC Extension Record—X'0035' . 302
DC extension record . 302
Machine Instruction Record—X'0036' . 302
Relocation Dictionary Record—X'0040' . 302
Symbol Record—X'0042' . 303

| Symbol and Literal Cross Reference Record—X'0044' 304
Register Cross Reference Record—X'0045' . 305
Library Record—X'0060' . 306
Library Member and Macro Cross Reference Record—X'0062' 307
User-supplied Information Record—X'0070' . 308
USING Map Record—X'0080' . 308
Statistics Record—X'0090' . 309

 Copyright IBM Corp. 1982, 2004 237

 Appendixes

Appendix E. Sample Program . 313

Appendix F. MHELP Sample Macro Trace and Dump 328

Appendix G. High Level Assembler Messages 336
Message Code Format . 336
Message Descriptions . 337

Message Number and Text . 338
Explanation of Message . 338
Supplemental Information . 338
System Action . 338
Programmer Response . 338
Severity Code . 338

Assembly Error Diagnostic Messages . 339
Message Not Known . 341
Messages . 342

Abnormal Assembly Termination Messages . 380
Messages . 380

ASMAHL Command Error Messages (CMS) . 385

Appendix H. User Interface Macros . 389

Appendix I. Sample ADATA User Exits (MVS and CMS) 390
Sample ASMAXADT User Exit to Filter Records 390

Function . 390
Preparing the Exit . 390
Preparing the Filter Management Table . 390
Preparing the Filter Modules . 391
Preparing the Sample Filter Module ASMAXFLU 394
Invoking the Exit . 396

| Sample ASMAXADC User Exit to Control Record Output 396
| Function . 396
| Preparing the Exit . 396
| Invoking the Exit . 397
| Messages . 398
| Sample ASMAXADR User Exit to Reformat Records 398
| Function . 398
| Preparing the Exit . 399
| Invoking the Exit . 399
| Messages . 400

Appendix J. Sample LISTING User Exit (MVS and CMS) 401
Function . 401
Preparing the Exit . 401
Invoking the Exit . 401
Messages . 402

Appendix K. Sample SOURCE User Exit (MVS and CMS) 403
Function . 403
Preparing the Exit . 403
Invoking the Exit . 403

Appendix L. How to Generate a Translation Table 404

238 HLASM V1R5 Programmer’s Guide

 Appendixes

Appendix M. How to Generate a Unicode Translation Table 406

| Appendix N. TYPECHECK Assembler Option 411
| Extensions to the DC, DS, and EQU Assembler Instructions 411
| Type Checking Behavior for REGISTER . 413
| Access Register Type Checking . 414
| General Rregister Type Checking . 415
| Control Register Type Checking . 418
| Floating-Point Register Type Checking . 419
| Type Checking Behavior for MAGNITUDE . 420

 Appendixes 239

 Appendixes

Appendix A. Earlier Assembler Compatibility and Migration

This section compares the High Level Assembler to the earlier assemblers,
Assembler H Version 2 and DOS/VSE Assembler. This section can be used to
determine the changes that might be required to migrate your assembler programs
to High Level Assembler. This section also lists the new facilities that are available
with High Level Assembler that you can use for new and existing assembler
programs.

Comparison of Instruction Set and Assembler Instructions

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

Instruction set

S/370 instructions Yes Yes Yes

| z/Architecture instructions| No| No| Yes

XA instructions No Yes Yes

ESA instructions No Yes Yes

Vector instructions No Yes Yes

DOS operation code table No No The DOS operation
code table is
designed specifically
for assembling
programs previously
assembled using the
DOS/VSE assembler.
Some machine
instructions and
assembler
instructions are not
included in this
operation code table.
See “OPTABLE” on
page 66 for further
details.

Data definition statements

CCW Yes Yes Yes

CCW0 No Yes Yes

CCW1 No Yes Yes

DC Yes Yes Yes

DS Yes Yes Yes

Symbols used in the DC or DS expression
need not be defined before they are used

No Yes Yes

J-type Constant No No Yes

Q-type Constant No Yes Yes

R-type Constant No No Yes

240 Copyright IBM Corp. 1982, 2004

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

S-type Constant No Yes Yes

Number of nominal values for Binary and
Hexadecimal constants

One Multiple Multiple

Program control statements

ACONTROL No No Yes

ADATA No No Yes

CNOP Name entry can
have sequence
symbol or spaces

Name entry can
have any symbol or
spaces

Name entry can have
any symbol or

| spaces. Byte and
| boundary operands.

COPY Nesting depth
limited to 3

Nesting depth not
limited

Nesting depth not
limited

EQU Value operand only Value, length
attribute and type
attribute operands

Value, length
attribute, type

| attribute, program
| type, and assembler
| type operands

END END statement
must be supplied

Multiple END
statements are
allowed. If the
END statement is
omitted, the
assembler
generates an END
statement.

Multiple END
statements are
allowed. If the END
statement is omitted,
the assembler
generates an END
statement.

EXITCTL No No Yes

ICTL Yes Yes Yes

ISEQ Yes Yes Yes

LTORG Yes Yes Yes

OPSYN No Yes Yes

ORG Name entry can
have sequence
symbol or spaces

Name entry can
have any symbol or
spaces

Name entry can have
any symbol or

| spaces. Boundary,
| and offset operands.

POP No Yes Yes, with NOPRINT
operand

PUNCH Yes Yes Yes

PUSH No Yes Yes, with NOPRINT
operand

REPRO Yes Yes Yes

Listing control statements

CEJECT No No Yes

EJECT Yes Yes Yes

 Appendix A. Earlier Assembler Compatibility and Migration 241

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

PRINT Yes Yes Yes, with NOPRINT,
MCALL, NOMCALL,
MSOURCE,
NOMSOURCE,
UHEAD, and
NOUHEAD operands

SPACE Yes Yes Yes

TITLE Up to 4 characters
in name (if not a
sequence symbol)

Up to 8 characters
in name (if not a
sequence symbol)

Up to 8 characters in
name (if not a
sequence symbol)

Base register assignment

DROP Yes Yes Yes

USING Yes, ordinary
USING

Yes, ordinary
USING

Yes, ordinary,
labeled, and
dependent USINGs

Program sectioning and linking

ALIAS No No Yes

AMODE No Yes Yes

CATTR (MVS and CMS) No No Yes

COM Only unnamed
common control
sections are
allowed

Yes Yes

CSECT Only named control
sections are
allowed

Yes Yes

CXD No Yes Yes

DSECT Yes Yes Yes

DXD No Yes Yes

ENTRY The maximum
number of symbols
that can be
identified by the
ENTRY instruction
is 200

Yes Yes

EXTRN Yes Yes Yes

| PART| No| No| Yes

RMODE No Yes Yes

RSECT No Yes Yes, with automatic
checking for
reenterability

START Only named control
sections are
allowed

Yes Yes

XATTR (MVS and CMS) No No Yes

242 HLASM V1R5 Programmer’s Guide

 Appendixes

Comparison of Macro and Conditional Assembly Statements

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

Macro definition

MACRO Yes Yes Yes

MEND Yes Yes Yes

MEXIT Yes Yes Yes

Conditional assembly

ACTR Yes Yes Yes

AEJECT No No Yes

AGO Yes Yes Yes

AIF Yes Yes Yes

AINSERT No No Yes

ANOP Yes Yes Yes

AREAD No Yes Yes

ASPACE No No Yes

GBLA Yes Yes Yes

GBLB Yes Yes Yes

GBLC Yes Yes Yes

LCLA Yes Yes Yes

LCLB Yes Yes Yes

LCLC Yes Yes Yes

MHELP No Yes Yes

MNOTE Not allowed in
open code

Allowed in open
code

Allowed in open code

SETA Yes Yes Yes

SETB Yes Yes Yes

SETC Yes Yes Yes

SETAF No No Yes

SETCF No No Yes

System variable symbols

&SYSADATA_DSN No No Yes

&SYSADATA_MEMBER No No Yes

&SYSADATA_VOLUME No No Yes

&SYSASM No No Yes

&SYSCLOCK No No Yes

&SYSDATC No No Yes

&SYSDATE No Yes Yes

&SYSECT Yes Yes Yes

&SYSIN_DSN No No Yes

 Appendix A. Earlier Assembler Compatibility and Migration 243

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

&SYSIN_MEMBER No No Yes

&SYSIN_VOLUME No No Yes

&SYSJOB No No Yes

&SYSLIB_DSN No No Yes

&SYSLIB_MEMBER No No Yes

&SYSLIB_VOLUME No No Yes

&SYSLIN_DSN No No Yes

&SYSLIN_MEMBER No No Yes

&SYSLIN_VOLUME No No Yes

&SYSLIST Yes Yes Yes

&SYSLOC No Yes Yes

&SYSM_HSEV No No Yes

&SYSM_SEV No No Yes

&SYSMAC No No Yes

&SYSNDX Up to maximum of
9999

Up to maximum of
9999999

Up to maximum of
9999999

&SYSNEST No No Yes

&SYSOPT_DBCS No No Yes

&SYSOPT_OPTABLE No No Yes

&SYSOPT_RENT No No Yes

&SYSOPT_XOBJECT No No Yes

&SYSPARM Yes Yes Yes

&SYSPRINT_DSN No No Yes

&SYSPRINT_MEMBER No No Yes

&SYSPRINT_VOLUME No No Yes

&SYSPUNCH_DSN No No Yes

&SYSPUNCH_MEMBER No No Yes

&SYSPUNCH_VOLUME No No Yes

&SYSSEQF No No Yes

&SYSSTEP No No Yes

&SYSSTMT No No Yes

&SYSSTYP No No Yes

&SYSTEM_ID No No Yes

&SYSTERM_DSN No No Yes

&SYSTERM_MEMBER No No Yes

&SYSTERM_VOLUME No No Yes

&SYSTIME No Yes Yes

&SYSVER No No Yes

Symbol attributes

244 HLASM V1R5 Programmer’s Guide

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

Defined attribute No Yes Yes

Type attribute An ordinary symbol
outside a macro
cannot be used as
an operand of the
T' inside a macro
and cannot be
used to determine
the type of a SETA
or SETB variable.

Only allowed in
conditional
assembly
instructions and not
allowed for literals.

Yes; only allowed
in conditional
assembly
instructions and not
allowed for literals.

Yes; allowed in
conditional assembly,
assembler, and
machine instructions
and literals.

Length attribute Yes; allowed in
conditional
assembly,
assembler, and
machine
instructions and not
allowed for literals.

Yes; allowed in
conditional
assembly,
assembler, and
machine
instructions and not
allowed for literals.

Yes; allowed in
conditional assembly,
assembler, and
machine instructions
and literals.

Scaling attribute Yes; only allowed
in conditional
assembly
instructions and not
allowed for literals.

Yes; only allowed
in conditional
assembly
instructions and not
allowed for literals.

Yes; allowed in
conditional assembly,
assembler, and
machine instructions
and literals.

Integer attribute Yes; only allowed
in conditional
assembly
instructions and not
allowed for literals.

Yes; only allowed
in conditional
assembly
instructions and not
allowed for literals.

Yes; allowed in
conditional assembly,
assembler, and
machine instructions
and literals.

Count attribute Can only be used
to determine the
length of a macro
instruction operand

Yes Yes

Number attribute Yes Can be applied to
SETx variables

Can be applied to
SETx variables

Operation Code Data attribute No No Yes

Type and Count attribute for system variable
symbols

No Yes Yes

Type attribute for SETA symbols that are
defined via LCLA or GBLA but are not set
(via SETA)

Not applicable Returns a value of
'00'

Returns a value of
'N'

Type attribute for SETB symbols that are
defined via LCLB or GBLB but are not set
(via SETB)

Not applicable Issues an error
message

Returns a value of
'N'

Type attribute for macro instruction operands
with a value of a previously used literal

Not applicable Returns a value of
'U'

Returns the Type
attribute of the
constant defined by
the literal

 Appendix A. Earlier Assembler Compatibility and Migration 245

 Appendixes

Comparison of Macro and Conditional Assembly

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

External Function calls using high level
programming language

No No Yes

Built-In Functions for SETA, SETB, and
SETC expressions

No No Yes

Substring length value

The second subscript value of the substring
notation can be specified as an (*).

No No Yes

Library macros in source format No, library macros
must be stored in
edited format

Yes Yes

Macro definitions can appear anywhere in
your source module.

No, they must be
at the start of the
source file.

Yes Yes

Editing macro definitions

Use conditional assembly statement to avoid
editing of macros.

No Yes Yes

Redefining macros

A macro definition can be redefined at any
point in the source code.

No Yes Yes

Nesting macro definitions

Allow inner macro definitions.

No Yes Yes

Generated macro instruction operation codes

Macro instruction operation codes can be
generated by substitution.

No Yes Yes

Multilevel sublists in macro instruction
operands

Multilevel sublists (sublists within sublists)
are permitted in macro instruction operands
and in keyword default values in prototype
statements.

No Yes Yes

DBCS language support

Double-byte data is supported by the macro
language.

No Yes Yes

Macro names, variable symbols (including
the ampersand) and sequence symbols
(including the period) can be up to a
maximum of 63 characters.

No, limited to 8
characters

Yes Yes

Comments (both ordinary comments
beginning with '*' and internal macro
comments beginning with '.*') can be
inserted between the macro header and the
prototype and, for library macros, before the
macro header.

No Yes Yes

246 HLASM V1R5 Programmer’s Guide

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

| Any mnemonic operation code, or any
assembler operation code, can be defined as
a macro instruction.

No Yes Yes

Any instruction, except ICTL, is permitted
within a macro definition.

No Yes Yes

AIF statements

The AIF statement can include a string of
logical expressions and related sequence
symbols.

No Yes Yes

AGO statements

The AGO statement can contain computed
branch sequence information.

No Yes Yes

SETx statements

The SETA, SETB and SETC statements can
assign lists or arrays of values to subscripted
SET symbols.

No Yes Yes

SET symbol format and definition changes

| � A macro definition or open code can
| contain more than one declaration for a

given SET symbol, as long as only one
is encountered during a given macro
expansion or conditional assembly.

� A SET symbol that has not been
declared in a LCLx or GBLx statement is
implicitly declared by appearing in the
name field of a SETx statement.

� A SET symbol can be defined as an
array of values by adding a subscript
after it, when it is declared, either
explicitly or implicitly.

No Yes Yes

Created SET symbols

SET symbols may be created during the
generation of a macro.

No Yes Yes

Using SETC variables in arithmetic
expressions

You can use a SETC variable as an
arithmetic term if its character string value
represents a valid self-defining term.

No Yes Yes

Forward attribute references

If an attribute reference is made to a symbol
that has not yet been encountered, the
assembler scans the source code either until
it finds the referenced symbol in the name
field of a statement in open code, or until it
reaches the end of the source module.

No Yes Yes

 Appendix A. Earlier Assembler Compatibility and Migration 247

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

Attribute reference using SETC variables

You can take an attribute reference for a
symbol specified as:

� The name of the ordinary symbol itself
� The name of a symbolic parameter

whose value is the name of the ordinary
symbol

� The name of a SETC symbol whose
value is the name of the ordinary symbol

No Yes Yes

Number attributes for SET symbols

The number attribute can be applied to SETx
variables to determine the highest subscript
value of a SET symbol array to which a
value has been assigned in a SETx
instruction.

No Yes Yes

Alternate format in conditional assembly

The alternate format allows a group of
operands to be spread over several lines of
code.

No Yes Yes

Maximum number of symbolic parameters
and macro instruction operands

200 No fixed maximum No fixed maximum

Mixing positional and keyword symbolic
parameters and macro instruction operands

All positional
parameters or
operands must
come first.

Keyword
parameters or
operands can be
interspersed
among positional
parameters or
operands.

Keyword parameters
or operands can be
interspersed among
positional parameters
or operands.

SET symbol declaration Declaration of local
symbols must
immediately
precede declaration
of global symbols.

Declaration of
global and local
symbols must
immediately follow
prototype
statement if in
macro definition.

Declaration of
global and local
symbols must
immediately follow
source macro
definitions, if in
open code.

Declaration of local
and global symbols
can be mixed.

Declaration of
global and local
symbols does not
need to
immediately follow
prototype
statement if in
macro definition.

Declaration of
global and local
symbols does not
need to
immediately follow
source macro
definitions, if in
open code.

Declaration of local
and global symbols
can be mixed.

Declaration of global
and local symbols
does not need to
immediately follow
prototype statement if
in macro definition.

Declaration of global
and local symbols
does not need to
immediately follow
source macro
definitions, if in open
code.

Maximum dimension for subscripted SET
Symbols

4095 Not limited Not limited

248 HLASM V1R5 Programmer’s Guide

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

Duplication factor allowed in SETC
instruction

No Yes Yes

| Dynamically extended SET symbol arrays No Yes Yes

Number of terms in arithmetic expressions in
conditional assembly

Up to 16 Not limited Not limited

Levels of parentheses in arithmetic
expressions in conditional assembly

Up to 5 Not limited Not limited

MNOTE with error in macro is flagged at
each invocation

Yes No No

Blank lines treated as equivalent to ASPACE
1.

No No Yes

Name entry of macro instruction must be a
valid symbol

Yes Yes No

Ampersand preceding the SET symbols
being declared is optional

No No Yes

Predefined absolute symbols allowed in
arithmetic expression

No No Yes

Predefined absolute symbols allowed in
SETx instruction

No No Yes

Type attribute of CNOP Label is set to 'I' No, set to 'J' No, set to 'J' Yes

| Length, scaling and integer attribute allowed
for ordinary symbols, SETC symbols and
literals in open code

No No Yes

Sublists assigned to SETC symbols can be
passed to macro definitions and be
recognized as sublists

No No Yes

Comparison of Language Features

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

Macro comment statements allowed in open
code

No No Yes

| EQU instruction extension

| Symbols appearing in the first operand of the
| EQU instruction need not have been
| previously defined.

| Operands for assembler and program types.

|
|
| No
|
|
| No

|
|
| Yes
|
|
| No

|
|
| Yes, program type and
| assembler type operands
|
| Yes

| CNOP instruction extension

| There is no restriction that symbols in the
| operand field of a CNOP instruction must
| have been previously defined.

| Support for quadword alignment.

|
|
| No
|
|
| No

|
|
| Yes
|
|
| No

|
|
| Yes, byte and boundary
| operands
|
| Yes

 Appendix A. Earlier Assembler Compatibility and Migration 249

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

COPY instruction extension

Any number of 'nestings', COPY statements
within code that have been brought into your
program by another COPY statement, is
permitted.

No, nesting depth
limited to 3

Yes Yes

COPY instruction processed immediately

COPY members are read immediately after a
COPY statement is encountered in the
source, regardless of whether or not
conditional processing requires it, as in the
following example:

 AGO .LABEL

 COPY AFILE

.LABEL ANOP

No, AFILE is never
opened, read from,
or processed in
any way.

Yes, AFILE is
scanned during
lookahead
processing

Yes, AFILE is
scanned during
lookahead
processing

COPY instruction operand can, in open
code, be specified as a variable symbol.

No No Yes

ISEQ instruction extension

Sequence checking of any column on input
records is allowed.

No Yes Yes

Macro names

Inline macro names may contain the
underscore character (_).

No Yes Yes

Continuation lines Up to 2 Up to 9 Up to 9

Continuation lines and double-byte data No Yes Yes

Symbol name length up to 63 characters No, limited to 8 Yes Yes

Levels within expressions

Any number of terms or levels of parenthesis
in an expression is allowed.

No Yes Yes

Underscores in symbols

You can specify the underscore character (_)
in ordinary symbols and variable symbols.

No Yes Yes

Underscore character accepted in any
position in symbol name

No No Yes

Underscore character accepted in external
symbols

No No Yes

Underscore character accepted in name field
of OPSYN instruction

No No Yes

Maximum number of external symbols 511 65 535 65 535

DBCS language support

Pure double-byte data, and double-byte data
mixed with single-byte data is permitted.

No Yes Yes

Location counter value printed for EQU,
USING, ORG (in ADDR2 field)

3 bytes 4 bytes (up to 3
leading zeros
suppressed).

4 bytes (up to 3
leading zeros
suppressed).

250 HLASM V1R5 Programmer’s Guide

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

Self-defining term

 Maximum value

Number of digits
 Binary:
 Decimal:
 Hexadecimal:
 Characters:

224-1

24
8
6
3

231-1

31
10
8
4

231-1

31
10
8
4

Relocatable and absolute expressions

 Value carried:

Number of operators:
Levels of parenthesis:

Truncated to 24
bits
15
5

Truncated to 31
bits
Not limited
Not limited

Truncated to 31 bits

Not limited
Not limited

All control sections initiated by a CSECT
start at location 0 in listing and object
module.

Yes No Controlled by
THREAD option

Copy files read once Copy files read
when statement is
found

Copy files read
when macro is
edited (only once)

Copy files read when
macro is edited (only
once)

Operand greater than 1024 characters when
SUBLIST

Error diagnostic
with message and
return code of 8

Error diagnostic
with message and
return code of 12

| No

Remarks generated because of generated
blanks in operand field

No Yes Yes

Blank lines treated as equivalent to SPACE
1.

No No Yes

Literals usable as relocatable terms in
expressions

No No Yes

Literals usable in RX format instructions in
which index register is used

No No Yes

Mixed case input No No Yes

2-byte relocatable address constants No No Yes

Multi-level PUSH supported

For example, PUSH USING,USING

No Yes. Not
documented.

No

 Appendix A. Earlier Assembler Compatibility and Migration 251

 Appendixes

Comparison of Assembler Options

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

*PROCESS statements No No Selected assembler
options can be
specified in the
source program on
*PROCESS
statements.

ADATA No No Yes

ALIGN Yes Yes Yes

ASA (MVS and CMS) No No Yes

BATCH No Yes Yes

CODEPAGE No No Yes

COMPAT No No Yes

DBCS No Yes Yes

DECK Yes Yes Yes

DISK (CMS) No Yes Yes

DXREF No No Yes

EDECK Yes No No

ERASE (CMS) No No Yes

ESD Yes Yes Yes

EXIT No No Yes

FLAG No Yes FLAG(integer),
FLAG(ALIGN),
FLAG(CONT),
FLAG(IMPLEN),
FLAG(PAGE0),
FLAG(PUSH),
FLAG(RECORD),
FLAG(SUBSTR), and
FLAG(USING0) can
be specified.

FOLD No No Yes

GOFF (MVS and CMS) No No Yes

INFO No No Yes

LANGUAGE No No Yes. Applies to
messages and listing
headings.

LIBMAC No No Yes

LINECOUNT Yes Yes Yes

LINK Yes No No, see OBJECT
option

252 HLASM V1R5 Programmer’s Guide

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

LIST Yes Yes LIST(121),
LIST(133), and
LIST(MAX) can be
specified (MVS and
CMS)

MCALL Yes No No;
PCONTROL(MCALL)
can be specified.

MXREF No No MXREF(SOURCE),
MXREF(XREF), and
MXREF(FULL) can
be specified.

NOPRINT (CMS) No No Yes

NOSEG (CMS) No No Yes

NUM No Yes (CMS) No

OBJECT Yes Yes Yes

OPTABLE No No Yes

PCONTROL No No Yes

PESTOP No No Yes

PRINT (CMS) No Yes Yes

PROFILE No No Yes

RA2 No No Yes

RENT No Yes Yes

RLD Yes Yes Yes

RXREF No No Yes

SEG (CMS) No No Yes

| SECTALGN| No| No| Yes

SIZE No No Yes

STMT (MVS and CMS) No Yes (CMS) No

| SUBLIB(AE/DF) (VSE)| Yes. Specify on //
| OPTION statement.
| No| Yes

| SUPRWARN| No| No| Yes

SYSPARM Yes Yes Yes

SXREF Yes Same as
XREF(SHORT)

Same as
XREF(SHORT)

TERM No Yes TERM(WIDE) and
TERM(NARROW)
can be specified.

TEST No Yes Yes

THREAD No No Yes

TRANSLATE No No Yes

| TYPECHECK| No| No| Yes

USING No No Yes

 Appendix A. Earlier Assembler Compatibility and Migration 253

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

XOBJECT (MVS and CMS) No No Yes

XREF Same as
XREF(LONG)

XREF(SHORT) or
XREF(LONG)

XREF(SHORT),
XREF(FULL), and
XREF(UNREFS) can
be specified.

Comparison of Assembler Listing

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

| Mixed case listing headings No No Headings can be in
mixed case English
or uppercase
English. See
LANGUAGE
assembler option.

| National Language Support No No Diagnostic messages
in English, German,
Japanese, and
Spanish.

Option summary At end of listing in
Diagnostic and
Statistics section.

At end of listing in
Diagnostic and
Statistics section.

At start of listing.

External symbol dictionary Yes Yes Yes

Dummy section dictionary Yes No See DSECT Cross
Reference

Source and object program Yes Yes Yes

 Page-break handling Limited logic Limited logic Improved page-break
handling in
conjunction with the

| CEJECT, EJECT,
SPACE, and TITLE
assembler
instructions, to
prevent unnecessary
blank pages.

Optional 133-character wide format with
extended addresses

No No Yes. Required for
GOFF/XOBJECT.

Control section headings No No Show current control
section type in fixed
heading line for COM

| section, CSECT,
DSECT, and RSECT.

Heading date includes century No No Yes

Active USING Summary No No Yes

PRINT instruction with MCALL option No No Yes

254 HLASM V1R5 Programmer’s Guide

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

PRINT instruction with MSOURCE option No No Yes

PRINT instruction with NOGEN option
shows object code for first instruction
generated, or the first 8 bytes of data
generated, in the object code column.

No No Yes

PRINT, PUSH and POP instructions with
NOPRINT option

No No Yes

AREAD instruction with NOPRINT option No No Yes

Relocation dictionary Yes Yes Yes

Ordinary symbol and literal cross
reference

Yes Yes Yes

Cross reference includes modification
and branch flags, USING and DROP
flags, EXecute instruction flag, and
relocatability-type column.

No No Yes

Unreferenced symbols defined in CSECTs No No Yes

Macro and copy code source summary No No Yes

Macro and copy code cross reference No No Yes

DSECT cross reference No No Yes

USING map No No Yes

General purpose register cross reference No No Yes

Diagnostic cross reference and assembler
summary

Diagnostic and
Statistics section
including error
diagnostic
messages

Yes Yes

Flagged statements with input data set
information

No No Yes, if
FLAG(RECORD)
assembler option
specified

Print line with current PTF level of
assembler

No No Yes

Print line showing operating system,
jobname, stepname and procedure
stepname of assembly job

No No Yes

Print lines showing file names (data set
names), member and volume serial
numbers of each of the input and output
data sets

No No Yes

| Print lines showing statistics for external
| functions and external function calls
| No| No| Yes

Print lines showing statistics for I/O exits No No Yes

| Print lines showing suppressed message
| summary
| No| No| Yes

| Print line showing the amount of storage
| in the buffer pool

No No Yes

 Appendix A. Earlier Assembler Compatibility and Migration 255

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

| Record counts show the number of file
| reads and writes

No No Yes

Print line showing the return code of the
assembly

No No Yes

Print lines showing assembly start and
stop time, and processor time

No No Yes

Terminal output No Yes Yes

Multiple consecutive spaces compressed
to a single space

No No Yes, when
TERM(NARROW)
specified.

 One-line summary No No Yes

Comparison of Diagnostic Features

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

Error messages for conflicting assembler
options

When conflicting assembler options are
specified, such as OBJECT with
NOOBJECT, the assembler issues warning
messages.

No No Yes

Diagnostic information message

The FLAG(RECORD) assembler option
causes message ASMA435I to be printed
after the last diagnostic message for each
statement in error. The message shows the
statement relative record number and where
the statement in error was read from.

No No Yes

Statement continuation errors

The FLAG(CONT) assembler option instructs
the assembler to issue diagnostic messages
ASMA430W through ASMA433W when it
suspects a continuation error in a macro call
instruction.

No No Yes

Suppress alignment error messages

The FLAG(ALIGN) assembler option
instructs the assembler to issue diagnostic
messages ASMA033I when an alignment
error is detected. This message may be
suppressed by specifying the
FLAG(NOALIGN) assembler option.

No No Yes

Error messages

Error messages are printed in the listing and
a summary at the end lists a total of the
errors and a table of their line numbers.

No Yes Yes

256 HLASM V1R5 Programmer’s Guide

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

Diagnostic messages in macro assembly

More descriptive diagnostic error messages
are printed in macro generated text.

No Yes Yes

Sequence field in macro-generated text

The sequence field (columns 73 through 80)
of the generated statements contains the
level of the macro call, a hyphen, and the
first five characters of the macro-definition
name.

No Yes Yes

Format of macro-generated text

Wherever possible, a generated statement is
printed in the same format as the
corresponding macro definition (model)
statement.

No Yes Yes

Error messages for a library macro definition

Format errors within a particular library
macro definition are listed directly following
the first call of that macro.

No Yes Yes

Error messages for source program macro
definition

Macro definitions contained in the source
program are printed in the listing, provided
the applicable PRINT options are in effect.

No Yes Yes

Error messages in macro-generated text

Diagnostic messages in generated text
generally include a description of the error,
the recovery action, model statement number
at which the error occurred, and a SET
symbol name, parameter number, or a value
associated with the error.

No Yes Yes

Macro Trace Facility (MHELP) No Yes Yes

| Suppression of warning messages

| The SUPRWARN assembler option instructs
| the assembler to suppress specified
| diagnostic messages of severity 4 or less.

| No| No| Yes

| Instruction operand type checking| No| No| Yes

 Appendix A. Earlier Assembler Compatibility and Migration 257

 Appendixes

Other Assembler Differences

Element DOS/VSE
Assembler

Assembler H
Version 2

High Level
Assembler

Object module

DXD, CXD and Q-type constants produced No Yes Yes

Named COMMON No Yes Yes

Unnamed CSECTS (private code) No Yes Yes

SYM records produced No Yes Yes

Generalized object format module generation
(MVS and CMS)

Not applicable No Yes. Refer to
GOFF/XOBJECT
assembler option.

Diagnostics

Diagnostic messages issued At end of assembly At line where error
occurred if
possible.

At line where error
occurred if possible.

Diagnostic dump No Produced at time of
failure

Produced at time of
failure

Error diagnostics messages in mixed case No No Yes

Resources

Work file 3 Work Files 1 Work File No. Tolerated if
allocated, but not
used.

Associated data file No No Yes

QSAM Input/output (MVS and CMS) Not applicable No Yes

| External functions| No| No| Yes

Input/Output user exits No No Yes

System-Determined Blocksize (MVS) Not applicable No Yes; supported in
MVS only.

31-bit-addressable storage exploited during
assembly

No No Yes; does not include
I/O buffers.

Minimum virtual storage requirements 200K 200K 610K

Printer control characters (MVS and CMS) American National
Standard

Machine American National
Standard or machine
depending on ASA
option

Alternative assembler option sourcefile No No Yes

258 HLASM V1R5 Programmer’s Guide

 Appendixes

Appendix B. Cross-System Portability Considerations

This section describes the issues you must consider when you use High Level
Assembler to assemble a program under one operating system and execute the
resulting program under another operating system.

| Using Machine Instructions
| High Level Assembler supports assembly of programs using z/Architecture
| instructions, Extended Architecture instructions, Enterprise System Architecture

instructions, and Vector instructions, under all operating systems supported by High
Level Assembler.

A generated object program using a specified set of instructions can only run on a
processor under an operating system that provides the necessary architecture
support for the instructions used.

Using System Macros
Many system macros have the same name under different systems, but generate
different object code and have different parameters. For example, the OPEN,
CLOSE, GET, and PUT macros have the same name on MVS and VSE but
generate different object code.

Wherever the assembled program uses system macros, the system macros for the
target system must be used when the program is assembled.

For example, when the assembled program is to be run under VSE, the VSE
system macros must be used, even if the program is assembled under CMS.

Ensure that the macros used during assembly are for the correct release of the
operating system upon which the assembled program is to run.

Migrating Object Programs
The object module produced by High Level Assembler is portable across all the

| supported operating systems (but GOFF object files are not portable to VSE/ESA).
Therefore, an assembler program may be assembled under any of the supported
operating systems and run under any of the supported operating systems. For
example, an assembler program may be assembled under CMS and run under
VSE.

The object module is portable across the supported operating systems with the
following restrictions:

� Wherever the assembler program uses system macros, the system macros for
the target system must be used.

� The object module must be link-edited using the target system linkage editor.

� The assembler instructions included in the assembler program must be
supported by the system linkage editor.

 Copyright IBM Corp. 1982, 2004 259

 Appendixes

The VSE linkage editor, prior to VSE/ESA Version 2 Release 1, does not
support dummy external DSECTS. Therefore, to link-edit the assembler
program under earlier VSE operating systems, the assembler program must not
include any DXD or CXD statements or Q-type address constants.

� The TEST assembler option should only be used if the object module is to be
link-edited under MVS.

 The TEST option cannot be specified with the GOFF assembler
option, which produces the generalized object format module.

� A generalized object format module cannot be ported to a VSE or CMS
environment.

260 HLASM V1R5 Programmer’s Guide

 ESD

Appendix C. Object Deck Output

High Level Assembler produces the object module when you specify either the
OBJECT or DECK assembler option.

The object module consists of 80-byte records with 5 record types. The record
types are:

ESD External symbol dictionary records describe the external symbols used in the
program.

TXT Text records describe object code generated.

RLD Relocation dictionary records provide the information required to relocate
address constants within the object module.

END End records terminate the object module and optionally provide the entry
point.

SYM Symbol table records provide symbol information for TSO TEST.

| Note: If you have specified the GOFF assembler option, High Level Assembler
| produces the object module in Generalized Object File format (GOFF). For

more information on GOFF, refer to z/OS MVS Program Management:
Advanced Facilities.

The assembler can also produce records via the PUNCH and REPRO assembler
statements, whose contents and format are entirely determined by the program.

The following sections describe the format of each record type.

ESD Record Format
Columns Contents

1 X'02'

2–4 ESD

5–10 Space

11–12 Variable field count—number of bytes of information in variable
field (columns 17–64)

13–14 Space

| 15–16 ESDID of first SD, XD, CM, PC, ER, or WX in variable field; blank
| for LD items, which have the ESDID of the preceding SD. This
| field is blank if all items are LD.

17–64 Variable field. One-to-three 16-byte items of the following format:

� 8-byte external symbol name

� 1-byte ESD type code:

Hex Value ESD Type Code
00 SD
01 LD
02 ER
04 PC

 Copyright IBM Corp. 1982, 2004 261

 ESD

05 CM
06 XD(PR)
0A WX

 � 3-byte address

 � 1-byte flag:

– Alignment if XD
– Space if LD, ER, or WX
– AMODE/RMODE flags if SD, PC, or CM. Figure 92

describes the AMODE and RMODE flag values.

� 3-byte length, LDID, or space

Variable field item 1
17–24 External symbol name
25 ESD type code
26–28 Address
29 Flag
30–32 Length, LDID, or space

Variable field item 2
33–40 External symbol name
41 ESD type code
42–44 Address
45 Flag
46–48 Length, LDID, or space

Variable field item 3
49–56 External symbol name
57 ESD type code
58–60 Address
61 Flag
62–64 Length, LDID, or space

65–72 Space

Figure 92. AMODE/RMODE Flags

Bits Value Description

2 0 Use the RMODE bit (bit 5)

1 RMODE 64

3 0 Use the AMODE bits (bits 6-7)

1 AMODE 64

4 1 RSECT

5 0 RMODE 24

1 RMODE 31, RMODE ANY

6–7 00 AMODE 24

01 AMODE 24

10 AMODE 31

11 AMODE ANY

262 HLASM V1R5 Programmer’s Guide

73–80 Deck ID, sequence number, or both. The deck ID is the name
from the first TITLE statement that has a non-spaces name field.
This name can be 1–8 characters. If the name is fewer than 8
characters or if there is no name, the remaining columns contain a
record sequence number.

TXT Record Format
Columns Contents

1 X'02'

2–4 TXT

5 Space

6–8 Relative address of first instruction on record

9–10 Space

11–12 Byte count—number of bytes in information field (columns 17–72)

13–14 Space

15–16 ESDID

17–72 56-byte information field

73–80 Deck ID, sequence number, or both. The deck ID is the name
from the first TITLE statement that has a non-spaces name field.
The name can be 1–8 characters. If the name is fewer than 8
characters or if there is no name, the remaining columns contain a
record sequence number.

RLD Record Format
Columns Contents

1 X'02'

2–4 RLD

5–10 Space

11–12 Data field count—number of bytes of information in data field
(columns 17–72)

13–16 Space

17–72 Data field:

17–18 Relocation ESDID
19–20 Position ESDID

| 21 Flag byte. Describes the type of relocation required:
| Bits 0–3 Address constant type:
| 0 A
| 1 V
| 2 Q
| 3 CXD
| Bits 4–5 Address constant length minus 1
| Bit 6 Direction of relocation (0 for +, 1 for −)
| Bit 7 Type of next RLD item

 Appendix C. Object Deck Output 263

22–24 Absolute address to be relocated
25–72 Remaining RLD entries

73–80 Deck ID, sequence number, or both. The deck ID is the name from
the first TITLE statement that has a non-spaces name field. The
name can be 1–8 characters or if there is no name, the remaining
columns contain a record sequence number.

If the rightmost bit of the flag byte is set, the following RLD entry has the same
relocation ESDID and position ESDID, and this information is not repeated; if the
rightmost bit of the flag byte is not set, the next RLD entry has a different relocation
ESDID or position ESDID, and both ESDIDs are recorded.

| The first RLD item on each RLD record must specify the Relocation and Position
| ESDIDs; thus, the last RLD item on a record may not set the rightmost bit of the
| flag byte.

For example, if the RLD entries 1, 2, and 3 of the program listing contain the
following information:

 Position Relocation

Entry ESDID ESDID Flag Address

1 �2 �4 �C ���1��

2 �2 �4 �C ���1�4

3 �3 �1 �C ���8��

then columns 17–72 of the RLD record would be:

 │ Entry 1 │ Entry 2 │ Entry 3 │

 │ │ │ │

Column:│17 18 19 2� 21 22 23 24│25 26 27 28│29 3� 31 32 33 34 35 36│37├───�72

 ├──┬──┬──┬──┬──┬──┬──┬──┼──┬──┬──┬──┼──┬──┬──┬──┬──┬──┬──┬──┤

 │��│�4│��│�2│�D│��│�1│��│�C│��│�1│�4│��│�1│��│�3│�C│��│�8│��│

 ├──┴──┴──┴──┴──┴──┴──┴──┼──┴──┴──┴──┼──┴──┴──┴──┴──┴──┴──┴──┤

│ ESD Ids � Address │� Address │ ESD Ids � Address │ Spaces

│ │ ││ │ │ │

 │ Flag │Flag │ Flag │

 │ (Set) │(not │ (not │

 │ │set) │ set) │

END Record Format
Columns Contents

1 X'02'

2–4 END

5 Space

6–8 Entry address from operand of END record in source deck (blank if
no operand)

9–14 Space

| 15–16 For a Type 1 END record: ESDID of entry point

| For a Type 2 END record: Blank

264 HLASM V1R5 Programmer’s Guide

| 17–24 For a Type 1 END record: Blank

| For a Type 2 END record: Symbolic entry point name if specified,
| otherwise blank

| 25–28 Blank

| 29–32 Control section length for a CSECT whose length was not
| specified on its SD ESD item. Byte 29 is zero if this length field is
| present. (Blank field if not present.)

| 33 Number of IDR items that follow (EBCDIC 1 or EBCDIC 2), or
| blank if none

34–52 Translator identification, version and release level (such as 0101),
and date of the assembly (yyddd)

53–71 When present, they are the same format as columns 34–52

72 Space

73–80 Deck ID, sequence number, or both. The deck ID is the name from
the first TITLE statement that has a non-spaces name field. The
name can be 1–8 characters. If the name is fewer than 8
characters or if there is no name, the remaining columns contain a
record sequence number.

SYM Record Format
If you request it, the assembler writes out symbolic information concerning the
assembled program ahead of all other object module records. The format of the
output record images is as follows:

Columns Contents

1 X'02'

2–4 SYM

5–10 Space

11–12 Variable field—number of bytes of text in variable field (columns
17–72)

13–16 Space

17–72 Variable field (see below)

73–80 Deck ID, sequence number, or both. The deck ID is the name
from the first TITLE statement that has a non-space name field.
The name can be 1–8 characters. If the name is fewer than 8
characters or if there is no name, the remaining columns contain a
record sequence number.

 Appendix C. Object Deck Output 265

The variable field (columns 17–72) contains up to 56 bytes of text. The items
comprising the text are packed together; consequently, only the last record may
contain less than 56 bytes of text in the variable field. The formats of a text record
and an individual text item are shown in Figure 94 on page 267. The contents of
the fields within an individual entry are as follows:

1. Organization (1 byte). The possible values are shown in Figure 93.

2. Address (3 bytes)—displacement from base of control section

3. Symbol Name (0–8 bytes)—symbolic name of particular item. If the entry is
non-data type and space, an extra byte is present that contains the number of
bytes that have been skipped.

4. Data Type (1 byte)—contents in hexadecimal

00 = character
04 = hexadecimal or pure DBCS (G-type)
08 = binary
10 = fixed point, full
14 = fixed point, half
18 = floating point, short

Figure 93. Organization Value Byte

Bits Value Description

0 0 Non-data type

1 Data type

1–3
If
non-data
type

000 Space

001 Control section

010 Dummy control section

011 Common

100 Instruction

101 CCW, CCW0, CCW1

1
If data
type

0 No multiplicity

1 Multiplicity
(indicates presence
of M Field)

2
If data
type

0 Independent
(not a packed or zoned
decimal constant)

1 Cluster
(packed or zoned
decimal constant)

3
If data
type

0 No scaling

1 Scaling
(indicates presence
of S field)

4 0 Name present

1 Name not present

5–7 Length of
name minus 1

266 HLASM V1R5 Programmer’s Guide

1C = floating point, long
20 = A-type or Q-type data
24 = Y-type data
28 = S-type data
2C = V-type data
30 = packed decimal
34 = zoned decimal
38 = floating point, extended

5. Length (2 bytes for character, hexadecimal, decimal (both packed and zoned);
1 byte for other types)—length of data item minus 1

6. Multiplicity–M field (3 bytes)—equals 1 if not present

7. Scale–signed integer–S field (2 bytes)—present only for F-, H-, E-, D-, P-, and
Z-type data, and only if scale is nonzero.

 1 2 4 5 1� 11 12 13 16 17 72 73 8�

┌──────┬───┬─────┬───────┬─────┬──────────────────────────────────┬────────────┐

│ │ │ │No. of │ │ │Deck Id and │

│ X'�2'│SYM│Space│bytes │Space│ Text - packed entries │Seq. Number │

│ │ │ │of text│ │ │ │

└──────┴───┴─────┴───────┴─────┴──────────────────────────────────┴────────────┘

 1 3 6 2 4 56 8

Text

┌────────────┬─────────────────────────────────┬──────────────┐

│ Entry │ N Complete entries │ Entry │

│(Complete or│ N >= 1 │(Complete or │

│end portion)│ │head portion) │

└────────────┴─────────────────────────────────┴──────────────┘

Variable size entries

Entry

┌────┬───────┬───────────┬────┬──────┬──────┬─────┐

│Org.│Address│Symbol name│Data│Length│Mult. │Scale│

│ │ │ │Type│ │Factor│ │

└────┴───────┴───────────┴────┴──────┴──────┴─────┘

1 3 �–8 1 1–2 3 2

Figure 94. SYM Record Format

 Appendix C. Object Deck Output 267

Appendix D. Associated Data File Output

When you specify the ADATA assembler option, a file containing associated data is
produced by the assembler. When you specify the ADATA suboption of the GOFF
assembler option, ADATA records are written to the object data set as text records.
You can specify both ADATA and GOFF(ADATA) to produce ADATA records in
both the associated data file and the object data set. Information about the
assembled program can be extracted from either data set and be used by
debugging tools or cross reference tools.

The associated data records are subject to change in future releases of High Level
Assembler without prior notice. Any utility which processes associated data files
should not process any files with architecture levels beyond those the utility has
been designed and tested to process.

The ASMADATA macro maps the records in the associated data file, and the
generalized object format data set. The syntax and parameter keywords for this
macro are shown on page 269.

268 Copyright IBM Corp. 1982, 2004

 ASMADATA

 ┌ ┐─,────────────────────
 │ │┌ ┐─NOGEN─

 ��─ ───

┴┬ ┬──PRINT= ──┴ ┴─GEN─── ─ ─��
 │ │┌ ┐─NO──
 ├ ┤──AID= ──┴ ┴─YES─ ─────
 │ │┌ ┐─NO──
 ├ ┤──AOPT= ──┴ ┴─YES─ ────
 │ │┌ ┐─NO──
 ├ ┤──COMPUNIT= ──┴ ┴─YES─
 │ │┌ ┐─NO──
 ├ ┤──DCDS= ──┴ ┴─YES─ ────
 │ │┌ ┐─NO──

| ├ ┤──DCX= ──┴ ┴─YES─ ─────
 │ │┌ ┐─NO──
 ├ ┤──ESD= ──┴ ┴─YES─ ─────
 │ │┌ ┐─NO──
 ├ ┤──JID= ──┴ ┴─YES─ ─────
 │ │┌ ┐─NO──
 ├ ┤──MACH= ──┴ ┴─YES─ ────
 │ │┌ ┐─NO──
 ├ ┤──MXREF= ──┴ ┴─YES─ ───
 │ │┌ ┐─NO──
 ├ ┤──MXREFX= ──┴ ┴─YES─ ──
 │ │┌ ┐─NO──
 ├ ┤──OPT= ──┴ ┴─YES─ ─────
 │ │┌ ┐─NO──
 ├ ┤──OUTPUT= ──┴ ┴─YES─ ──
 │ │┌ ┐─NO──
 ├ ┤──RLD= ──┴ ┴─YES─ ─────
 │ │┌ ┐─NO──
 ├ ┤──RXREF= ──┴ ┴─YES─ ───
 │ │┌ ┐─NO──
 ├ ┤──SOURCE= ──┴ ┴─YES─ ──
 │ │┌ ┐─NO──
 ├ ┤──SRCERR= ──┴ ┴─YES─ ──
 │ │┌ ┐─NO──
 ├ ┤──STATS= ──┴ ┴─YES─ ───
 │ │┌ ┐─NO──
 ├ ┤──SYM= ──┴ ┴─YES─ ─────
 │ │┌ ┐─NO──
 ├ ┤──USER= ──┴ ┴─YES─ ────
 │ │┌ ┐─NO──
 ├ ┤──USING= ──┴ ┴─YES─ ───
 │ │┌ ┐─NO──
 └ ┘──XREF= ──┴ ┴─YES─ ────

Default
PRINT=NOGEN,keyword=NO

NOGEN
Do not print the generated DSECTs in the listing

GEN
Print the generated DSECTs in the listing

NO
Do not generate a DSECT for this record

YES
Generate a DSECT for this record

 Appendix D. Associated Data File Output 269

keywords

AID ADATA Identification DSECT (Type X'0001')

AOPT Options File Information (Type X'000B')

COMPUNIT ADATA Compilation Unit Start/End DSECT (Type X'0002')

DCDS DC/DS DSECT (Type X'0034')

| DCX DC Extension DSECT(Type X'0035')

ESD External Symbol Dictionary (ESD) DSECT (Type X'0020')

JID Job Identification DSECT (Type X'0000')

MACH Machine Instruction DSECT (Type X'0036')

MXREF Macro and Copy Code Source Summary DSECT (Type
X'0060')

MXREFX Macro and Copy Code Cross Reference DSECT (Type
X'0062')

OPT Options DSECT (Type X'0010')

OUTPUT Output File DSECT (Type X'000A')

RLD Relocation Dictionary (RLD) DSECT (Type X'0040')

RXREF Register Cross Reference DSECT (Type X'0045')

SOURCE Source Analysis DSECT (Type X'0030')

SRCERR Source Error DSECT (Type X'0032')

STATS Statistics DSECT (Type X'0090')

SYM Symbol DSECT (Type X'0042')

USER User Data Record DSECT (Type X'0070')

USING Using Map DSECT (Type X'0080')

XREF Symbol Cross Reference DSECT (Type X'0044')

 Record Types
The file contains records classified into different record types. Each type of record
provides information about the assembler language program being assembled.
Each record consists of two parts:

� A 12-byte header section, which has the same structure for all record types.

� A variable-length data section, which varies by record type.

The header section contains, among other items, the record code which identifies
the type of record.

The record types, and their contents, written to the associated data file are:

Job Identification X'0000'
Provides information about the assembly job, the host system
environment, and the names of the primary input data sets.

270 HLASM V1R5 Programmer’s Guide

ADATA Identification X'0001'
Provides a precise time stamp, and a description of the character set
used for character data in the file.

The time stamp is represented as Universal Time (UT) with the
low-order bit representing 1 microsecond.

ADATA Compilation Unit Start/End X'0002'
Indicates where the associated data records for each assembly unit
begin and end. The START record is written to the associated data file
at the beginning of each assembly. The END record is written to the
associated data file at the end of each assembly. The END record
contains a count of the total number of records written to the associated
data file.

When there are multiple assembler programs in the input file, there is a
START and END record for each program assembled.

Output File X'000A'
Provides information about all the assembler output files used for the
assembly.

Options File X'000B'
Provides information about the ASMAOPT file (MVS and CMS) or library
member (VSE) used for the assembly, if applicable.

Options X'0010'
Describes the assembler options used for the assembly.

External Symbol Dictionary X'0020'
Describes all the control sections, including DSECTs, defined in the
program.

Source Analysis X'0030'
Describes a single source line.

There is one Source Analysis record in the file for each source record
which would appear in the listing as if PRINT ON,GEN was active. This
includes those source records generated by macro instructions, or
included by COPY instructions. A Source Analysis record is also
produced for TITLE statements. The FOLD assembler option does not
cause the source in the Source Analysis record to be converted to
uppercase.

The Source Analysis records appear in the sequence they would appear
in the listing. Conditional assembly statements might cause the source
statements to be skipped or the sequence of the records to be altered.

Source Error X'0032'
Describes errors in source program statements.

All Source Error records follow the Source Analysis record to which they
apply.

DC/DS X'0034'
Describes the constant or storage defined by a source program
statement that contains a DC, DS, CXD, DXD, CCW, CCW0, or CCW1
instruction.

If a source program statement contains one of the above, then a DC/DS
record is written following the Source Analysis record.

 Appendix D. Associated Data File Output 271

If there is an error in the DC, DS, CXD, DXD, CCW, CCW0, or CCW1
instruction, the DC/DS record is not produced.

If the DC statement has a duplication factor greater than 1, and at least
one of the operand values has a reference to the current location
counter (*), then a DC extension record (X'0035') is generated.

DC Extension X'0035'
This record describes the object text generated by a DC statement when
the DC statement has repeating fields. This record is only created if the
DC statement has a duplication factor greater than 1 and at least one of
the operand values has a reference to the current location counter (*).

Machine Instruction X'0036'
Describes the object code generated for a source program statement.

If a source program statement causes machine instructions to be
generated, then a Machine Instruction record is written following the
source record. If there is an error in the machine instruction, the
Machine Instruction record follows the Source Error record.

Relocation Dictionary X'0040'
Describes the relocation dictionary information that is contained in the
object module RLD records.

Symbol X'0042'
Describes a single symbol defined in the program.

There is one Symbol record for each symbol defined in the program,
including literals.

Symbol and Literal Cross Reference X'0044'
Describes the references to a single symbol.

All Symbol and Literal Cross Reference records follow the Symbol
record to which they apply.

Register Cross Reference X'0045'
Describes the references to a single register.

Macro and Copy Code Source Summary X'0060'
Describes the source of each macro and copy code member retrieved
by the program.

Macro and Copy Code Cross Reference X'0062'
Describes the references to a single macro, or member copied by the
COPY assembler instruction.

User Data X'0070'
Describes the data written by the ADATA assembler instruction.

Using Map X'0080'
Describes all USING, DROP, PUSH USING, and POP USING
statements in the program.

Statistics X'0090'
Describes the statistics about the assembly.

272 HLASM V1R5 Programmer’s Guide

Figure 95 shows part of the listing of an assembler program. If this assembler
program were assembled with the ADATA option, the records produced in the
associated data file would be in the sequence shown below Figure 95.

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

����� ���1E 1 CSECTNAM CSECT FIG���1�

������ 9�EC D��C ����C 2 STM 14,12,12(13) FIG���2�

 R:F ����� 3 USING CSECTNAM,15 FIG���3�

�����4 ���� ���� ����� 4 A 2,FIELD3 FIG���4�

�� ASMA�44E Undefined symbol - FIELD3

�����8 98EC D��C ����C 5 LM 14,12,12(13) FIG���5�

�����C �7FE 6 BR 14 FIG���6�

 7 DROP 15 FIG���7�

 8 COPY ADATA FIG���8�

�����E 9=FIELD1 DS CL8 ADA���1�

����16 1�=FIELD2 DS CL8 ADA���2�

 11 END FIG���9�

Figure 95. Sample Assembler Program for Associated Data Output

Type Description
X'0002' ADATA Compilation Unit START record
X'0001' ADATA Identification record
X'0000' Job Identification record
X'0010' Options record
X'0020' External Symbol Dictionary record for CSECTNAM
X'0030' Source record for statement 1

CSECTNAM CSECT

X'0030' Source record for statement 2
 STM 14,12,12(13)

X'0036' Machine Instruction record for STM instruction
X'0030' Source record for statement 3

 USING CSECTNAM,15

X'0030' Source record for statement 4
 A 2,FIELD3

X'0032' Source Error record for message ASMA044E
X'0036' Machine Instruction record for A instruction
X'0030' Source record for statement 5

 LM 14,12,12(13)

X'0036' Machine Instruction record for LM instruction
X'0030' Source record for statement 6

 BR 14

X'0036' Machine Instruction record for BR instruction
X'0030' Source record for statement 7

 DROP 15

X'0030' Source record for statement 8
 COPY ADATA

X'0030' Source record for statement 9 (From COPY member ADATA)
FIELD1 DS CL8

X'0034' DC/DS record for FIELD1
X'0030' Source record for statement 10 (From COPY member ADATA)

FIELD2 DS CL8

X'0034' DC/DS record for FIELD2
X'0030' Source record for statement 11

 END

X'0042' Symbol record for CSECTNAM
X'0044' Symbol and Literal Cross Reference record for CSECTNAM

 Appendix D. Associated Data File Output 273

X'0042' Symbol record for FIELD1
X'0042' Symbol record for FIELD2
X'0042' Symbol record for FIELD3
X'0044' Symbol and Literal Cross Reference record for FIELD3
X'0044' Symbol and Literal Cross Reference record for FIELD1
X'0044' Symbol and Literal Cross Reference record for FIELD2
X'0060' Macro and Copy Code Source Summary record for COPY ADATA
X'0062' Macro and Copy Code Cross Reference record for COPY ADATA
X'0080' USING Map record for USING on statement 3
X'0080' USING Map record for DROP on statement 7
X'0045' Register Cross Reference records...
...
X'0045' ...for each register referenced (0–15)1

X'0090' Assembly Statistics record
X'0002' ADATA Compilation Unit END record

The count value in this record is 54.

Notes:

1. There is one X'0045' record for each of the sixteen registers due to the
implicit references by the STM and LM instructions.

 Macro-only Assemblies
The associated data file can also be useful for assemblies that have macro
processing only (SYSGENs for example). The printing of the generated assembler
source is not printed in the listing, but the information is available in the associated
data file. Figure 96 shows part of the listing of an assembler program that only
includes a macro instruction. The statements generated by the macro instruction
(statements 9 through 11) are not printed on the listing. If this program were
assembled with the ADATA option, the records produced in the associated data file
would be in the sequence shown below.

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 1 print nogen ����1���

 2 macro ����2���

 3 &NAME testhla &job ����3���

4 punch '//&job JOB' ����4���

 5 punch '//STEP1 EXEC PGM=ABC' ����5���

6 punch '//DDNAME1 DD DSN=DSN.&job.,DISP=SHR' ����6���

 7 mend ����7���

 8 TESTHLA TESTJOB ����8���

 12 END ����9���

Figure 96. Sample Assembler Program for Macro Only Assembly

Type Description
X'0002' ADATA Compilation Unit START record
X'0001' ADATA Identification record
X'0000' Job Identification record
X'000A' Output File record
X'0010' Options record
X'0030' Source record for statement 1

 print nogen

X'0030' Source record for statement 2
 macro

274 HLASM V1R5 Programmer’s Guide

X'0030' Source record for statement 3
&NAME testhla &job

X'0030' Source record for statement 4
punch '//&job JOB'

X'0030' Source record for statement 5
 punch '//STEP1 EXEC PGM=ABC'

X'0030' Source record for statement 6
punch '//DDNAME1 DD DSN=DSN.&job.,DISP=SHR'

X'0030' Source record for statement 7
 mend

X'0030' Source record for statement 8
 TESTHLA TESTJOB

X'0030' Source record for statement 9
punch '//TESTJOB JOB'

X'0030' Source record for statement 10
 punch '//STEP1 EXEC PGM=ABC'

X'0030' Source record for statement 11
punch '//DDNAME1 DD DSN=DSN.TESTJOB,DISP=SHR'

X'0030' Source record for statement 12
 END

X'0060' Macro and Copy Code Source Summary record for macro TESTHLA
X'0062' Macro and Copy Code Cross Reference record for macro TESTHLA
X'0090' Assembly Statistics record
X'0002' ADATA Compilation Unit END record

The count value in this record is 21.

ADATA Record Layouts
The formats of the records written to the associated data file are shown in the
sections that follow.

In the fields described in each of the record types, a notation based on the
assembler language data type is used:

C indicates EBCDIC data
H indicates 2-byte binary integer data
F indicates 4-byte binary integer data

| A indicates 4-byte binary address data
X indicates hexadecimal (bit) data

No boundary alignments are implied by any data type, and you can change the
implied lengths by using a length indicator (Ln). All integer data is in System/370
format; that is bit 0 is always the most significant bit, bit n is the least significant bit,
and the byte ordering in the records is from most significant to the least significant.
The bits within a byte are numbered from left to right starting from 0.

| Offsets within each record are calculated from the beginning of the header section.

 Appendix D. Associated Data File Output 275

Common Header Section
Each ADATA record contains a 12-byte common header section.

All ADATA records at the same architecture level have the same header section
which describes: the producing language, the record type, the record architecture
level (or version), a continued-record indicator, and, starting at level 2, an edition
number.

| High Level Assembler Release 5 produces architecture level 3 header records.
This level is described in the following sections.

Figure 97 (Page 1 of 2). ADATA Record—Common Header Section

Field Size Description

Language code FL1 16 Assembler

Record type XL2 The record type, which can be one of the following:

X'0000' Job Identification record
X'0001' ADATA Identification record
X'0002' Compilation Unit Start/End record
X'000A' Output File Information record
X'000B' Options File Information record
X'0010' Options record
X'0020' External Symbol Dictionary record
X'0030' Source Analysis record
X'0032' Source Error record
X'0034' DC/DS record

| X'0035' DC Extension record
X'0036' Machine Instruction record
X'0040' Relocation Dictionary record
X'0042' Symbol record
X'0044' Symbol and Literal Cross Reference record
X'0045' Register Cross Reference record
X'0060' Macro and Copy Code Source Summary record
X'0062' Macro and Copy Code Cross Reference record
X'0070' User Data record
X'0080' USING Map record
X'0090' Assembly Statistics record

Associated Data
Architecture level

FL1 3

Flag XL1|� Record is not continued
|1 Record is continued on the next record
|�. Length fields are big-endian (S/390,RS/6000)
|1. Length fields are little-endian (Intel)

All other values are reserved.

276 HLASM V1R5 Programmer’s Guide

Figure 97 (Page 2 of 2). ADATA Record—Common Header Section

Field Size Description

Edition Number FL1 The edition number of this record type.

| The following list of edition number values can be used to determine the format of
| each ADATA record. The listed edition number value (or higher) indicates that the
| record is in the new restructured High Level Assembler Release 5 format.

| 1 Job Identification record
| 0 ADATA Identification record
| 0 Compilation Unit Start/End record
| 1 Output File Information record
| 1 Options File Information record
| 3 Options record
| 1 External Symbol Dictionary record
| 1 Source Analysis record
| 1 Source Error record
| 1 DC/DS record
| 1 DC Extension record
| 1 Machine Instruction record
| 1 Relocation Dictionary record
| 1 Symbol record
| 1 Symbol and Literal Cross Reference record
| 1 Register Cross Reference record
| 1 Macro and Copy Code Source Summary record
| 1 Macro and Copy Code Cross Reference record
| 1 User Data record
| 1 USING Map record
| 2 Assembly Statistics record

Reserved| XL4

Associated Data Field
length

HL2 The length, in bytes, of the data following the header

Note:

1. The mapping of the 12-byte header does not include the area used for the variable-length, record-descriptor word
required by the access method.

2. The BATCH option, when used in conjunction with the ADATA option, produces a group of records for each
assembly. Each group of records is delimited by the ADATA Compilation Start/End records.

3. All undefined and unused values are reserved.

| 4. If Flag indicates that the record is continued, the continue record follows the current record. The continue record
| includes the Common Header Section and has the same Record Type. If the continue record is continued then
| Flag is set with the continuation indicator.

Job Identification Record—X'0000'

Field Size Description

Date CL8 The date of the assembly in the format YYYYMMDD

Time CL4 The time of the assembly in the format HHMM

Product number CL8 The product number of the assembler that produced the associated data file

Product version CL8 The version number of the assembler that produced the associated data file, in the
| form V.R.M and padded to the right with spaces. For example, C'1.5.� '.

 Appendix D. Associated Data File Output 277

Field Size Description

| Product level| HL2| A monotonically increasing numeric value which identifies the current version and
| release of the assembler

PTF level CL8 The PTF level number of the assembler that produced the associated data file

System ID CL24| The system identification of the operating system on which the assembly was run.
| The value of the field is set to the value of the system variable &SYSTEM_ID.

Jobname CL8 The jobname of the assembly job

Stepname CL8 The MVS stepname of the assembly step

Procstep CL8 The MVS procedure step name of the assembly procedure step

Number of input files
(SYSIN)

| FL4| The number of input files in this record.

| The groups of eleven input-file fields below occur n times depending on the value
| in this field.

| Offset of first input-file| FL4| The offset from the beginning of this record to the first group of input-file fields. A
| value of binary zeros indicates that there are no input files.

| | | Start of input-file information groups, one group per file.
| The ellipses (...) indicate the fields are grouped.

| ...Offset of next
| input-file
| FL4| The offset from the beginning of this record to the next group of input-file fields. A
| value of binary zeros indicates that there are no more input files.

| ...Input file number| FL4| The assigned sequence number of the input file

| ...Input file name
| offset
| FL4| The offset from the beginning of this record to the input file name

| ...Input file name
| length
| FL4| The length of the input file name

| ...Volume serial
| number offset
| FL4| The offset from the beginning of this record to the volume serial number

| ...Volume serial
| number length
| FL4| The length of the volume serial number

| ...Member name
| offset
| FL4| The offset from the beginning of this record to the member name. If no member
| name is applicable, this field will contain binary zeros.

| ...Member name
| length
| FL4| The length of the member name. If no member name is applicable, this field will
| contain binary zeros.

...Input file name CL(n) The name of the input file for the assembly

...Volume serial
number

CL(n) The volume serial number of the (first) volume on which the input file resides

...Member name CL(n) Where applicable, the name of the member in the input file

 End of input-file information group.

Note:

1. If a SOURCE user exit has been specified for the assembly, and the SOURCE user exit has opened the input file,
the input file details are those returned by the user exit.

2. Where the number of input files would exceed the record size for the associated data file, the record is continued
| on the next record. The continuation flag is set in the common header section of the record. The current number
| of input files (for that record) is stored in the record and the record written to the associated data file. The next
| record contains the subsequent input files. The count of the number of input files is a count for the current record.

| Fields that have been written will not be repeated in the next record. Fixed length fields will be initialized to binary
| zeros or spaces, and variable length fields will have a length of binary zeros.

278 HLASM V1R5 Programmer’s Guide

ADATA Identification Record—X'0001'

Field Size Description

Time (binary) XL8 Universal Time (UT) with the low-order bit representing 1 microsecond.

This time may be used as a time-zone-independent time stamp.

CCSID XL2 Coded Character Set IDentifier for any character data within the file

ADATA Compilation Unit Start/End Record—X'0002'

Field Size Description

Indicator XL2 Start/End Indicator

X'0000' Start of a group of compilation-unit-related ADATA records

X'0001' End of a group of compilation-unit-related ADATA records

All other values are reserved.

XL2 Reserved

Record Count FL4 On an ADATA Compilation Unit End record, a count of all the ADATA records for
this compilation unit. (On an ADATA Compilation Unit Start record, this field should
be zero, unless the producing translator has foreknowledge of the exact number of
records to be written, in which case it must be identical to the count in the
Compilation Unit End record. Otherwise, it may be ignored by any consumer of the
ADATA stream.)

In High Level Assembler, the record count in the ADATA Compilation Unit Start
record is always zero.

| Output File Information Record—X'000A'
The Output File Information record provides data about the files produced by the
translator.

This architecture level provides for five such output files:

1. The object data set produced when you specify the OBJECT or GOFF (MVS
and CMS) option

2. The object data set produced when you specify the DECK option

3. The listing file produced when you specify the LIST option

4. The terminal messages file produced when you specify the TERM option

5. The SYSADATA file produced when you specify the ADATA option

Field Size Description

| Number of primary
| object-file (OBJECT)
| output files

| FL4| The number of primary object-files in this record.

| The groups of eleven primary object-file fields below occur n times depending on
| the value in this field. (This number is normally 1.)

 Appendix D. Associated Data File Output 279

Field Size Description

| Offset of first primary
| object-file
| FL4| The offset from the beginning of this record to the first group of primary object-file
| fields. A value of binary zeros indicates that there are no primary object-files.

| Number of secondary
| object-file (PUNCH)
| output files

| FL4| The number of secondary (punch) object-files in this record.

| The groups of eleven secondary object-file fields below occur n times depending
| on the value in this field. (This number is normally 1.)

| Offset of first
| secondary object-file
| FL4| The offset from the beginning of this record to the first group of secondary
| object-file fields. A value of binary zeros indicates that there are no secondary
| object-files.

| Number of listing
| (PRINT) output files
| FL4| The number of listing (print) files in this record.

| The groups of eleven listing-file fields below occur n times depending on the value
| in this field. (This number is normally 1.)

| Offset of first
| listing-file
| FL4| The offset from the beginning of this record to the first group of listing-file fields. A
| value of binary zeros indicates that there are no listing files.

| Number of terminal
| (TERM) output files
| FL4| The number of terminal files in this record.

| The groups of eleven terminal-file fields below occur n times depending on the
| value in this field. (This number is normally 1.)

| Offset of first
| terminal-file
| FL4| The offset from the beginning of this record to the first group of terminal-file fields.
| A value of binary zeros indicates that there are no terminal files.

| Number of
| associated-data
| (ADATA) output files

| FL4| The number of associated-data files in this record.

| The groups of eleven associated-data output-file fields below occur n times
| depending on the value in this field. (This number is normally 1.)

| Offset of first
| associated-data file
| FL4| The offset from the beginning of this record to the first group of associated-data-file
| fields. A value of binary zeros indicates that there are no associated-data files.

| | | Start of primary object-file information groups, one group per file.
| The ellipses (...) indicate the fields are grouped.

| ...Offset of next
| primary object-file
| FL4| The offset from the beginning of this record to the next group of primary object-file
| fields. A value of binary zeros indicates that there are no more primary
| object-files.

| ...Primary object-file
| file number
| FL4| The assigned sequence number of the primary object-file

| ...Primary object-file
| name offset
| FL4| The offset from the beginning of this record to the output file name for the primary
| object-file

| ...Primary object-file
| name length
| FL4| The length of the output file name for the primary object-file

| ...Volume serial
| number offset
| FL4| The offset from the beginning of this record to the volume serial number for the
| primary object-file

| ...Volume serial
| number length
| FL4| The length of the volume serial number for the primary object-file

| ...Member name
| offset
| FL4| The offset from the beginning of this record to the member name in the primary
| object-file. If no member name is applicable, this field will contain binary zeros.

| ...Member name
| length
| FL4| The length of the member name in the primary object-file. If no member name is
| applicable, this field will contain binary zeros.

| ...Primary object-file
| name
| CL(n)| The name of the primary object-file for the assembly

| ...Volume serial
| number
| CL(n)| The volume serial number of the volume on which the primary object-file resides

280 HLASM V1R5 Programmer’s Guide

Field Size Description

| ...Member name| CL(n)| Where applicable, the name of the member in the primary object-file.

| | | End of primary object-file information group.

| | | Start of secondary object-file information groups, one group per file.
| The ellipses (...) indicate the fields are grouped.

| ...Offset of next
| secondary object-file
| FL4| The offset from the beginning of this record to the next group of secondary
| object-file fields. A value of binary zeros indicates that there are no more
| secondary object-files.

| ...Secondary object-
| file file number
| FL4| The assigned sequence number of the secondary object-file

| ...Secondary object-
| file name offset
| FL4| The offset from the beginning of this record to the output file name for the
| secondary object-file

| ...Secondary object-
| file name length
| FL4| The length of the output file name for the secondary object-file

| ...Volume serial
| number offset
| FL4| The offset from the beginning of this record to the volume serial number for the
| secondary object-file

| ...Volume serial
| number length
| FL4| The length of the volume serial number for the secondary object-file

| ...Member name
| offset
| FL4| The offset from the beginning of this record to the member name in the secondary
| object-file. If no member name is applicable, this field will contain binary zeros.

| ...Member name
| length
| FL4| The length of the member name in the secondary object-file. If no member name
| is applicable, this field will contain binary zeros.

| ...Secondary object-
| file name
| CL(n)| The name of the secondary object-file for the assembly

| ...Volume serial
| number
| CL(n)| The volume serial number of the volume on which the secondary object-file resides

| ...Member name| CL(n)| Where applicable, the name of the member in the secondary object-file.

| | | End of secondary object-file information group.

| | | Start of listing-file information groups, one group per file.
| The ellipses (...) indicate the fields are grouped.

| ...Offset of next
| listing-file
| FL4| The offset from the beginning of this record to the next group of listing-file fields.
| A value of binary zeros indicates that there are no more listing files.

| ...Listing-file
| file number
| FL4| The assigned sequence number of the listing file

| ...Listing-file
| name offset
| FL4| The offset from the beginning of this record to the output file name for the listing
| file

| ...Listing-file
| name length
| FL4| The length of the output file name for the listing file

| ...Volume serial
| number offset
| FL4| The offset from the beginning of this record to the volume serial number for the
| listing file

| ...Volume serial
| number length
| FL4| The length of the volume serial number for the listing file

| ...Member name
| offset
| FL4| The offset from the beginning of this record to the member name in the listing file.
| If no member name is applicable, this field will contain binary zeros.

| ...Member name
| length
| FL4| The length of the member name in the listing file. If no member name is
| applicable, this field will contain binary zeros.

 Appendix D. Associated Data File Output 281

Field Size Description

| ...Listing-file
| name
| CL(n)| The name of the listing file for the assembly

| ...Volume serial
| number
| CL(n)| The volume serial number of the volume on which the listing file resides

| ...Member name| CL(n)| Where applicable, the name of the member in the listing file.

| | | End of listing-file information group.

| | | Start of terminal-file information groups, one group per file.
| The ellipses (...) indicate the fields are grouped.

| ...Offset of next
| terminal-file
| FL4| The offset from the beginning of this record to the next group of terminal-file fields.
| A value of binary zeros indicates that there are no more terminal files.

| ...Terminal-file
| file number
| FL4| The assigned sequence number of the terminal file

| ...Terminal-file
| name offset
| FL4| The offset from the beginning of this record to the output file name for the terminal
| file

| ...Terminal-file
| name length
| FL4| The length of the output file name for the terminal file

| ...Volume serial
| number offset
| FL4| The offset from the beginning of this record to the volume serial number for the
| terminal file

| ...Volume serial
| number length
| FL4| The length of the volume serial number for the terminal file

| ...Member name
| offset
| FL4| The offset from the beginning of this record to the member name in the terminal
| file. If no member name is applicable, this field will contain binary zeros.

| ...Member name
| length
| FL4| The length of the member name in the terminal file. If no member name is
| applicable, this field will contain binary zeros.

| ...Terminal-file
| name
| CL(n)| The name of the terminal file for the assembly

| ...Volume serial
| number
| CL(n)| The volume serial number of the volume on which the terminal file resides

| ...Member name| CL(n)| Where applicable, the name of the member in the terminal file.

| | | End of terminal-file information group.

| | | Start of associated-data-file information groups, one group per file.
| The ellipses (...) indicate the fields are grouped.

| ...Offset of next
| associated-data file
| FL4| The offset from the beginning of this record to the next group of
| associated-data-file fields. A value of binary zeros indicates that there are no
| more associated-data files.

| ...Associated-data-file
| file number
| FL4| The assigned sequence number of the associated-data file

| ...Associated-data file
| name offset
| FL4| The offset from the beginning of this record to the output file name for the
| associated-data file

| ...Associated-data file
| name length
| FL4| The length of the output file name for the associated-data file

| ...Volume serial
| number offset
| FL4| The offset from the beginning of this record to the volume serial number for the
| associated-data file

| ...Volume serial
| number length
| FL4| The length of the volume serial number for the associated-data file

282 HLASM V1R5 Programmer’s Guide

Field Size Description

| ...Member name
| offset
| FL4| The offset from the beginning of this record to the member name in the
| associated-data file. If no member name is applicable, this field will contain binary
| zeros.

| ...Member name
| length
| FL4| The length of the member name in the associated-data file. If no member name is
| applicable, this field will contain binary zeros.

| ...Associated-data file
| name
| CL(n)| The name of the associated-data file for the assembly

| ...Volume serial
| number
| CL(n)| The volume serial number of the volume on which the associated-data file resides

| ...Member name| CL(n)| Where applicable, the name of the member in the associated-data file

| | | End of associated-data-file information group.

| Note:

| Where the number of output files would exceed the record size for the associated data file, the record is continued on
| the next record. The continuation flag is set in the common header section of the record. The current number of
| output files (for that record) is stored in the record and the record written to the associated data file. The next record
| contains the subsequent output files. The count of the number of output files is a count for the current record.

| Fields that have been written will not be repeated in the next record. Fixed length fields will be initialized to binary
| zeros or spaces, and variable length fields will have a length of binary zeros.

| Options File Information—X'000B'
| The Options File Information record provides data about any option files passed to
| the assembler; using an external file (MVS and CMS) with the DDname ASMAOPT
| or library member (VSE) with the name and type ASMAOPT.USER.

| Field| Size| Description

| Number of option
| (ASMAOPT) input files
| FL4| The number of option files in this record.

| The groups of eleven option-file fields below occur n times depending on the value
| in this field.

| Offset of option file| FL4| The offset from the beginning of this record to the first group of option-file fields. A
| value of binary zeros indicates that there are no option files.

| | | Start of option-file information groups, one group per file.
| The ellipses (...) indicate the fields are grouped.

| ...Offset of next
| option file
| FL4| The offset from the beginning of this record to the next group of option-file fields.
| A value of binary zeros indicates that there are no more option files.

| ...Option file number| FL4| The assigned sequence number of the option file

| ...Option file name
| offset
| FL4| The offset from the beginning of this record to the option file name

| ...Option file name
| length
| FL4| The length of the option file name

| ...Volume serial
| number offset
| FL4| The offset from the beginning of this record to the volume serial number

| ...Volume serial
| number length
| FL4| The length of the volume serial number

 Appendix D. Associated Data File Output 283

| Field| Size| Description

| ...Member name
| offset
| FL4| The offset from the beginning of this record to the member name. If no member
| name is applicable, this field will contain binary zeros.

| ...Member name
| length
| FL4| The length of the member name. If no member name is applicable, this field will
| contain binary zeros.

| ...Option file name| CL(n)| The name of the option file for the assembly

| ...Volume serial
| number
| CL(n)| The volume serial number of the (first) volume on which the option file resides

| ...Member name| CL(n)| Where applicable, the name of the member in the option file

| | | End of option-file information group.

| Note:

| Where the number of option files would exceed the record size for the associated data file, the record is continued on
| the next record. The continuation flag is set in the common header section of the record. The current number of
| option files (for that record) is stored in the record and the record written to the associated data file. The next record
| contains the subsequent option files. The count of the number of option files is a count for the current record.

| Fields that have been written will not be repeated in the next record. Fixed length fields will be initialized to binary
| zeros or spaces, and variable length fields will have a length of binary zeros.

 Options Record—X'0010'
This record indicates which assembler options were used for the assembly, and the
values passed as suboptions. For example, if the PROFILE option was specified,

| bit 7 in option byte 8 would be 1, and the PROFILE value field would contain the
| profile member name.

| The layout of the first 12 option bytes matches that of the assembler's option bytes
| in the ASMADOPT module.

Field Size Description

| Option Byte 1| XL1| 1... Bit 1 = DECK, Bit 0 = NODECK
| .1.. Bit 1 = OBJECT, Bit 0 = NOOBJECT
| ..1. Bit 1 = LIST, Bit 0 = NOLIST
| ...1 Bit 1 = XREF, Bit 0 = NOXREF
| 1... Bit 1 = RENT, Bit 0 = NORENT
|1.. Bit 1 = TEST, Bit 0 = NOTEST
|1. Bit 1 = BATCH, Bit 0 = NOBATCH
|1 Bit 1 = ALIGN, Bit 0 = NOALIGN

| Option Byte 2| XL1| 1... Bit 1 = ESD, Bit 0 = NOESD
| .1.. Bit 1 = RLD, Bit 0 = NORLD
| ..1. Bit 1 = XREF(SHORT), Bit 0 = not XREF(SHORT)
| ...1 Bit 1 = TRACE specified, Bit 0 = not specified
| 1... Bit 1 = XREF(FULL), Bit 0 = not XREF(FULL)
|1.. Bit 1 = SIZE(MAX..,ABOVE), Bit 0 = not SIZE(MAX..,ABOVE)
|1. Bit 1 = XREF(UNREFS), Bit 0 = not XREF(UNREFS)
|1 Bit 1 = RXREF, Bit 0 = NORXREF

284 HLASM V1R5 Programmer’s Guide

| Field| Size| Description

| Option Byte 3| XL1| 1... Bit 1 = TERM, Bit 0 = NOTERM
| .1.. Bit 1 = TERM(NARROW), Bit 0 = not TERM(NARROW)
| ..1. Bit 1 = DBCS, Bit 0 = NODBCS
| ...1 Bit 1 = DXREF, Bit 0 = NODXREF
| 1... Bit 1 = FOLD, Bit 0 = NOFOLD
|1.. Bit 1 = SIZE specified, Bit 0 = not specified
|1. Bit 1 = FLAG(PUSH), Bit 0 = FLAG(NOPUSH)
|1 Bit 1 = THREAD, Bit 0 = NOTHREAD

| Option Byte 4| XL1| 1... Bit 1 = PCONTROL(ON), Bit 0 = not PCONTROL(ON)
| .1.. Bit 1 = PCONTROL(GEN), Bit 0 = not PCONTROL(GEN)
| ..1. Bit 1 = PCONTROL(DATA), Bit 0 = not PCONTROL(DATA)
| ...1 Bit 1 = PCONTROL(UHEAD), Bit 0 = not PCONTROL(UHEAD)
| 1... Bit 1 = PCONTROL(MSOURCE), Bit 0 = not PCONTROL(MSOURCE)
|1.. Bit 1 = SECTALGN specified, Bit 0 = not specified
|1. Reserved
|1 Reserved

| Option Byte 5| XL1| 1... Bit 1 = ASA, Bit 0 = NOASA (MVS and CMS)
| .1.. Bit 1 = USING(WARN(m)), Bit 0 = USING(NOWARN)
| ..1. Bit 1 = USING(LIMIT(nnnn)), Bit 0 = USING(NOLIMIT)
| ...1 Bit 1 = USING(MAP), Bit 0 = USING(NOMAP)
| 1... Bit 1 = INEXIT, Bit 0 = NOINEXIT
|1.. Bit 1 = LIBEXIT, Bit 0 = NOLIBEXIT
|1. Bit 1 = PRTEXIT, Bit 0 = NOPRTEXIT
|1 Bit 1 = OBJEXIT, Bit 0 = NOOBJEXIT

| Option Byte 6| XL1| 1... Bit 1 = SYSPARM specified, Bit 0 = not specified
| .1.. Bit 1 = FLAG specified, Bit 0 = not specified
| ..1. Bit 1 = LANGUAGE specified, Bit 0 = not specified
| ...1 Bit 1 = LINECOUNT specified, Bit 0 = not specified
| 1... Bit 1 = OPTABLE/MACHINE specified, Bit 0 = not specified
|1.. Bit 1 = ADATA, Bit 0 = NOADATA
|1. Bit 1 = ADEXIT, Bit 0 = NOADEXIT
|1 Bit 1 = TRMEXIT, Bit 0 = NOTRMEXIT

| Option Byte 7| XL1| 1... Bit 1 = LIST(121), Bit 0 = not LIST(121) (MVS and CMS)
| .1.. Bit 1 = LIST(133), Bit 0 = not LIST(133) (MVS and CMS)
| ..1. Bit 1 = LIST(MAX), Bit 0 = not LIST(MAX) (MVS and CMS)
| ...1 Reserved
| 1... Reserved
|1.. Reserved
|1. Reserved
|1 Reserved

| Option Byte 8| XL1| 1... Bit 1 = MXREF, Bit 0 = NOMXREF
| .1.. Bit 1 = MXREF(FULL), Bit 0 = not MXREF(FULL)
| ..1. Bit 1 = MXREF(SOURCE), Bit 0 = not MXREF(SOURCE)
| ...1 Bit 1 = MXREF(XREF), Bit 0 = not MXREF(XREF)
| 1... Bit 1 = TRANSLATE specified, Bit 0 = NOTRANSLATE
|1.. Bit 1 = GOFF, Bit 0 = NOGOFF (MVS and CMS)
|1. Bit 1 = GOFF(ADATA), Bit 0 = GOFF(NOADATA) (MVS and CMS)
|1 Bit 1 = PROFILE specified, Bit 0 = NOPROFILE

 Appendix D. Associated Data File Output 285

| Field| Size| Description

| Option Byte 9| XL1| 1... Bit 1 = FLAG(RECORD), Bit 0 = FLAG(NORECORD)
| .1.. Bit 1 = PCONTROL(MCALL), Bit 0 = not PCONTROL(MCALL)
| ..1. Bit 1 = PCONTROL(OFF), Bit 0 = not PCONTROL(OFF)
| ...1 Bit 1 = PCONTROL(NODATA), Bit 0 = not PCONTROL(NODATA)
| 1... Bit 1 = PCONTROL(NOGEN), Bit 0 = not PCONTROL(NOGEN)
|1.. Bit 1 = PCONTROL(NOUHEAD), Bit 0 = not PCONTROL(NOUHEAD)
|1. Bit 1 = PCONTROL(NOMSOURCE), Bit 0 = not
| PCONTROL(NOMSOURCE)
|1 Bit 1 = PCONTROL(NOMCALL), Bit 0 = not PCONTROL(NOMCALL)

| Option Byte 10| XL1| 1... Reserved
| .1.. Reserved
| ..1. Reserved
| ...1 Reserved
| 1... Bit 1 = OPTABLE/MACHINE(LIST), Bit 0 = (NOLIST)
|1.. Bit 1 = CODEPAGE specified, Bit 0 = not specified
|1. Bit 1 = Option errors encountered, Bit 0 = no errors encountered
|1 Bit 1 = INFO, Bit 0 = NOINFO

| Option Byte 11| XL1| 1... Bit 1 = FLAG(EXLITW), Bit 0 = FLAG(NOEXLITW)
| .1.. Bit 1 = TYPECHECK(MAGNITUDE), Bit 0 =
| TYPECHECK(NOMAGNITUDE)
| ..1. Reserved
| ...1 Bit 1 = TYPECHECK(REGISTER), Bit 0 = TYPECHECK(NOREGISTER)
| 1... Bit 1 = COMPAT(CASE), Bit 0 = COMPAT(NOCASE)
|1.. Bit 1 = COMPAT(SYSLIST), Bit 0 = COMPAT(NOSYSLIST)
|1. Bit 1 = COMPAT(LITTYPE), Bit 0 = COMPAT(NOLITTYPE)
|1 Bit 1 = COMPAT(MACROCASE), Bit 0 = COMPAT(NOMACROCASE)

| Option Byte 12| XL1| 1... Bit 1 = FLAG(USING0), Bit 0 = (NOUSING0)
| .1.. Bit 1 = LIBMAC, Bit 0 = NOLIBMAC
| ..1. Bit 1 = RA2, Bit 0 = NORA2
| ...1 Bit 1 = FLAG(ALIGN), Bit 0 = FLAG(NOALIGN)
| 1... Bit 1 = FLAG(CONT), Bit 0 = FLAG(NOCONT)
|1.. Bit 1 = FLAG(SUBSTR), Bit 0 = FLAG(NOSUBSTR)
|1. Bit 1 = FLAG(IMPLEN), Bit 0 = FLAG(NOIMPLEN)
|1 Bit 1 = FLAG(PAGE0), Bit 0 = FLAG(NOPAGE0)

| Option Byte 13| XL1| 1... Bit 1 = SUPRWARN, Bit 0 = NOSUPRWARN
| .1.. Reserved
| ..1. Reserved
| ...1 Reserved
| 1... Reserved
|1.. Reserved
|1. Reserved
|1 Reserved

| Option Byte 14| XL1| 1... Reserved
| .1.. Reserved
| ..1. Reserved
| ...1 Reserved
| 1... Reserved
|1.. Reserved
|1. Reserved
|1 Reserved

| XL4| Reserved

286 HLASM V1R5 Programmer’s Guide

| Field| Size| Description

| Extra Byte 1| XL1| 1... Bit 1 = COMPAT, Bit 0 = NOCOMPAT
| .1.. Bit 1 = EXIT, Bit 0 = NOEXIT
| ..1. Bit 1 = PCONTROL, Bit 0 = NOPCONTROL
| ...1 Bit 1 = PESTOP, Bit 0 = NOPESTOP
| 1... Bit 1 = SUBLIB(DF), Bit 0 = SUBLIB(AE) (VSE)
|1.. Reserved
|1. Reserved
|1 Reserved

| XL4| Reserved

| CODEPAGE value| XL4| Value from CODEPAGE(X'xxxx') option in effect for the assembly.

| FLAG value| FL1| Value from FLAG(n) option in effect for the assembly. Zero if not provided.

| LANGUAGE value| CL3| Value from LANGUAGE(xxx) option in effect for the assembly.

| LINECOUNT value| HL2| Value from LINECOUNT(n) option in effect for the assembly.

| OPTABLE| CL3| Value from OPTABLE(xxx) option in effect for the assembly.

| PROFILE value| CL8| Value from PROFILE(xxxxxxxx) option in effect for the assembly. Blank if not
| provided.

| SECTALGN value| FL4| Value from SECTALGN(n) option in effect for the assembly.

| TRANSLATE value| CL2| Value from TRANSLATE(xx) option in effect for the assembly. Blank if not
| provided.

| USING(LIMIT) value| HL2| Value from USING(LIMIT(n)) option in effect for the assembly. Zero if not
| provided.

| USING(WARN) value| FL1| Value from USING(WARN(n)) option in effect for the assembly. Zero if not
| provided.

| XL32| Reserved

| PARM offset| FL4| Offset from the beginning of this record to the PARM string supplied

| PARM length| FL4| Length of the PARM string supplied

| SYSPARM offset| FL4| Offset from the beginning of this record to the SYSPARM string supplied

| SYSPARM length| FL4| Length of the SYSPARM string supplied

| Input exit name offset| FL4| Offset from the beginning of this record to the INEXIT program name

| Input exit name length| FL4| Length of the INEXIT program name

| Input exit string offset| FL4| Offset from the beginning of this record to the string supplied to INEXIT

| Input exit string length| FL4| Length of string supplied to INEXIT

| Library exit name
| offset
| FL4| Offset from the beginning of this record to the LIBEXIT program name

| Library exit name
| length
| FL4| Length of the LIBEXIT program name

| Library exit string
| offset
| FL4| Offset from the beginning of this record to the string supplied to LIBEXIT

| Library exit string
| length
| FL4| Length of string supplied to LIBEXIT

| Print exit name offset| FL4| Offset from the beginning of this record to the PRTEXIT program name

| Print exit name length| FL4| Length of the PRTEXIT program name

| Print exit string offset| FL4| Offset from the beginning of this record to the string supplied to PRTEXIT

| Print exit string length| FL4| Length of string supplied to PRTEXIT

 Appendix D. Associated Data File Output 287

| Field| Size| Description

| Object exit name
| offset
| FL4| Offset from the beginning of this record to the OBJEXIT program name

| Object exit name
| length
| FL4| Length of the OBJEXIT program name

| Object exit string
| offset
| FL4| Offset from the beginning of this record to the string supplied to OBJEXIT

| Object exit string
| length
| FL4| Length of string supplied to OBJEXIT

| ADATA exit name
| offset
| FL4| Offset from the beginning of this record to the ADEXIT program name

| ADATA exit name
| length
| FL4| Length of the ADEXIT program name

| ADATA exit string
| offset
| FL4| Offset from the beginning of this record to the string supplied to ADEXIT

| ADATA exit string
| length
| FL4| Length of string supplied to ADEXIT

| TERM exit name
| offset
| FL4| Offset from the beginning of this record to the TRMEXIT program name

| TERM exit name
| length
| FL4| Length of the TRMEXIT program name

| TERM exit string
| offset
| FL4| Offset from the beginning of this record to the string supplied to TRMEXIT

| TERM exit string
| length
| FL4| Length of string supplied to TRMEXIT

| PARM string| CL(n)| Field to contain the invocation option string that is being used for the assembly

| SYSPARM string| CL(n)| Field to contain the SYSPARM string that is being used for the assembly

| Input exit name| CL(n)| INEXIT program name

| Input exit string| CL(n)| Field to contain the string to be passed to the INEXIT program

| Library exit name| CL(n)| LIBEXIT program name

| Library exit string| CL(n)| Field to contain the string to be passed to the LIBEXIT program

| Print exit name| CL(n)| PRTEXIT program name

| Print exit string| CL(n)| Field to contain the string to be passed to the PRTEXIT program

| Object exit name| CL(n)| OBJEXIT program name

| Object exit string| CL(n)| Field to contain the string to be passed to the OBJEXIT program

| ADATA exit name| CL(n)| ADEXIT program name

| ADATA exit string| CL(n)| Field to contain the string to be passed to the ADEXIT program

| TERM exit name| CL(n)| TRMEXIT program name

| TERM exit string| CL(n)| Field to contain the string to be passed to the TRMEXIT program

288 HLASM V1R5 Programmer’s Guide

External Symbol Dictionary Record—X'0020'

Field Size Description

| Record Type| XL1| X'00' Section Definition (CSECT) SD
| X'01' Label Definition (entry point) LD
| X'02' External Reference ER
| X'03' Element Definition (class) ED
| X'04' Private Code Section PC
| X'05' Common Section CM
| X'06' External Dummy Section XD
| X'07' Part Reference PR
| X'0A' Weak External Reference WX
| X'FF' Dummy Section (DSECT) (no type designator)

| Flags| XL1| Flags or Alignment

| For SD-, PC- and CM-type entries, it contains the AMODE/RMODE flags. For LD-,
| ER- and WX-type entries, it is space-filled. For XD-type entries, it indicates the
| number of bytes for alignment less one.

| xx.. Reserved
| ..r. RMODE 64 if 1, otherwise use the R bit
| ...a AMODE 64 if 1, otherwise use the AA bits
| 1... Read-Only Control Section (RSECT)
|R.. RMODE: 0=RMODE(24), 1=RMODE(ANY)
|AA AMODE: 00,01=AMODE(24), 10=AMODE(31), 11=AMODE(ANY)

| XL2| Reserved

ESDID FL4 External Symbol Dictionary ID (ESDID) or zero

| AL4| Reserved

| Address or Alignment| AL4| The section or symbol address, or section alignment.

| For SD-, LD- and ED-type entries, it contains the address of the symbol. For PC-
| and CM-type entries, it indicates the beginning address of the control section. For
| XD-type entries, it indicates the number of bytes for alignment less one.

| FL4| Reserved

Section Length FL4 The length of the section

| Owner ID| FL4| ESDID of the SD or ED in which this symbol was defined

| XL8| Reserved

| External Name offset| FL4| The offset from the beginning of this record to the external name. A value of
| binary zeros indicates that there is no external name.

| External Name length| FL4| Number of characters in the external name (zero if private code, unnamed
| common or unnamed DSECT)

| Alias Name offset| FL4| The offset from the beginning of this record to the alias name. A value of binary
| zeros indicates that there is no alias name.

| Alias Name length| FL4| Number of characters in the alias name (zero if no alias)

External name CL(n) The external name

Alias Section name CL(n) The alias name for the section

 Appendix D. Associated Data File Output 289

Source Analysis Record—X'0030'

Field Size Description

| ESDID| FL4| The ESDID for the source record.

Statement number FL4 The statement number of the source record.

Input record number FL4 The input source record number within the current input file.

| If the source line is macro-generated (that is, the input record origin value is
| X'02'), this field contains binary zero.

This field contains the value returned by the exit if the source record is provided by
an exit.

Parent record number FL4 The parent source record number.

If the source record was included by a COPY statement or generated by a macro
instruction, the Parent input number is the record number of the COPY statement
or macro instruction.

This field contains the value returned by the input or library exits if the source
record is provided by either of these exits.

Input assigned file
number

| FL4 The input file's assigned sequence number. (Refer to the input file n in the Job
Identification record if the Input record origin is X'01', or the Library Record -
X'0060' with Concatenation number n otherwise).

This field is set to zero if an exit provides the source record.

Parent assigned file
number

| FL4 The parent file's assigned sequence number. (Refer to the Input file n in the Job
Identification record if the Parent record origin is X'01', or the Library Record -
X'0060' with Concatenation number n otherwise).

This field is set to zero if an exit provides the source record.

Location Counter FL4 The current location counter for the source record.

Input record origin XL1 X'�1' Source line from primary input
X'�2' Source line from Macro generation.
X'�3' Source line from library member.

| X'�4' Reserved
X'�5' Source line from AINSERT internal buffer.

Parent record origin XL1 X'�1' Source line from primary input
X'�2' Source line from Macro generation.
X'�3' Source line from library member.

| X'�4' Reserved
X'�5' Source line from AINSERT internal buffer

Print flags XL1 X'8�' PRINT GEN
X'4�' PRINT DATA
X'2�' PRINT ON
X'1�' PRINT NOMSOURCE (0 = PRINT MSOURCE)
X'�8' PRINT UHEAD
X'�4' PRINT MCALL

| XL2| Reserved

290 HLASM V1R5 Programmer’s Guide

Field Size Description

Source record type
(within source record
origin)

XL1 X'�1' Comment line that is not within a macro definition.
X'�2' Machine instruction that is not within a macro definition.
X'�3' Assembler instruction that is not within a macro definition. This includes

conditional assembly instructions such as AIF and SETC.
X'�4' Macro call instruction.
X'�5' Macro definition. All statements between (and including) the MACRO

prototype statement and the corresponding MEND statement. This
includes nested macro definitions.

Assembler operation
code

XL1 The assembler operation code for assembler instructions. (See note 2 on
page 292). This field is only valid if the “Source record type” is set to X'03'.

Flags XL1 Flag byte for address fields.

X'8�' Address 1 present
X'4�' Address 2 present

| AL4| Reserved

Address 1 AL4 The address 1 field from the assembly

| AL4| Reserved

Address 2 AL4 The address 2 field from the assembly

Offset of name entry
in statement field

| FL4 Zero if name entry not present or if the name begins at the beginning of the source
record (see note 1 on page 292).

Length of name entry FL4 Zero if name entry not present (see note 1 on page 292)

Offset of operation
entry in statement
field

| FL4 Zero if operation entry not present (see note 1 on page 292)

Length of operation
entry

FL4 Zero if operation entry not present (see note 1 on page 292)

Offset of operand
entry in statement
field

| FL4 Zero if operand entry not present (see note 1 on page 292)

Length of operand
entry

FL4 Zero if operand entry not present (see note 1 on page 292)

| Offset of remarks
| entry in statement
| field

| FL4| Zero if remarks entry not present (see note 1 on page 292)

| Length of remarks
| entry
| FL4| Zero if remarks entry not present (see note 1 on page 292)

| Offset of continuation
| indicator field
| FL4| Zero if no continuation indicator present (see note 1 on page 292)

| XL4| Reserved

| Input macro or copy
| member name offset
| FL4| The offset from the beginning of this record to the input macro or copy member
| name. A value of binary zeros indicates that there is no input macro or copy
| member name.

| Input macro or copy
| member name length
| FL4| Zero if the input record line does not come from a macro or a copy member

| Parent macro or copy
| member name offset
| FL4| The offset from the beginning of this record to the parent macro or copy member
| name. A value of binary zeros indicates that there is no parent macro or copy
| member name.

 Appendix D. Associated Data File Output 291

Field Size Description

| Parent macro or copy
| member name length
| FL4| Zero if the parent record line does not come from a macro or a copy member

| Source record offset| FL4| The offset from the beginning of this record to the source record.

| Source record length| FL4| The length of the actual source record following

| XL8| Reserved

Input Macro or copy
member name

CL(n) The macro or copy member name if the input record originated from a macro or
copy member

Parent macro or copy
member name

CL(n) The macro or copy member name if the parent record originated from a macro or
copy member

Source record CL(n)

Notes:

1. The length and offset fields for the name entry, operation entry, remarks entry,
and continuation indicator are zero for the following statements:

� Macro definition statements with a Source Record Type of X'04'
� Macro definition statements with a Source Record Type of X'05'
� EXITCTL assembler statements
� ICTL assembler statements

2. The assembler operation code field can contain the operation code values
shown in Figure 98.

292 HLASM V1R5 Programmer’s Guide

Figure 98. Assembler Operation Code Values

Operation Assembler
 Code Instruction

Operation Assembler
 Code Instruction

Operation Assembler
 Code Instruction

 X'��' GBLA

 X'�1' GBLB

 X'�2' GBLC

 X'�3' LCLA

 X'�4' LCLB

 X'�5' LCLC

 X'�6' SETA

 X'�7' SETB

 X'�8' SETC

 X'�9' AIF

 X'�A' AGO

 X'�B' ANOP

 X'�C' COPY

 X'�D' MACRO

 X'�E' MNOTE

 X'�F' MEXIT

 X'1�' MEND

 X'11' ICTL

 X'12' ISEQ

 X'13' PRINT

 X'14' SPACE

 X'15' EJECT

 X'16' PUNCH

 X'17' REPRO

 X'18' TITLE

 X'19' ENTRY

 X'1A' EXTRN

 X'1B' START

 X'1C' CSECT

 X'1D' DSECT

 X'1E' COM

 X'1F' EQU

 X'2�' ORG

 X'21' END

 X'22' LTORG

 X'23' USING

 X'24' DROP

 X'25' ACTR

 X'26' DC

 X'27' DS

 X'28' CCW

 X'29' CNOP

 X'2A' LOCTR

 X'2B' DXD

 X'2C' CXD

| X'2D' Reserved

 X'2E' OPSYN

 X'2F' PUSH

 X'3�' POP

| X'31' Reserved

| X'32' Reserved

 X'33' Literal

| X'34' Reserved

| X'35' Reserved

| X'36' Reserved

 X'37' MHELP

 X'38' AREAD

| X'39' Reserved

| X'3A' Reserved

 X'3B' WXTRN

| X'3C' Reserved

 X'3D' AMODE

 X'3E' RMODE

 X'3F' RSECT

 X'4�' CCW�

 X'41' CCW1

 X'42' EXITCTL

 X'43' ASPACE

 X'44' AEJECT

 X'45' ALIAS

 X'46' CEJECT

 X'47' ADATA

 X'48' SETAF

 X'49' SETCF

 X'4A' CATTR

(MVS & CMS)

 X'4B' ACONTROL

 X'4C' XATTR

(MVS & CMS)

 X'4D' AINSERT

Source Error Record—X'0032'

Field Size Description

Statement number FL4 The statement number of the statement in error

Error Identifier CL16 The error message identifier

Error Severity HL2 The severity of the error

| Error message offset| FL4| The offset from the beginning of this record to the error message.

| Error message length| FL4| The length of the error message text

| XL8| Reserved

Error Message CL(n) The error message text

Note:

1. This record also includes MNOTEs generated by the assembler.

2. The language of the error diagnostic messages is determined by the LANGUAGE assembler option.

 Appendix D. Associated Data File Output 293

 DC/DS Record—X'0034'

Field Size Description

ESDID FL4 The ESDID for the source record.

Type Flag XL1 1... Bit 1 = Define Constant (DC, CXD, CCW, CCW0, or CCW1), Bit 0 =
Define Storage (DS or DXD)

.1.. If “Define Constant” bit is set, bit 1 indicates the operand is a CXD. If
“Define Constant” bit is not set, bit 1 indicates the operand is a DXD.

..1. If “Define Constant” bit is set, bit 1 indicates the operand is a CCW,
CCW0, or CCW1.

...1 Bit 1 indicates this record is associated with an object text record
(X'0035'). The object text record is created when a DC statement has
a duplication factor greater than 1, and at least one of the operand
values has a reference to the current location counter (*).

.... 1... Reserved

.... .1.. Reserved

.... ..1. Reserved

.... ...1 Reserved

XL5 Reserved

Statement Number FL4 The statement number of the source line that generated this text, if known.
Otherwise it contains zeros.

Number of operands FL4 The number of operands defined by the source record.

The groups of nine operand fields below occur n times depending on the value in
this field.

Offset of operands FL4 The offset from the beginning of this record to the first group of operand fields. A
value of binary zeros indicates that there are no operands.

 Start of operand group, one group per operand.
The ellipses (...) indicate the fields are grouped.

...Offset of next
operand

FL4 The offset from the beginning of this record to the next group of operand fields. A
value of binary zeros indicates that there are no more operands.

...Location Counter FL4 The location counter for this operand.

...Duplication Factor FL4 The duplication factor for this operand.

...Bit Offset XL1 The offset within byte (0–7) for bit-length operands.

...Type Attribute XL1 The value that the assembler Type Attribute reference returns (see “Type Attribute
(T')” in the chapter “How to Write Conditional Assembly Instructions” in the
Language Reference manual).

...Type Extension CL1 The type extension for this operand.

...Program Type XL4 The value that the assembler SYSATTRP() internal function returns (see “Program
Type (SYSATTRP())” in the chapter “How to Write Conditional Assembly
Instructions” in the Language Reference manual).

XL4 Reserved

...Number of values FL4 The number of nominal values defined by this operand.

The groups of five nominal-value fields below occur n times depending on the
value in this field.

...Offset of values FL4 The offset from the beginning of this record to the first group of nominal-value
fields. A value of binary zeros indicates that there are no nominal values.

 End of operand group.

294 HLASM V1R5 Programmer’s Guide

Field Size Description

 Start of nominal-value group, one group per value.
The ellipses (......) indicate the fields are grouped.

......Offset of next
nominal value

FL4 The offset from the beginning of this record to the next group of nominal-value
fields. A value of binary zeros indicates that there are no more nominal values.

......Value offset FL4 The offset from the beginning of this record to the generated nominal value. A
value of binary zeros indicates that there is no generated nominal value.

......Byte length FL4 The byte length of the nominal value, if defined with a byte length.

......Bit length FL4 The bit length of the nominal value, if defined with a bit length.

......Nominal value XL(n) If this record describes a DC, CXD, CCW, CCW0, or CCW1, then the value
contains the nominal value. (A DC with a zero duplication factor is treated the
same as a DS and this field is not present). If this record describes a DS or DXD,
this field is not present.

If a byte length is specified (or implied), the value contains the number of bytes
specified. The value field is aligned according to the operand type. For example,
hexadecimal values are left-aligned and packed values are right-aligned.

If a bit length is specified, the length of the value is the number of bytes required
to contain the required bits. For example, if the bit length was 10, the value is 2
bytes in length. The value is in the leftmost 10 bits. Alignment within the specified
number of bits is according to the operand type. For example, hexadecimal values
are left-aligned and packed values are right-aligned.

 End of nominal-value group.

Note:

1. Only one of the two fields for byte/bit lengths contains a non-zero value. This means that there is a byte length,
or a bit length, but not both.

2. No description of any inter-statement boundary alignment padding is produced. Any padding because of alignment
can be calculated by comparing the location counter of the current operand with the sum of the location counter
and length of the previous operand.

The length of the previous operand would need to be calculated using the duplication factor, number of nominal
values, and the length of each nominal value.

3. High Level Assembler creates the DC Extension record X'0035' when the duplication factor is greater than 1 and
at least one of the operand values has a reference to the current location counter (�).

See Example 6, page 300.

4. Where the number of operands would exceed the record size for the associated data file, the record is continued
on the next record. The continuation flag is set in the common header section of the record. The current number
of operands (for that record) is stored in the record and the record written to the associated data file. The next
record contains the subsequent operands. The count of the number of operands is a count for the current record.

Fields that have been written will not be repeated in the next record. Fixed length fields will be initialized to binary
zeros or spaces, and variable length fields will have a length of binary zeros.

 Appendix D. Associated Data File Output 295

| The following examples show the format of a DC/DS Record for various DC
| statements.

| 1. EXAMPLE1 DC 3F'5,6',HP(X'05')'7'

| ESDID : F'1'

| Type Flag : B'1�������'

| Reserved : X'����������'

| Statement Number : F'2'

| Number of Operands : F'2'

| Offset of first Operand : F'38'

| Offset of next Operand : F'1�8'

| Location Counter : X'��������'

| Duplication Factor : F'3'

| Bit Offset : B'��������'

| Type Attribute : C'F'

| Type Extension : C' '

| Program Type : X'��������'

| Reserved : X'��������'

| Number of values : F'2'

| Offset of first value : F'68'

| Offset of next value : F'88'

| Offset of generated value : F'84'

| Byte length : F'4'

| Bit length : F'�'

| Generated Value : X'�������5'

| Offset of next value : F'�'

| Offset of generated value : F'1�4'

| Byte length : F'4'

| Bit length : F'�'

| Generated Value : X'�������6'

| Offset of next Operand : F'�'

| Location Counter : X'������18'

| Duplication Factor : F'1'

| Bit Offset : B'��������'

| Type Attribute : C'H'

| Type Extension : C' '

| Program Type : X'�������5'

| Reserved : X'��������'

| Number of values : F'1'

| Offset of first value : F'138'

| Offset of next value : F'�'

| Offset of generated value : F'154'

| Byte length : F'2'

| Bit length : F'�'

| Generated Value : X'���7'

296 HLASM V1R5 Programmer’s Guide

| 2. EXAMPLE2 DC P'5,927'

| ESDID : F'1'

| Type Flag : B'1�������'

| Reserved : X'����������'

| Statement Number : F'3'

| Number of Operands : F'1'

| Offset of first Operand : F'38'

| Offset of next Operand : F'�'

| Location Counter : X'������1A'

| Duplication Factor : F'1'

| Bit Offset : B'��������'

| Type Attribute : C'P'

| Type Extension : C' '

| Program Type : X'��������'

| Reserved : X'��������'

| Number of values : F'2'

| Offset of first value : F'68'

| Offset of next value : F'85'

| Offset of generated value : F'84'

| Byte length : F'1'

| Bit length : F'�'

| Generated Value : X'5C'

| Offset of next value : F'�'

| Offset of generated value : F'1�1'

| Byte length : F'2'

| Bit length : F'�'

| Generated Value : X'927C'

 Appendix D. Associated Data File Output 297

| 3. EXAMPLE3 DC B'101',2B'10111'

| ESDID : F'1'

| Type Flag : B'1�������'

| Reserved : X'����������'

| Statement Number : F'4'

| Number of Operands : F'2'

| Offset of first Operand : F'38'

| Offset of next Operand : F'85'

| Location Counter : X'������1D'

| Duplication Factor : F'1'

| Bit Offset : B'��������'

| Type Attribute : C'B'

| Type Extension : C' '

| Program Type : X'��������'

| Reserved : X'��������'

| Number of values : F'1'

| Offset of first value : F'68'

| Offset of next value : F'�'

| Offset of generated value : F'84'

| Byte length : F'1'

| Bit length : F'�'

| Generated Value : X'�5' B'�����1�1'

| Offset of next Operand : F'�'

| Location Counter : X'������1E'

| Duplication Factor : F'2'

| Bit Offset : B'��������'

| Type Attribute : C'B'

| Type Extension : C' '

| Program Type : X'��������'

| Reserved : X'��������'

| Number of values : F'1'

| Offset of first value : F'115'

| Offset of next value : F'�'

| Offset of generated value : F'131'

| Byte length : F'1'

| Bit length : F'�'

| Generated Value : X'17' B'���1�111'

298 HLASM V1R5 Programmer’s Guide

| 4. EXAMPLE4 DC BL.3'101',BL.5'10111,11001'

| ESDID : F'1'

| Type Flag : B'1�������'

| Reserved : X'����������'

| Statement Number : F'5'

| Number of Operands : F'2'

| Offset of first Operand : F'38'

| Offset of next Operand : F'85'

| Location Counter : X'������2�'

| Duplication Factor : F'1'

| Bit Offset : B'��������'

| Type Attribute : C'B'

| Type Extension : C' '

| Program Type : X'��������'

| Reserved : X'��������'

| Number of values : F'1'

| Offset of first value : F'68'

| Offset of next value : F'�'

| Offset of generated value : F'84'

| Byte length : F'�'

| Bit length : F'3'

| Generated Value : X'A�' B'1�1�����'

| Offset of next Operand : F'�'

| Location Counter : X'������2�'

| Duplication Factor : F'1'

| Bit Offset : B'������11'

| Type Attribute : C'B'

| Type Extension : C' '

| Program Type : X'��������'

| Reserved : X'��������'

| Number of values : F'2'

| Offset of first value : F'115'

| Offset of next value : F'132'

| Offset of generated value : F'131'

| Byte length : F'�'

| Bit length : F'5'

| Generated Value : X'B8' B'1�111���'

| Offset of next value : F'�'

| Offset of generated value : F'148'

| Byte length : F'�'

| Bit length : F'5'

| Generated Value : X'C8' B'11��1���'

 Appendix D. Associated Data File Output 299

| 5. EXAMPLE5 DC LB'4',2L'9'

| This example shows a DC statement that requires the type extension field to
| differentiate the attributes of the two floating point operands.

| ESDID : F'1'

| Type Flag : B'1�������'

| Reserved : X'����������'

| Statement Number : F'6'

| Number of Operands : F'2'

| Offset of first Operand : F'38'

| Offset of next Operand : F'1��'

| Location Counter : X'������28'

| Duplication Factor : F'1'

| Bit Offset : B'��������'

| Type Attribute : C'L'

| Type Extension : C'B'

| Program Type : X'��������'

| Reserved : X'��������'

| Number of values : F'1'

| Offset of first value : F'68'

| Offset of next value : F'�'

| Offset of generated value : F'84'

| Byte length : F'16'

| Bit length : F'�'

| Generated Value : X'4��1����������������������������'

| Offset of next Operand : F'�'

| Location Counter : X'������38'

| Duplication Factor : F'2'

| Bit Offset : B'��������'

| Type Attribute : C'L'

| Type Extension : C' '

| Program Type : X'��������'

| Reserved : X'��������'

| Number of values : F'1'

| Offset of first value : F'13�'

| Offset of next value : F'�'

| Offset of generated value : F'146'

| Byte length : F'16'

| Bit length : F'�'

| Generated Value : X'419�������������33��������������'

| 6. EXAMPLE6 DC 5Y(*-2),5Y(*-1)

| This example shows a DC statement that requires a DC extension record
| (X'0035') to contain the repeating fields.

| The object code generated, and shown in the assembler listing:

| 2 PRINT DATA

| ������ FFFE�������2���4 3 DC 5Y(�-2),5Y(�-1)

| �����8 ���6���9���B���D

| ����1� ���F��11

| The ADATA records produced:

300 HLASM V1R5 Programmer’s Guide

| ESDID : F'1'

| Type Flag : B'1��1����'

| Reserved : X'����������'

| Statement Number : F'3'

| Number of Operands : F'2'

| Offset of first Operand : F'38'

| Offset of next Operand : F'86'

| Location Counter : X'��������'

| Duplication Factor : F'5'

| Bit Offset : B'��������'

| Type Attribute : C'Y'

| Type Extension : C' '

| Program Type : X'��������'

| Reserved : X'��������'

| Number of values : F'1'

| Offset of first value : F'13�'

| Offset of next value : F'�'

| Offset of generated value : F'84'

| Byte length : F'2'

| Bit length : F'�'

| Generated Value : X'FFFE'

| Offset of next Operand : F'86'

| Location Counter : X'�������A'

| Duplication Factor : F'5'

| Bit Offset : B'��������'

| Type Attribute : C'Y'

| Type Extension : C' '

| Program Type : X'��������'

| Reserved : X'��������'

| Number of values : F'1'

| Offset of first value : F'116'

| Offset of next value : F'�'

| Offset of generated value : F'132'

| Byte length : F'2'

| Bit length : F'�'

| Generated Value : X'���9'

| The object text for the statement is in the following DC Extension Record:

| ESDID : F'1'

| Statement Number : F'3'

| Location Counter : F'�'

| Reserved : X'����������������'

| Offset of Object : F'44'

| Length of Object : F'2�'

| Object Text : X'FFFE�������2���4���6���9���B���D���F��11'

 Appendix D. Associated Data File Output 301

DC Extension Record—X'0035'

DC extension record

Field Size Description

ESDID FL4 The ESDID for the record

Statement number FL4 The statement number of the source line that generated this text, if known. Zero
otherwise.

Location Counter FL4 Address (offset) of the text within the module

XL8 Reserved

Object text offset FL4 The offset from the beginning of this record to the generated object text.

Object text length FL4 The length of the following object text

Object text XL(n) The actual object text

Note:

Where the amount of object text would exceed the record size for the associated data file, the record is continued on
the next record. The continuation flag is set in the common header section of the record. The current length of the
object text (for that record) is stored in the record and the record written to the associated data file. The next record
contains the subsequent object text. The length of the object text is the length for the current record.

Fields that have been written will not be repeated in the next record. Fixed length fields will be initialized to binary
zeros or spaces. The exception is the location counter field which will contain the correct location for the start of the
continued object text.

Machine Instruction Record—X'0036'

Field Size Description

ESDID FL4 The ESDID for the machine instruction record

Statement number FL4 The statement number of the source record

Location Counter FL4 The location counter for this instruction

XL8 Reserved

Instruction offset FL4 The offset from the beginning of this record to the machine instruction.

Instruction length FL4 The length of the machine instruction

Value of Instruction XL(n) The actual value of the machine instruction

Relocation Dictionary Record—X'0040'

Field Size Description

POS.ID FL4 The external symbol dictionary ID number assigned to the ESD entry for the
control section in which the address constant is used as an operand.

302 HLASM V1R5 Programmer’s Guide

Field Size Description

REL.ID FL4 The external symbol dictionary ID number assigned to the ESD entry for the
control section in which the referenced symbol is defined.

AL4 Reserved

Address AL4 The assembled address of the field where the address constant is stored.

Flags XL1 x... Reserved
.1.. Add 4 to length of ADCON
..11 ADCON type - CXD (3)
..1� ADCON type - Q (2)
..�1 ADCON type - V (1)
..�� ADCON type - A (0)
.... 11.. Contains length-1 of ADCON
.... ..1. Relocation sign: 1 = -, 0 = +
.... ...1 Following RLD item has same R and P pointer

 Symbol Record—X'0042'

Field Size Description

ESDID FL4 ESDID of the section in which the symbol is defined. This is zero for an undefined
symbol type.

Statement Number FL4 The number of the statement in which the symbol is defined. This is zero for an
undefined symbol type.

Location Counter FL4 Contains the offset from the start of the DSECT, the non-relocated address of the
instruction belonging to this symbol in a CSECT (this is not always the offset from
the start of the CSECT), or the value of the equate. This is zero for an undefined
symbol type.

Symbol Type XL1 X'00' Undefined name
X'01' CSECT / RSECT name
X'02' DSECT name
X'03' Common section name
X'04' Dummy External DSECT name (DXD)
X'05' V-type constant name
X'06' Qualifier
X'07' EXTRN/WXTRN name
X'08' LOCTR name
X'09' Duplicate name
X'0A' Literal name
X'0B' *-in-literal name
X'0C' EQU name �1�
X'0D' Ordinary label
X'0E' Unresolvable EQU, DC or DS symbol

Duplication Factor FL4 Number of times the first operand field named by the symbol occurs. This is zero
for an undefined symbol type.

Type Attribute XL1 The value that the assembler Type Attribute reference returns (see “Type Attribute
(T')” in the chapter “How to Write Conditional Assembly Instructions” in the
Language Reference manual).

Assembler Type CL4 The value that the assembler SYSATTRA() internal function returns (see
“Assembler Type (SYSATTRA())” in the chapter “How to Write Conditional
Assembly Instructions” in the Language Reference manual).

 Appendix D. Associated Data File Output 303

Field Size Description

Program Type XL4 The value that the assembler SYSATTRP() internal function returns (see “Program
Type (SYSATTRP())” in the chapter “How to Write Conditional Assembly
Instructions” in the Language Reference manual).

Length attribute FL4 Length in bytes, either specified or by default.

Integer attribute HL2 Number of positions occupied by the integer portion of fixed-point and decimal
constants in their object code form. This is zero for an undefined symbol type.

Scaling attribute HL2 Number of positions occupied by the fractional portion of fixed-point and decimal
constants in their object code form. This is zero for an undefined symbol type.

Symbol Flags XL1 1... Bit 1 = 1, the symbol is relocatable, Bit 0 = the symbol is absolute. This
bit is zero for an undefined symbol type.

11.. Complex relocatable
..1. Reserved
...1 Reserved
.... 1... Reserved
.... .1.. Reserved
.... ..1. Reserved
.... ...1 Reserved

XL7 Reserved

Symbol name offset FL4 The offset from the beginning of this record to the symbol name.

Symbol name length FL4 Number of characters in the symbol name

Symbol name CL(n) The symbol name.

Note:

For record type “EQU” specified at �1�, where the “EQU” is for a relocatable value, the ESDID of the “EQU” is
provided. Where the “EQU” is non-relocatable, the ESDID of the section in control will be provided. The symbol flags
can be checked to determine whether the “EQU” is relocatable or absolute.

| Symbol and Literal Cross Reference Record—X'0044'

Field Size Description

| Statement Number| FL4| The statement number where the symbol or literal is defined or declared

| Relocatability Type| CL1| C' ' Simple relocatable symbol
| C'A' Absolute symbol
| C'C' Complex relocatable symbol

| XL7| Reserved

| Name offset| FL4| The offset from the beginning of this record to the symbol or literal name.

| Name length| FL4| The length of the symbol or literal name

| Total references| FL4| The total number of references to the symbol or literal for the assembly

| Number of references| FL4| The number of references to the symbol or literal in this record

| The groups of two reference fields below occur n times depending on the value in
| this field. The reference groups are contiguous so they may be treated as an
| array.

| Offset of references| FL4| The offset from the beginning of this record to the first group of reference fields. A
| value of binary zeros indicates that there are no references.

| Name| CL(n)| The symbol or literal name.

304 HLASM V1R5 Programmer’s Guide

Field Size Description

| | | Start of reference groups, one group per reference.
| The ellipses (...) indicate the fields are grouped.

| ...Statement Number| FL4| The statement number on which the symbol or literal is referenced

| ...Reference Flag| CL1| C' ' No branch or modification
| C'M' Modification
| C'B' Branched to
| C'U' USING statement
| C'D' DROP statement
| C'X' Execute Instruction

| | | End of reference groups.

| Note:

| Where the number of references would exceed the record size for the associated data file, the record is continued on
| the next record. The continuation flag is set in the common header section of the record. The current number of
| references (for that record) is stored in the record and the record written to the associated data file. The next record
| contains the subsequent references. The count of the number of references is a count for the current record.

| Fields that have been written will not be repeated in the next record. Fixed length fields will be initialized to binary
| zeros or spaces, and variable length fields will have a length of binary zeros.

Register Cross Reference Record—X'0045'

Field Size Description

Register number XL1 The register number (X'0' to X'F')

Register Type CL1 G—General

XL2 Reserved

Total references FL4 The total number of references to the register for the assembly

Number of references FL4 The number of references to the register in this record

The groups of two reference fields below occur n times depending on the value in
this field. The reference groups are contiguous so they may be treated as an
array.

Offset of references FL4 The offset from the beginning of this record to the first group of reference fields. A
value of binary zeros indicates that there are no references.

 Start of reference groups, one group per reference.
The ellipses (...) indicate the fields are grouped.

...Statement Number FL4 The statement number on which the register is referenced

...Reference Flag CL1 C' ' No branch or modification
C'M' Modification
C'B' Branched to
C'U' USING statement
C'D' DROP statement
C'N' Index register

 Appendix D. Associated Data File Output 305

Field Size Description

 End of reference groups.

Note:

Where the number of references would exceed the record size for the associated data file, the record is continued on
the next record. The continuation flag is set in the common header section of the record. The current number of
references (for that record) is stored in the record and the record written to the associated data file. The next record
contains the subsequent references. The count of the number of references is a count for the current record.

Fields that have been written will not be repeated in the next record. Fixed length fields will be initialized to binary
zeros or spaces, and variable length fields will have a length of binary zeros.

 Library Record—X'0060'

Field Size Description

Concatenation number FL4 The library concatenation number

Library name offset FL4 The offset from the beginning of this record to the library (file) name

Library name length FL4 The length of the library (file) name

Volume serial number
offset

FL4 The offset from the beginning of this record to the volume serial number

Volume serial number
length

FL4 The length of the volume serial number

DDNAME offset FL4 The offset from the beginning of this record to the DDNAME

DDNAME length FL4 The length of the DDNAME

Number of members FL4 The number of macros and copy code members in this record

The groups of three member fields below occur n times depending on the value in
this field.

Offset of members FL4 The offset from the beginning of this record to the first group of member fields. A
value of binary zeros indicates that there are no members.

Library name CL(n) The name of the library (file) from which the macro or copy member was retrieved,
or “PRIMARY INPUT” for an in-stream macro. Under VSE, this field contains the
library and sublibrary name.

Volume serial number CL(n) The volume serial number of the (first) volume on which the library resides

DDNAME CL(n) The DDNAME of the library.

 Start of member groups, one group per member.
The ellipses (...) indicate the fields are grouped.

...Offset of next
member

FL4 The offset from the beginning of this record to the next group of member fields. A
value of binary zeros indicates that there are no more members.

...Member name
offset

FL4 The offset from the beginning of this record to the macro or copy code member
name

...Member name
length

FL4 The length of the macro or copy code member name

...Member name CL(n) The name of the macro or copy code member that has been used. If the source is
“PRIMARY INPUT”, then this field contains the macro name from the source
program.

306 HLASM V1R5 Programmer’s Guide

Field Size Description

 End of member groups.

Note:

1. If a LIBRARY user exit has been specified for the assembly, and the LIBRARY user exit has opened the Library
data set, the record contains the library names returned by the user exit.

2. Where the number of members would exceed the record size for the associated data file, the record is continued
on the next record. The continuation flag is set in the common header section of the record. The current number
of members (for that record) is stored in the record and the record written to the associated data file. The next
record contains the subsequent members. The count of the number of members is a count for the current record.

Fields that have been written will not be repeated in the next record. Fixed length fields will be initialized to binary
zeros or spaces, and variable length fields will have a length of binary zeros.

Library Member and Macro Cross Reference Record—X'0062'

Field Size Description

Concatenation
Number

FL4 The concatenation number of the library or primary input file

Statement Number FL4 The statement number is:

� When the member or macro is retrieved from a library
>� When the macro is defined in the primary input file. It represents the

statement number where the macro is defined.

Concatenation Type CL1 C'L' Concatenation number refers to a library
C'P' Concatenation number refers to the primary input

Statement Definition
Flag

CL1 C'X' The macro is read from the library and imbedded in the primary source,
using the LIBMAC option

C' ' The flag is usually blank except in special cases, as described above

XL8 Reserved

Member or macro
name offset

FL4 The offset from the beginning of this record to the member or macro name

Member or macro
name length

FL4 The length of the member or macro name

Parent name offset FL4 The offset from the beginning of this record to the parent (caller) member or macro
name

Parent name length FL4 The length of the parent (caller) member or macro name

Total references FL4 The total number of references to the member or macro for the assembly

Number of references FL4 The number of references to the member or macro by the parent.

The groups of two reference fields below occur n times depending on the value in
this field. The reference groups are contiguous so they may be treated as an
array.

Offset of references FL4 The offset from the beginning of this record to the first group of reference fields. A
value of binary zeros indicates that there are no references.

Member or macro
name

CL(n) The name of the member or macro.

 Appendix D. Associated Data File Output 307

Field Size Description

Parent macro name CL(n) The name of the macro that called this macro or issued the COPY instruction.
This field contains “PRIMARY INPUT” when the member or macro is called directly
from the primary input file.

 Start of reference groups, one group per reference.
The ellipses (...) indicate the fields are grouped.

...Statement Number FL4 The statement number on which the member is copied or included, or the
statement number on which the macro is called

...Reference Flag CL1 C' ' Blank means the reference is caused by a macro call
C'C' Reference is caused by a COPY instruction

 End of reference groups.

Note:

Where the number of references would exceed the record size for the associated data file, the record is continued on
the next record. The continuation flag is set in the common header section of the record. The current number of
references (for that record) is stored in the record and the record written to the associated data file. The next record
contains the subsequent references. The count of the number of references is a count for the current record.

Fields that have been written will not be repeated in the next record. Fixed length fields will be initialized to binary
zeros or spaces, and variable length fields will have a length of binary zeros.

User-supplied Information Record—X'0070'

Field Size Description

User field 1 XL4 User-specified binary data

User field 2 XL4 User-specified binary data

User field 3 XL4 User-specified binary data

User field 4 XL4 User-specified binary data

User data offset FL4 The offset from the beginning of this record to the user data

User data length FL4 The length of the user data

User data CL(n) User-specified character data

USING Map Record—X'0080'

Field Size Description

Record type XL1 X'00' USING record
X'20' POP record
X'40' PUSH record
X'80' DROP record

USING Flag XL1 USING type (ORDINARY, LABELED, DEPENDENT, LABELED DEPENDENT)

X'00' Ordinary USING
X'10' Labeled USING
X'20' Dependent USING
X'30' Labeled Dependent USING

308 HLASM V1R5 Programmer’s Guide

Field Size Description

Location ESDID FL4 The value of the ESDID of the current section when the USING, DROP, PUSH
USING, or POP USING was issued

Statement number FL4 The statement number of the USING, DROP, PUSH USING, or POP USING

Location Counter FL4 The value of the location counter when the USING, DROP, PUSH USING, or POP
USING was issued

USING value FL4 The value of the USING statements first-operand expression. This is zero for
PUSH, POP, and DROP.

Last statement FL4 The last statement number for which this base-register was used in converting a
symbolic address into its base-displacement form. This is zero for PUSH, POP,
and DROP.

USING ESDID FL4 For ordinary and labeled USING instructions, this field indicates the ESDID of the
section specified on first operand of the USING statement. For dependent USING
instructions, this field indicates the ESDID of the section specified on the
corresponding ordinary USING instruction that is used to resolve the address.
This is zero for PUSH, POP, and DROP.

Register XL1 The register used in the USING. This is zero for PUSH and POP. Where a
DROP with no operand or a DROP ALL is specified, this field contains X'FF'.

Displacement XL2 The maximum displacement for this USING register. This is zero for PUSH, POP,
and DROP.

XL1 Reserved

USING range FL4 The value of the USING range.

XL2 Reserved

Label offset FL4 The offset from the beginning of this record to the label and USING text. A value
of binary zeros indicates that there is no label or USING text.

Label length FL4 The length of the label and USING text. This length field is rounded up to a
doubleword boundary. Hence if the text was 13 bytes in length, the length would
be set at 16 and the text space padded on the right. This is zero for PUSH and
POP.

Label CL(n) The source text for the label and USING from the source USING record. This field
is null for PUSH and POP.

 Statistics Record—X'0090'

Field Size Description

Buffer pool allocation FL4 The number of Kilobytes (KB) of storage allocated to the buffer pool.

Required In-storage FL4 The number of Kilobytes (KB) of storage required to make the assembly an
in-storage assembly.

Primary input records FL4 The number of primary input records read for the assembly row.

Library records FL4 The number of library records read for the assembly row.

Work file reads FL4 The number of work file reads for the assembly row.

Print records written FL4 The number of print records written for the assembly row.

Object records written FL4 The number of object records written for the assembly row.

Work file writes FL4 The number of work file writes for the assembly row.

 Appendix D. Associated Data File Output 309

Field Size Description

ADATA file writes FL4 The number of associated data (ADATA) file writes for the assembly.

ADATA calls FL4 The number of calls to the associated data (ADATA) exit.

This field is zero if no exit is present.

ADATA added records FL4 The number of records added by the associated data (ADATA) exit.

This field is zero if no exit is present.

ADATA deleted
records

FL4 The number of records deleted by the associated data (ADATA) exit.

This field is zero if no exit is present.

ADATA diagnostic
messages

FL4 The number of diagnostic messages returned by the associated data (ADATA)
exit.

This field is zero if no exit is present.

Library calls FL4 The number of calls to the LIBRARY exit

This field is zero if no exit is present.

Library added records FL4 The number of records added by the LIBRARY exit

This field is zero if no exit is present.

Library deleted
records

FL4 The number of records deleted by the LIBRARY exit

This field is zero if no exit is present.

Library diagnostic
messages

FL4 The number of diagnostic messages returned by the LIBRARY exit

This field is zero if no exit is present.

Listing calls FL4 The number of calls to the LISTING exit

This field is zero if no exit is present.

Listing added records FL4 The number of records added by the LISTING exit

This field is zero if no exit is present.

Listing deleted records FL4 The number of records deleted by the LISTING exit

This field is zero if no exit is present.

Listing diagnostic
messages

FL4 The number of diagnostic messages returned by the LISTING exit

This field is zero if no exit is present.

Object calls FL4 The number of calls to the OBJECT exit. (MVS and CMS)

This field is zero if no exit is present.

Reserved (VSE)

Object added records FL4 The number of records added by the OBJECT exit. (MVS and CMS)

This field is zero if no exit is present.

Reserved (VSE)

Object deleted records FL4 The number of records deleted by the OBJECT exit. (MVS and CMS)

This field is zero if no exit is present.

Reserved (VSE)

Object diagnostic
messages

FL4 The number of diagnostic messages returned by the OBJECT exit. (MVS and
CMS)

This field is zero if no exit is present.

Reserved (VSE)

310 HLASM V1R5 Programmer’s Guide

Field Size Description

Source calls FL4 The number of calls to the SOURCE exit

This field is zero if no exit is present.

Source added records FL4 The number of records added by the SOURCE exit

This field is zero if no exit is present.

Source deleted
records

FL4 The number of records deleted by the SOURCE exit

This field is zero if no exit is present.

Source diagnostic
messages

FL4 The number of diagnostic messages returned by the SOURCE exit

This field is zero if no exit is present.

Punch calls FL4 The number of calls to the PUNCH exit

This field is zero if no exit is present.

Punch added records FL4 The number of records added by the PUNCH exit

This field is zero if no exit is present.

Punch deleted records FL4 The number of records deleted by the PUNCH exit

This field is zero if no exit is present.

Punch diagnostic
messages

FL4 The number of diagnostic messages returned by the PUNCH exit

This field is zero if no exit is present.

Term calls FL4 The number of calls to the TERM exit

This field is zero if no exit is present.

Term added records FL4 The number of records added by the TERM exit

This field is zero if no exit is present.

Term deleted records FL4 The number of records deleted by the TERM exit

This field is zero if no exit is present.

Term diagnostic
messages

FL4 The number of diagnostic messages returned by the TERM exit

This field is zero if no exit is present.

Assembly start time FL4 The local time when the assembly commenced. This time is recorded after data
set allocation, storage allocation, invocation parameter processing, and other
initialization processing.

Stored in packed format as hhmmssth:

hh The hour
mm The minute
ss The second
t Tenths of a second
h Hundredths of a second

Assembly stop time FL4 The local time when the assembly completed

Stored in packed format as hhmmssth:

hh The hour
mm The minute
ss The second
t Tenths of a second
h Hundredths of a second

Processor time FL4 The number of processor seconds utilized by this assembly. (MVS and CMS)

The low order bit represents 1 microsecond.

Reserved (VSE)

 Appendix D. Associated Data File Output 311

Field Size Description

ASMAOPT input
records

FL4 The number of ASMAOPT input records read for the assembly

XL4 Reserved

Number of functions FL4 The number of external functions in this record

The groups of eight external-function fields below occur n times depending on
the value in this field.

Offset of functions FL4 The offset from the beginning of this record to the first group of external-function
fields. A value of binary zeros indicates that there are no external functions.

 Start of external-function groups, one group per function.
The ellipses (...) indicate the fields are grouped.

...Offset of next
external function

FL4 The offset from the beginning of this record to the next group of
external-function fields. A value of binary zeros indicates that there are no more
external functions.

... XL4 Reserved

...SETAF function
calls

FL4 The number of times the function was called from a SETAF assembler
instruction.

...SETCF function
calls

FL4 The number of times the function was called from a SETCF assembler
instruction.

...Messages issued FL4 The number of times the function requested that a message be issued

...Messages
severity

HL2 The maximum severity for the messages issued by this function

...External function
name offset

FL4 The offset from the beginning of this record to the external function name

...External function
name length

FL4 The length of the external function name

...External function
name

CL(n) The external function module name

 End of external-function groups.

Note:

Where the number of functions would exceed the record size for the associated data file, the record is continued on
the next record. The continuation flag is set in the common header section of the record. The current number of
functions (for that record) is stored in the record and the record written to the associated data file. The next record
contains the subsequent functions. The count of the number of functions is a count for the current record.

Fields that have been written will not be repeated in the next record. Fixed length fields will be initialized to binary
zeros or spaces, and variable length fields will have a length of binary zeros.

312 HLASM V1R5 Programmer’s Guide

 Appendix E. Sample Program

The sample program included with High Level Assembler is described in this
appendix. This program demonstrates some basic assembler language, macro,
and conditional assembly features, most of which are unique to High Level
Assembler. The highlighted characters in the descriptions below refer to
corresponding characters in the listing that precedes the descriptions.

For more details about this program, see “ASMASAMP” in the HLASM Installation
and Customization Guide.

High Level Assembler Option Summary Page 1

 HLASM R5.� 2��4/�6/11 17.48

No Overriding ASMAOPT Parameters

No Overriding Parameters

No Process Statements

Options for this Assembly

 NOADATA

 ALIGN

 NOASA

 BATCH

 CODEPAGE(�47C)

 NOCOMPAT

 NODBCS

 NODECK

 DXREF

 ESD

 NOEXIT

 FLAG(�,ALIGN,CONT,EXLITW,NOIMPLEN,NOPAGE�,PUSH,RECORD,NOSUBSTR,USING�)

 NOFOLD

 NOGOFF

 NOINFO

 LANGUAGE(EN)

 NOLIBMAC

 LINECOUNT(6�)

 LIST(121)

| MACHINE(,NOLIST)

 MXREF(SOURCE)

 OBJECT

| OPTABLE(UNI,NOLIST)

 NOPCONTROL

 NOPESTOP

 NOPROFILE

 NORA2

 NORENT

 RLD

 RXREF

| SECTALGN(8)

 SIZE(MAX)

| NOSUPRWARN

 SYSPARM()

 NOTERM

 NOTEST

 THREAD

 NOTRANSLATE

| TYPECHECK(MAGNITUDE,REGISTER)

 USING(NOLIMIT,MAP,WARN(15))

 XREF(SHORT,UNREFS)

No Overriding DD Names

 Copyright IBM Corp. 1982, 2004 313

BIGNAME External Symbol Dictionary Page 2

Symbol Type Id Address Length Owner Id Flags Alias-of HLASM R5.� 2��4/�6/11 17.48

A SD �������1 �������� ������DE ��

PD2 CM �������2 �������� �����814 �� �A�

BIGNAME Sample program. 1ST TITLE statement has no name, 2ND one does Page 3

Active Usings: None

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 2 �� ����2���

3 � Licensed Materials - Property of IBM � ����3���

 4 � � ����4���

5 � 5696-234 5647-A�1 � ����5���

 6 � � ����6���

7 � (C) Copyright IBM Corp. 1992, 2���. All Rights Reserved. � ����7���

 8 � � ����8���

9 � US Government Users Restricted Rights - Use, � ����9���

1� � duplication or disclosure restricted by GSA ADP � ���1����

11 � Schedule Contract with IBM Corp. � ���11���

 12 � � ���12���

 13 �� ���13���

 14 ��� ���14���

15 � DISCLAIMER OF WARRANTIES � ���15���

16 � The following enclosed code is sample code created by IBM � ���16���

17 � Corporation. This sample code is licensed under the terms of � ���17���

18 � the High Level Assembler license, but is not part of any � ���18���

19 � standard IBM product. It is provided to you solely for the � ���19���

2� � purpose of demonstrating the usage of some of the features of � ���2����

21 � High Level Assembler. The code is not supported by IBM and � ���21���

22 � is provided on an "AS IS" basis, without warranty of any kind. � ���22���

23 � IBM shall not be liable for any damages arising out of your � ���23���

24 � use of the sample code, even if IBM has been advised of the � ���24���

25 � possibility of such damages. � ���25���

 26 ��� ���26���

������ ����� ���DE 27 a csect ���27���

R:8 ����� 28 using �,8 ���28���

������ 1BFF 29 sr 15,15 Set return code to zero ���29���

�����2 �7FE 3� br 14 and return. ���3����

 32 �� ���32���

 33 � PUSH and POP statements � ���33���

34 � Push down the PRINT statement, replace it, retrieve original � ���34���

 35 �� ���35���

37 push print Save Default setting ' PRINT ON,NODATA,GEN' ���37���

 �B� 38 print nogen,data ���38���

�����4 �A23 39 wto mf=(E,(1)) Expansion not shown ���39���

�A� The external symbol dictionary shows a named common statement. The
named common section is defined in statement 216.

�B� Statement 37: Save the current status of the PRINT statement.

Statement 38: Modify the print options to DATA and NOGEN.

Statement 39: Macro call; note that the expansion (statements 40 and 41) is
not printed.

Statement 42: All 28 bytes of data are displayed to the two-operand DC.

Statement 43: Restore earlier status of PRINT.

Statement 45: This statement is not printed. It is a nested macro call. The
MCALL operand of the PRINT instruction or the PCONTROL assembler
option control the printing of nested macro calls.

Statements 46: The generated output of the macro WTO is shown, but only
two bytes of data are shown.

314 HLASM V1R5 Programmer’s Guide

�����6 �123�ABC�1�2�3�A �C� 42 dc x'123,ABC',(reallylongsymbol-transylvania)b'1,1�,11,1�1�,1�11,11��' ���4����

�����E �B�C�1�2�3�A�B�C

����16 �1�2�3�A�B�C�1�2

����1E �3�A�B�C

43 pop print Restore default PRINT setting ���41���

 44 wto mf=(E,(1)) Expansion shown ���42���

����22 �A23 46+ SVC 35 ISSUE SVC 35 @L2C �1-WTO

����24 �123�ABC�1�2�3�A 47 dc x'123,ABC',(reallylongsymbol-transylvania)b'1,1�,11,1�1�,1�11,11��' ���43���

 49 �� ���45���

 5� � LOCTR instruction � ���46���

51 � LOCTR allows 'REMOTE' assembly of constant � ���47���

 52 �� ���48���

����4� 585� 8�AC ���AC 54 l 5,constant ���5����

����AC ���AC ���DE �D�55 deecees loctr ���51���

����AC �������5 56 constant dc f'5' Constant coded here, assembled behind LOCTR A ���52���

BIGNAME Sample program. 1ST TITLE statement has no name, 2ND one does Page 4

| Active Usings: a,R8

| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

����44 ����� ���DE 57 a loctr Return to 1st LOCTR in CSECT A ���53���

 59 �� ���55���

6� � 3 operand EQUATE with forward reference in 1ST operand � ���56���

 61 �� ���57���

����44 1812 63 a5 lr 1,2 L'A5 = 2, T'A5 = I ���59���

 64 print data ���6����

����46 ����

����48 413243F6A8885A3� 65 a7 dc l'3.1415926535897932384626433832795�28841972' L'A7 = 16,T'A7 = L ���61���

����5� 338D313198A2E�37

 66 &type setc t'a7 ���62���

 �E� 67 a8 equ b5,l'a5,c'&type' ���63���

 ���B� ����2 +a8 equ b5,l'a5,c'L' ���63���

�C� Statements 42 and 47: Multiple constants are allowed in hexadecimal and
binary DC operands, and neither symbol in the duplication factor has been
defined yet. Definition occurs in statements 144 and 145.

�D� Statements 55, 57, 194, 212 and 213 show use of the LOCTR assembler
instruction. This feature allows you to break down control sections into
“subcontrol” sections. It can be used in CSECT, RSECT, DSECT, and COM
sections. LOCTR has many of the features of a control section; for example,
all of the first LOCTR in a section is assigned space, then the second, and so
on. The name of the control section automatically names the first LOCTR
section. Thus LOCTR A is begun, or continued, at statements 27, 57, and
213. The location counter value shown each time is the continued value of the
LOCTR. On the other hand, various LOCTR sections within a control section
have common addressing as far as USING statements are concerned, subject
to the computed displacement falling within 0 through 4095. In the sample,
CONSTANT (at statement 56) is in LOCTR DEECEES but the instruction
referring to it (statement 54) has no addressing problems.

�E� Three-operand EQU. Here, we assign: (a) the value of B5 (not yet defined) to
A8, (b) the length attribute of A5 to A8, and (c) the type attribute of A7 to A8.
If no second or third operand is present in an EQU statement, the type
attribute is U and the length attribute is that of the first term in the operand
expression. Symbols present in the operand field must be previously defined.
You cannot express the type attribute of A7 directly in the EQU statement.
The EQU statement at 67 could have been written

a8 equ b5,2,c'L'

a8 equ b5,x'2',x'D3'

 Appendix E. Sample Program 315

BIGNAME Sample program. 1ST TITLE statement has no name, 2ND one does Page 5

| Active Usings: a,R8

| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 69 �� ���65���

7� � Implicit declaration of locals &A, &C -- Use of SETC dup factor to � ���66���

71 � produce SETC string longer than 8, MNOTE in open code � ���67���

 72 �� ���68���

 74 &la8 seta l'a8 ���7����

 �F� 75 &ta8 setc t'a8 ���71���

76 mnote �,'Length of A8 = &LA8, Type of A8 = &TA8' ���72���

�G� +�,Length of A8 = 2, Type of A8 = L ���72���

 78 &a seta 2 ���74���

 79 &c setc (&a+3)'STRING,' ���75���

�H� 8� mnote �,'&&C has value = &c' ���76���

+�,&C has value = STRING,STRING,STRING,STRING,STRING, ���76���

 82 �� ���78���

�I� 83 � Examples of 4 byte self-defined terms, unary + and - � ���79���

 84 �� ���8����

����58 7FFFFFFFC1C2C3C4 86 dc a(2147483647,C'ABCD',X'ffffffff') ���82���

����6� FFFFFFFF

����64 181D 87 lr -1+2,16+-3 ���83���

 FFFFE8 89 X equ 4�-6 ���85���

�F� Set symbols &LA8 and &TA8 have not been previously declared in LCL or
GBL statements. Therefore, they default to local variable symbols as follows:
&LA8 is an LCLA SET symbol because it appears in the name field of a
SETA; &TA8 is an LCLC SET symbol because it is first used in a SETC.

�G� MNOTEs can appear in open code. As such, they have all properties of
MNOTEs inside macros, including substitution.

�H� A SETC expression can have a duplication factor. The SETA expression
must be enclosed in parentheses and immediately precede the character
string, the substring notation, or the type attribute reference.

�I� Statements 86 through 89 show 4-byte self-defining values and unary + and
−. The value of X appears later in a literal address constant (see statement
296).

316 HLASM V1R5 Programmer’s Guide

BIGNAME Insert Programmer Macro in Source Stream now Page 6

| Active Usings: a,R8

| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 91 �� ���87���

92 � Mixed keywords and positional parameters, extended AGO and AIF � ���88���

93 � statements, declaration and use of subscripted SET symbols, � ���89���

94 � Use of created SET symbols, extended SET statements � ���9����

 95 �� ���91���

 �J� 97 macro ���93���

 98 demo &p1,&key1=A,&p2,&key2=1,&p3,&key3=3,&p4 ���94���

�K� 99 &loc(1) setc '2','3' &LOC is dimensioned LCLC by default ���95���

 1�� gblc &xa(5),&xb(2�),&xc(1) ���96���

1�1 aif ('&system_id'(1,3) eq 'VSE').vse ���97���

 �L� 1�2 &p1 &syslist(4),&syslist(5),&syslist(6),mf=E ���98���

 1�3 ago .notvse ���99���

1�4 .vse anop Use VSE WRITE macro parameters ��1�����

 1�5 &p1 &syslist(4),SQ,&syslist(6) ��1�1���

 1�6 .notvse anop ��1�2���

 1�7 &n seta 1 ��1�3���

 �M� 1�8 ago (&key2).mnote1,.mnote2,.mnote3 ��1�4���

 1�9 &n seta 2 ��1�5���

11� mnote �,'&&KEY2 not 1,2, or 3---Use &&KEY3 in place of it' ��1�6���

�N� 111 aif (&key3 eq 1).mnote1, X��1�7���

(&key3 eq 2).mnote2,(&key3 eq 3).mnote3 ��1�8���

112 mnote �,'Both &&KEY2 and &&KEY3 fail to qualify' ��1�9���

 113 ago .common ��11����

114 .mnote1 mnote �,'&&KEY&LOC(&N) = 1' ��111���

 115 ago .common ��112���

116 .mnote2 mnote �,'&&KEY&LOC(&N) = 2' ��113���

 117 ago .common ��114���

118 .mnote3 mnote �,'&&KEY&LOC(&N) = 3' ��115���

119 .common l 5,8(,1�) Note that opcodes, operands & comments ��116���

12� &xb(2) sr 9,1� on MODEL statements ��117���

�O� 121 &(x&key1)(2) lm 12,13,=a(a5,x) are kept in place unless displaced ��118���

122 &p2 st 7,&p3 as a result of substitution ��119���

 123 mend ��12����

125 ����� DEMO MACRO instruction (call) ��122���

 �P� 127 gblc &xa(1),&xb(2),&xc(3) ��124���

 128 &xa(1) setc 'A','MISSISSIPPI' ��125���

 129 &xb(1) setc 'B','SUSQUEHANNA' ��126���

 13� &xc(1) setc 'C','TRANSYLVANIA' ��127���

 �Q� 131 demo key3=2,write,reallylongsymbol, M��128���

 a8+8�(b5-constant-7)(3),key1=C,(6),SF, N��129���

 (8),key2=7 ��13����

����66 1816 134+ LR 1,6 LOAD DECB ADDRESS �3-IHBRD

����68 922� 1��5 ����5 135+ MVI 5(1),X'2�' SET TYPE FIELD �3-IHBRD

����6C 5�81 ���8 ����8 136+ ST 8,8(1,�) STORE DCB ADDRESS �3-IHBRD

����7� 58F1 ���8 ����8 137+ L 15,8(1,�) LOAD DCB ADDRESS �3-IHBRD

����74 58F� F�3� ���3� 138+ L 15,48(�,15) LOAD RDWR ROUTINE ADDR �3-IHBRD

����78 �5EF 139+ BALR 14,15 LINK TO RDWR ROUTINE �3-IHBRD

14�+�,&KEY2 not 1,2, or 3---Use &KEY3 in place of it �1-��11�

141+�,&KEY3 = 2 �1-��116

����7A 585� A��8 ����8 142+ l 5,8(,1�) Note that opcodes, operands & comments �1-��119

����7E 1B9A �R� 143+SUSQUEHANNA sr 9,1� on MODEL statements �1-��12�

����8� 98CD 8�9� ���9� 144+TRANSYLVANIA lm 12,13,=a(a5,x) are kept in place unless displaced �1-��121

BIGNAME Insert Programmer Macro in Source Stream now Page 7

| Active Usings: a,R8

| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

����84 5�73 8�98 ���98 145+reallylongsymbol st 7,a8+8�(b5-constant-7)(3) X�1-��122

+ as a result of substitution

 Appendix E. Sample Program 317

�J� The macro DEMO is defined after the start of the assembly. Macros can be
defined at any point and, having been defined, expanded, or both, can be
redefined. The parameters on the prototype are a mixture of keywords and
positional operands. &SYSLIST may be used. The positional parameters are
identified and numbered 1, 2, 3 from left to right; keywords are skipped over
in numbering positional parameters.

�K� Statement 99 shows the extended SET feature (as well as implicit declaration
of &LOC(1) as an LCLC). Both &LOC(1) and &LOC(2) are assigned values.
One SETA, SETB, or SETC statement can then do the work of many.

�L� Statement 102 is a model statement with a symbolic parameter in its
operation field. This statement is edited as if it is a macro call; at this time,
each operand is denoted as positional or keyword. At macro call time, you
cannot reverse this decision. Even though it's treated as a macro, it is still
expanded as a machine or assembler operation.

�M� Statement 108 shows the computed AGO statement. Control passes to
.MNOTE1 if &KEY2 is 1, to .MNOTE2 if &KEY2 is 2, to .MNOTE3 if &KEY2 is
3, or otherwise it falls through to the model statement at 109.

�N� Statement 111 shows the extended AIF facility. This statement is written in
the alternative format. The logical expressions are examined from left to right.
Control passes to the sequence symbol corresponding to the first true
expression encountered, or else falls through to the next model statement.

�O� Statement 121 contains a subscripted created SET symbol in the name field.
The created SET symbol has the form &(e), where e is an expression made
up of character strings, variable symbols, or both. When the symbol is
encountered during macro generation, the assembler evaluates the
expression e. The operation code DEMO is used as a macro instruction in
statement 131, and &KEY1 is given the value C. The e in this case is
X&KEY1, which results in the value XC. Thus the name field in statement
121, &(x&key1)(2), becomes &XC(2). Statement 130 assigns the value C to
&XC(1), and the value TRANSYLVANIA to &XC(2). The model statement (121)
is generated at statement 144; the name field contains TRANSYLVANIA. The
sequence field of statement 144, shows that this statement is a level 01
expansion of a macro, and the corresponding model statement is statement
number 121.

You can use created SET symbols wherever regular SET symbols are used;
for example: in declarations, name fields, operands of SET statements, model
statements. Likewise, they are subject to all the restrictions of regular SET
symbols.

�P� In statements 127 and 128, &XA is declared as a subscripted global SETC
variable with a subscript of 1 and in the next statement, which is an extended
SET statement, we store the value MISSISSIPPI into &XA(2). The assembler
allows up to 2,147,483,647 array values in a subscripted global SETC symbol.

�Q� Statement 131 is the macro instruction DEMO. &P1 has the value WRITE.
Therefore, the model statement at statement 102 becomes an inner macro
instruction, WRITE, producing the code at statements 134–139. The
sequence field of these statements contains 03-IHBRD, indicating that they
are generated by a level 03 macro (DEMO is 01, WRITE is 02) named
IHBRDWRS. It is an inner macro called by WRITE.

318 HLASM V1R5 Programmer’s Guide

�R� Statements 144 and 145 contain some ordinary symbols longer than 8
characters. The limit for ordinary symbols, operation codes (for programmer
and library macros and operation codes defined through OPSYN), variable
symbols, and sequence symbols, is 63 characters (including the & and . in the
latter two instances, respectively).

 Appendix E. Sample Program 319

BIGNAME Insert Programmer Macro in Source Stream now Page 8

| Active Usings: a,R8

| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 147 �� ��132���

148 � Copy 'NOTE' macro in from maclib, rename it 'MARK', call it under � ��133���

149 � its ALIAS -- in expansion of MARK, notice reference back to � ��134���

15� � definition statements in 'columns' 76-8� of expansion � ��135���

 151 �� ��136���

 �S� 153 copy note ��138���

 154= MACRO ���1����

 155=&NAME NOTE &DCB,&DUMMY=,&TYPE=REL ���2����

 156=.� $MAC(NOTE): ���3����

 157=.� 5665-XA2 ���32���

158=.� CONTAINS RESTRICTED MATERIALS OF IBM ���34���

159=.� (C) COPYRIGHT IBM CORP. 1984 ���36���

16�=.� LICENSED MATERIALS - PROPERTY OF IBM ���38���

161=.� REFER TO COPYRIGHT INSTRUCTIONS ���4����

162=.� FORM NUMBER G12�-2�83. ���42���

163=.� STATUS = MVS/XA DFP RELEASE 1.2 @H1 ���44���

 164=.� ���4699�

165=.� CHANGE ACTIVITY = ��12����

 166=.� ��13����

 167=.� $H1=348�,JDP1111,,STLPKH: 348� SUPPORT � ��14����

 168=.� ��15����

169= AIF ('&DCB' EQ '').ERR ��16����

 17�=&NAME IHBINNRA &DCB ��17����

171= AIF ('&TYPE' NE 'REL').NOTREL @H1A ��18����

172= L 15,84(�,1) LOAD NOTE RTN ADDRESS ��19����

173= BALR 14,15 LINK TO NOTE ROUTINE ��2�����

 174= MEXIT ��21����

175=.NOTREL AIF ('&TYPE' NE 'ABS').ERR1 @H1A ��22����

176= SLR �,� INDICATES NOTE MACRO @H1A ��23����

 177= LA 15,32 ROUTER CODE @H1A ��24����

 178= SVC 1�9 SUPERVISOR CALL @H1A ��25����

 179= MEXIT @H1A ��26����

18�=.ERR1 MNOTE 8,'INVALID PARAMETER FOR TYPE' @H1A ��27����

 181= MEXIT @H1A ��28����

 182=.ERR IHBERMAC 6 ��29����

 183= MEND ��3�����

�T� 186 mark opsyn note Comments of generated statements occupy same ��141���

187 mark (6) 'COLUMNS' as those in MODEL statements ��142���

����88 1816 189+ LR 1,6 LOAD PARAMETER REG 1 �2-IHBIN

����8A 58F� 1�54 ���54 19�+ L 15,84(�,1) LOAD NOTE RTN ADDRESS �1-��172

����8E �5EF 191+ BALR 14,15 LINK TO NOTE ROUTINE �1-��173

 193 �� ��144���

����B� ���AC ���DE 194 deecees loctr Switch to alternate location counter ��145���

����B� �B����B�������5� 195 b5 ccw X'�b',b5,�,8� ��146���

 197 �� ��148���

198 � Display of &SYSTIME, &SYSDATE, &SYSPARM and &SYSLOC � ��149���

 199 �� ��15����

 2�1 print nodata ��152���

�U� 2�2 dc c'TIME = &systime, DATE = &sysdate, PARM = &sysparm' ��153���

BIGNAME Insert Programmer Macro in Source Stream now Page 9

| Active Usings: a,R8

| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

����B8 E3C9D4C54�7E4�F1 + dc c'TIME = 17.22, DATE = �6/�9/�4, PARM = ' ��153���

 2�4 macro ��155���

 2�5 locate ��156���

�V� 2�6 &sysect csect Display of current control section ��157���

2�7 &sysloc loctr and location counter ��158���

 2�8 mend ��159���

 21� locate ��161���

����DE ���AC ���DE 211+a csect Display of current control section �1-��2�6

����DE ���AC ���DE 212+deecees loctr and location counter �1-��2�7

����9� ����� ���DE 213 a loctr ��162���

320 HLASM V1R5 Programmer’s Guide

�S� Library macros can be inserted into the source stream as programmer macros
by use of a COPY statement. The result (statements 154 to 183) is treated
as a source-stream macro definition. When a library macro is brought in and
expanded by use of a macro instruction, the assembler (1) looks the macro
up by its member-name and (2) verifies that this same name is used in the
operation field of the prototype statement. Therefore, for example, DCB has
to be cataloged as DCB. However, as COPY code, the member name bears
no relationship to any of the statements in the member. Thus, several
variations of a given macro could be stored as a library under separate
names, then copied in at various places in a single assembly as needed.
(High Level Assembler allows you to define and redefine a macro any number
of times).

�T� In statement 186, MARK is made a synonym for NOTE. To identify the
NOTE macro as a defined instruction mnemonic, it has to be used as either a
system macro call (that is, from a macro library), or a programmer macro
definition, before its use in the operand field of an OPSYN statement. The
COPY code at statements 154 through 183 is a programmer macro definition.
The macro instruction at statement 187 is MARK. You can use MARK and
NOTE interchangeably. If required, you could remove NOTE as a macro
definition in the following way:

MARK OPSYN NOTE

NOTE OPSYN ,

You could then refer to the macro only as MARK.

�U� Statement 202 demonstrates &SYSTIME, &SYSDATE, and &SYSPARM. The
values for the first two are the same as in the heading line. The value for
&SYSPARM is the value passed in the PARM field of the EXEC statement, or
the default value assigned to &SYSPARM when High Level Assembler is
installed.

�V� System variable symbols &SYSLOC and &SYSECT are displayed at
statements 211 and 212. The sequence field indicates that the model
statements are statements 206 and 207.

 Appendix E. Sample Program 321

BIGNAME Ordinary, Labeled and Dependent USING Instructions Page 1�

| Active Usings: a,R8

| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 215 �� ��164���

������ ����� ��814�W�216 pd2 com Named COMMON thrown in for good measure ��165���

������ 217 ds 5��f ��166���

���7D� 1867 218 lr 6,7 ��167���

 22� �� ��169���

221 � Use of ordinary, labeled and dependent USING Instructions � ��17����

�X� 222 �� ��171���

 R:C ��7D2 224 using �,12 ��173���

���7D2 411� C�22 ��7F4 225 la 1,area1 ��174���

���7D6 412� C�32 ��8�4 226 la 2,area2 ��175���

 R:1 ����� 227 using first,1 Ordinary USING ��176���

 R:2 ����� 228 lab using first,2 Labeled USING ��177���

 1 ��8 ����� ����8 229 using second,first2 Dependent USING ��178���

2 ��8 ����� ����8 23� labdep using third,lab.first2 Labeled dependent USING ��179���

���7DA D2�7 1��� 8�98 ����� ���98 231 mvc first1,=cl8'1st' Uses ordinary USING ��18����

���7E� D2�7 2��� 8�98 ����� ���98 232 mvc lab.first1,=cl8'1st' Uses labeled USING ��181���

���7E6 D2�3 1��8 8�A� ����� ���A� 233 mvc second1,=cl4'2nd' Uses dependent USING ��182���

���7EC D2�1 2��8 8�A4 ����� ���A4 234 mvc labdep.third1,=cl2'3d' Uses labeled dependent USING ��183���

���7F4 235 area1 ds �f First data area ��184���

���7F4 236 area1a ds cl8 ��185���

���7FC 237 area1b ds cl8 ��186���

���8�4 238 area2 ds �f Second data area ��187���

���8�4 239 area2a ds cl8 ��188���

���8�C 24� area2b ds cl8 ��189���

������ ����� ���1� 241 first dsect First dsect ��19����

������ 242 first1 ds cl8 ��191���

�����8 243 first2 ds cl8 ��192���

������ ����� ����8 244 second dsect Second dsect ��193���

������ 245 second1 ds cl4 ��194���

�����4 246 second2 ds cl4 ��195���

������ ����� ���EC 247 third dsect Third dsect ��196���

������ 248 third1 ds cl2 ��197���

�����2 249 third2 ds cl2 ��198���

�W� Illustration of named COMMON. You can establish addressability for a
named COMMON section with:

 USING section-name,register

You can address data in a blank COMMON section by labeling a statement
within the section after the COMMON statement.

�X� In statement 227, an ordinary USING is established for AREA1 using the
DSECT FIRST. When the fields within DSECT FIRST are referenced using
symbols with the “first” qualifier, register 1 is used to resolve the address as in
statement 231.

In statement 228, a labeled USING is established for AREA2 using the
DSECT FIRST. Register 2 is used to resolve the address for qualified
symbols within AREA2 when referred to using the qualifier “second” as in
statement 232.

In statement 229, a dependent USING is established at the field FIRST2
using the DSECT SECOND. The corresponding ordinary USING for field
FIRST2 is the USING on statement 227. It uses register 1 to resolve the
address. The statement on line 233 specifies a field within DSECT SECOND
and the assembler uses register 1 to resolve the address.

In statement 230, a labeled dependent USING is established at the field
FIRST2 using the DSECT THIRD. The USING specifies the labeled USING
LAB to resolve the address for field FIRST2. In statement 234, the labeled

322 HLASM V1R5 Programmer’s Guide

dependent USING is specified and register 2 is used to resolve the address of
the field THIRD1.

BIGNAME Predefined Absolute Symbols in SETA and SETC expressions Page 11

| Active Usings: first,R1 second(X'FF8'),R1+X'8' a,R8 pd2+X'7D2',R12 lab.first,R2 labdep.third(X'FF8'),R2+X'8'

| D-Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 251 �� ��2�����

252 � Use of predefined absolute symbols in SETA and SETC expressions � ��2�1���

 253 �� ��2�2���

 ���64 255 hundred equ 1�� ��2�4���

256 &dividnd seta 2� ��2�5���

�Y� 257 &percent seta &dividnd�1��/4� Predefined symbol in SETA ��2�6���

 ���32 258 fifty equ 5� ��2�7���

�Z� 259 &longwd setc (hundred)'a' Predefined symbol in SETC ��2�8���

 26� dc c'&longwd' ��2�9���

�����4 8181818181818181 + dc c'aaX��2�9���

�����C 8181818181818181 + aa'

261 &twowds setc (fifty)'a'.' '.(hundred/2)'B' ��21����

 262 dc c'&twowds' ��211���

����68 8181818181818181 + dc c'aa BBBX��211���

����7� 8181818181818181 + BBB'

�Y� In statement 257, the SETA statement specifies a variable symbol
(&DIVIDND) as well as other arithmetic terms.

�Z� In statement 259 the SETC statement specifies a predefined absolute symbol
(HUNDRED) as the duplication factor.

 Appendix E. Sample Program 323

BIGNAME Symbol Attribute Enhancements Page 12

| Active Usings: first,R1 second(X'FF8'),R1+X'8' a,R8 pd2+X'7D2',R12 lab.first,R2 labdep.third(X'FF8'),R2+X'8'

| D-Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 264 �� ��213���

265 � Symbol Attribute enhancements � ��214���

 266 �� ��215���

����CD C1C2C3 268 SYMBOL1 DC C'ABC' ��217���

����D� 12345C 269 SYMBOL2 DC P'123.45' ��218���

 27� &VAR1 SETC 'SYMBOL1' ��219���

 271 &VAR2 SETC 'SYMBOL2' ��22����

����D3 ��

����D4 411� 8�A6 ���A6 272 LA 1,=C'ABC' ��221���

����D8 411� 8�A9 ���A9 273 LA 1,=P'123.45' ��222���

�1� 275 &TYPE SETC T'=C'ABC' ��224���

 276 DC CL1'&TYPE' ��225���

����DC C3 + DC CL1'C' ��225���

����DD C3 277 DC AL1(T'SYMBOL1) ��226���

 278 DC AL1(T'&VAR1) ��227���

����DE C3 + DC AL1(T'SYMBOL1) ��227���

����DF C3 279 DC AL1(T'=C'ABC') ��228���

�2� 28� &LEN SETA L'=C'ABC' ��229���

 281 DC AL1(&LEN) ��23����

����E� �3 + DC AL1(3) ��23����

����E1 �3 282 DC AL1(L'SYMBOL1) ��231���

 283 DC AL1(L'&VAR1) ��232���

����E2 �3 + DC AL1(L'SYMBOL1) ��232���

����E3 �3 284 DC AL1(L'=C'ABC') ��233���

�3� 285 &INT SETA I'=P'123.45' ��234���

 286 DC AL1(&INT) ��235���

����E4 �3 + DC AL1(3) ��235���

����E5 �3 287 DC AL1(I'SYMBOL2) ��236���

 288 DC AL1(I'&VAR2) ��237���

����E6 �3 + DC AL1(I'SYMBOL2) ��237���

����E7 �3 289 DC AL1(I'=P'123.45') ��238���

�4� 29� &SCALE SETA S'=P'123.45' ��239���

 291 DC AL1(&SCALE) ��24����

����E8 �2 + DC AL1(2) ��24����

����E9 �2 292 DC AL1(S'SYMBOL2) ��241���

 293 DC AL1(S'&VAR2) ��242���

����EA �2 + DC AL1(S'SYMBOL2) ��242���

����EB �2 294 DC AL1(S'=P'123.45') ��243���

 295 end ��244���

����9� ������44FFFFFFE8 �5� 296 =a(a5,x)

����98 F1A2A34�4�4�4�4� 297 =cl8'1st'

����A� F295844� 298 =cl4'2nd'

����A4 F384 299 =cl2'3d'

����A6 C1C2C3 3�� =C'ABC'

����A9 12345C 3�1 =P'123.45'

�1� The Type attribute (T') is allowed for ordinary symbols, SET symbols, and
literals, in both conditional assembly instructions and machine or assembler
instructions. It is allowed in both open code and macro definitions.

�2� The Length attribute (L') is allowed for ordinary symbols, SET symbols, and
literals, in both conditional assembly instructions and machine or assembler
instructions. It is allowed in both open code and macro definitions.

�3� The Integer attribute (I') is allowed for ordinary symbols, SET symbols, and
literals, in both conditional assembly instructions and machine or assembler
instructions. It is allowed in both open code and macro definitions.

�4� The Scaling attribute (S') is allowed for ordinary symbols, SET symbols, and
literals, in both conditional assembly instructions and machine or assembler
instructions. It is allowed in both open code and macro definitions.

324 HLASM V1R5 Programmer’s Guide

�5� If there are literals outstanding when the END statement is encountered, they
are assigned to the LOCTR now in effect for the first control section in the
assembly. This may or may not put the literals at the end of the first control
section. In this sample assembly, the first control section, A, has two
LOCTRs: A and DEECEES. Because A is active (at statement 213), the
literals are assembled there. You control placement of literal pools by means
of the LTORG statement. Note that X'FFFFFFE8' is used for the contents of
A(X), statement 296. The symbol X was assigned the value (4*-6) by an
EQU in statement 89.

| BIGNAME Relocation Dictionary Page 13

| Pos.Id Rel.Id Address Type Action HLASM R5.� 2��4/�6/11 17.48

| �������1 �������1 ������9� A 4 +

| �������1 �������1 ������B1 A 3 +

| BIGNAME Ordinary Symbol and Literal Cross Reference Page 14

| Symbol Length Value Id R Type Asm Program Defn References HLASM R5.� 2��4/�6/11 17.48

| a 1 �������� �������1 J 27 57 211 213

| area1 4 �����7F4 �������2 F F 235 225

| area2 4 �����8�4 �������2 F F 238 226

| a5 2 ������44 �������1 I 63 67 296

| a8 2 ������B� �������1 L 67 145M

| b5 8 ������B� �������1 W 195 67 145M 195

| constant 4 ������AC �������1 F F 56 54 145M

| deecees 1 ������AC �������1 J 55 194 212

| first 1 �������� FFFFFFFF J 241 227U 228U

| first1 8 �������� FFFFFFFF C C 242 231M 232M

| first2 8 �������8 FFFFFFFF C C 243 229U 23�

| lab �������2 A U 228 23�U 232

| labdep �������2 A U 23� 234

| reallylongsymbol

| 4 ������84 �������1 I 145 42 47

| second 1 �������� FFFFFFFE J 244 229U

| second1 4 �������� FFFFFFFE C C 245 233M

| SYMBOL1 3 ������CD FFFFFFFD C C 268 277 278 282 283

| SYMBOL2 3 ������D� FFFFFFFD P P 269 287 288 292 293

| third 1 �������� FFFFFFFD J 247 23�U

| third1 2 �������� FFFFFFFD C C 248 234M

| TRANSYLVANIA

| 4 ������8� �������1 I 144 42 47

| X 1 FFFFFFE8 �������1 A U 89 296

| =a(a5,x) 4 ������9� �������1 A 296 144

| =C'ABC' 3 ������A6 �������1 C 3�� 272 279 284

| =cl2'3d' 2 ������A4 �������1 C 299 234

| =cl4'2nd'

| 4 ������A� �������1 C 298 233

| =cl8'1st'

| 8 ������98 �������1 C 297 231 232

| =P'123.45'

| 3 ������A9 �������1 P 3�1 273 289 294

BIGNAME Unreferenced Symbols Defined in CSECTs Page 15

 Defn Symbol HLASM R5.� 2��4/�6/11 17.48

 65 a7

 143 SUSQUEHANNA

 Appendix E. Sample Program 325

BIGNAME Macro and Copy Code Source Summary Page 16

 Con Source Volume Members HLASM R5.� 2��4/�6/11 17.48

 PRIMARY INPUT DEMO LOCATE NOTE

L2 OSMACRO MACLIB S2 MNT19� IHBINNRA IHBRDWRS NOTE WRITE WTO

BIGNAME Dsect Cross Reference Page 17

Dsect Length Id Defn HLASM R5.� 2��4/�6/11 17.48

first ������1� FFFFFFFF 241

second �������8 FFFFFFFE 244

third ������EC FFFFFFFD 247

BIGNAME Using Map Page 18

 HLASM R5.� 2��4/�6/11 17.48

 Stmt -----Location----- Action ----------------Using----------------- Reg Max Last Label and Using Text

 Count Id Type Value Range Id Disp Stmt

28 �������� �������1 USING ORDINARY �������� ����1��� �������1 8 ���AC 273 �,8

224 �����7D2 �������2 USING ORDINARY �����7D2 ����1��� �������2 12 ���32 226 �,12

227 �����7DA �������2 USING ORDINARY �������� ����1��� FFFFFFFF 1 ����8 233 first,1

228 �����7DA �������2 USING LABELED �������� ����1��� FFFFFFFF 2 ����8 232 lab.first,2

229 �����7DA �������2 USING DEPENDENT +�������8 �����FF8 FFFFFFFE 1 second,first2

23� �����7DA �������2 USING LAB+DEPND +�������8 �����FF8 FFFFFFFD 2 labdep.third,lab.first2

General Purpose Register Cross Reference Page 19

 Register References (M=modified, B=branch, U=USING, D=DROP, N=index) HLASM R5.� 2��4/�6/11 17.48

 �(�) (no references identified)

1(1) 63M 87M 134M 135 136N 137N 189M 19� 225M 227U 272M 273M

 2(2) 63 226M 228U

 3(3) 145N

 4(4) (no references identified)

 5(5) 54M 142M

6(6) 134 189 218M

 7(7) 145 218

 8(8) 28U 136

 9(9) 143M

 1�(A) 142 143

11(B) (no references identified)

 12(C) 144M 224U

 13(D) 87 144M

14(E) 3�B 139M 191M

 15(F) 29M 29 137M 138M 138 139B 19�M 191B

326 HLASM V1R5 Programmer’s Guide

BIGNAME Diagnostic Cross Reference and Assembler Summary Page 2�

 HLASM R5.� 2��4/�6/11 17.48

No Statements Flagged in this Assembly

| HIGH LEVEL ASSEMBLER, 5696-234, RELEASE 5.�

SYSTEM: CMS 15 JOBNAME: (NOJOB) STEPNAME: (NOSTEP) PROCSTEP: (NOPROC)

Data Sets Allocated for this Assembly

 Con DDname Data Set Name Volume Member

P1 SYSIN ASMASAMP ASSEMBLE A1 DOGBOX

 L1 SYSLIB BROOKES MACLIB A1 DOGBOX

 L2 OSMACRO MACLIB S2 MNT19�

 L3 OSMACRO1 MACLIB S2 MNT19�

L4 DMSGPI MACLIB S2 MNT19�

 SYSLIN ASMASAMP TEXT A1 DOGBOX

SYSPRINT ASMASAMP LISTING A1 DOGBOX

| 98138K allocated to Buffer Pool

| 244 Primary Input Records Read 2217 Library Records Read

| � ASMAOPT Records Read 485 Primary Print Records Written

1� Object Records Written � ADATA Records Written

Assembly Start Time: 17.22.51 Stop Time: 17.22.51 Processor Time: ��.��.��.�4�7

Return Code ���

 Appendix E. Sample Program 327

Appendix F. MHELP Sample Macro Trace and Dump

The macro trace and dump (MHELP) facility is a useful means of debugging macro
definitions. MHELP can be used anywhere in the source program or in macro
definitions. MHELP is processed during macro generation. It is completely
dynamic; you can branch around the MHELP statements by using AIF or AGO
statements. Therefore, you can control its use by symbolic parameters and SET
symbols. MHELP options remain in effect until superseded by another MHELP
statement.

Figure 99 on page 329 shows a sample program that uses five functions of
MHELP. The macro dumps and traces in the listing are highlighted, for example
�1A�. Most dumps refer to statement numbers. When you call a library macro, the
macro name is used instead of the statement number in the identification-sequence
field. To get the statement numbers, you should use the LIBMAC assembler option
or the COPY statement to copy the library definition into the source program before
the macro call.

MHELP 1, Macro Call Trace: Item �1A� on page 331 shows an outer macro call,
�1B� on page 332 an inner one. In each case, the amount of information given is
short. This trace is given after successful entry into the macro; no dump is given if
error conditions prevent an entry.

MHELP 2, Macro Branch Trace: This trace provides a one-line trace for each
AGO and true AIF branch within a programmer macro. In any such branch, the
“branched from” statement number, the “branched to” statement number, and the
macro name are included, see example �2A� on page 332. The branch trace
facility is suspended when library macros are expanded and MHELP 2 is in effect.
To obtain a macro branch trace for such a macro, use the LIBMAC assembler
option or insert a COPY “macro-name” statement in the source file at some point
before the MHELP 2 statement of interest.

MHELP 4, Macro AIF Dump: Items �4A� (page 332), �4B�, �4C�, �4D�, and �4E�
(page 333) are examples of these dumps. Each dump includes a complete set of
unsubscripted SET symbols with values. This list covers all unsubscripted variable
symbols that appear in the same field of a SET statement in the macro definition.
Values of elements of dimensioned SET symbols are not displayed.

MHELP 8, Macro Exit Dump: Items �8A� and �8B� (page 335) are examples of
these dumps. This option provides a dump of the same group of SET symbols as
are included in the macro AIF dump when an MEXIT or MEND is encountered.

Local and global variable symbols are not displayed at any point unless they
appear in the current macro explicitly as SET symbols.

328 Copyright IBM Corp. 1982, 2004

MHELP 16, Macro Entry Dump: This option provides a dump of the values of
system variable symbols and symbolic parameters at the time the macro is called.

If there are k keyword parameters, they are listed as KPARM���1 through KPARM���k
in order of appearance on the prototype statement.

If there are p positional parameters, they are listed as PPARM���1 through PPARM���p
in order of appearance in the macro instruction.

Item �16A� on page 331 has one keyword parameter (&OFFSET) and one
positional parameter. In both the prototype (statement 4) and the macro instruction
(statement 55), the positional parameter appears in the first operand field, the
keyword in the second. A length appears between the NAME and VALUE fields. A
length of NUL indicates the corresponding item is empty.

Item �16B� on page 332 shows an inner call containing zero keywords and two
positional parameters.

MHELP 64, Macro Hex Dump: This option, when used in conjunction with the
Macro AIF dump, the Macro Exit dump, or the Macro Entry dump, dumps the
parameter and SETC symbol values in EBCDIC and hexadecimal formats.

The hexadecimal dump precedes the EBCDIC dump, and dumps the full value of
the symbol. System parameters are not dumped in hexadecimal.

MHELP 128, MHELP Suppression: This option suppresses all the MHELP
options that are active at the time.

MHELP Control on &SYSNDX: The maximum value of the &SYSNDX system
variable can be controlled by the MHELP instruction. The limit is set by specifying a
number in the operand of the MHELP instruction, that is not one of the MHELP
codes defined above, and is in the following number ranges:

� 256 to 65535
� Most numbers in the range 65792 to 9999999. Details for this number range

are described in the HLASM V1R5 Language Reference.

When the &SYSNDX limit is reached, message ASMA�13S ACTR counter exceeded is
issued, and the assembler, in effect, ignores all further macro calls. Refer to the
HLASM V1R5 Language Reference for further information.

 PAGE 3

Active Usings: None

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 ������ ����� ����� 1 csect ��246���

 2 � copy lnsrch ��247���

 3 macro ��248���

 4 &name lnsrch &arg,&offset=stnumb-stchain ��249���

 5 lclc &label ��25����

 6 &label setc 'A&sysndx' Generate symbol ��251���

7 aif (t'&name eq 'O').skip ��252���

8 &label setc '&name' If MACRO call has label, use it ��253���

9 .skip anop instead of generated symbol ��254���

1� &label la �,&offset Load reg. � ��255���

 11 schi &arg,�(1) Search ��256���

12 bc 1,&label If max reached, continue ��257���

 13 mend ��258���

Figure 99 (Part 1 of 7). Sample Program Using MHELP

 Appendix F. MHELP Sample Macro Trace and Dump 329

 Page 4

Active Usings: None

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 15 � copy schi ��26����

 16 macro ��261���

 17 &nm schi &comp,&list ��262���

 18 lcla &cnt ��263���

 19 lclc &cmpadr ��264���

 2� &cnt seta 1 ��265���

 21 &nm stm 1,15,4(13) ��266���

 22 .test anop ��267���

23 &cmpadr setc '&cmpadr'.'&comp'(&cnt,1) ��268���

24 aif ('&comp'(&cnt,1) eq '(').lpar ��269���

 25 &cnt seta &cnt+1 ��27����

26 aif (&cnt lt k'&comp).test ��271���

 27 .nolnth anop ��272���

 28 la 3,&comp Comparand ��273���

 29 ago .contin ��274���

3� .lpar aif ('&comp'(&cnt+1,1) eq ',').finish ��275���

 31 &cnt seta &cnt+1 ��276���

32 aif (&cnt lt k'&comp).lpar ��277���

 33 ago .nolnth ��278���

 34 .finish anop ��279���

35 &cmpadr setc '&cmpadr'.'&comp'(&cnt+2,k'&comp-&cnt) ��28����

36 la 3,&cmpadr Comparand sans length ��281���

 37 .contin anop ��282���

 38 la 1,&list List header ��283���

39 mvc &comp,�(�) Dummy move to get comp length ��284���

4� org �-6 Change MVC to MVI ��285���

 41 dc x'92' MVI Opcode ��286���

42 org �+1 Preserve length as immed opnd ��287���

43 dc x'd���' Result is MVI �(13),L ��288���

 44 l 15,=v(schi) ��289���

 45 balr 14,15 ��29����

 46 lm 1,15,4(13) ��291���

 47 mexit ��292���

 48 mend ��293���

Figure 99 (Part 2 of 7). Sample Program Using MHELP

330 HLASM V1R5 Programmer’s Guide

Active Usings: None

 Page 5

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 ������ ����� ���48 5� test csect ��295���

 ������ �5C� 51 balr 12,� ��296���

R ����2 52 using �,12 ��297���

 54 mhelp b'11111' ��299���

 55 lnsrch listline,offset=listline-listnext ��3�����

�1A� ++//MHELP CALL TO MACRO LNSRCH DEPTH=��1 SYSNDX=������1 STMT=���55

�16A� //MHELP ENTRY TO LNSRCH MODEL STMT=����� DEPTH=��1 SYSNDX=������1 KWCNT=��1

 ////SYSTEM PARAMETERS:

//SYSVAR NAME LNTH VALUE (56 CHARS/LINE)

 //SYSNDX ��4 ���1

 //SYSECT ��4 test

 //SYSLOC ��4 test

 //SYSTIME ��5 17.48

 //SYSDATE ��8 �6/11/�4

//SYSASM �2� HIGH LEVEL ASSEMBLER

 //SYSVER ��5 1.5.�

 //SYSDATC ��8 2��4�611

 //SYSJOB ��7 (NOJOB)

 //SYSSTEP ��8 (NOSTEP)

 //SYSSTYP ��5 CSECT

 //SYSSTMT ��8 ������56

 //SYSCLOCK �26 2��4-�6-11 17:48:42.914829

 //SYSNEST ��1 1

 //SYSSEQF ��8 ��3�����

 //SYSOPT_DBCS ��1 �

//SYSOPT_OPTABLE ��3 UNI

 //SYSOPT_RENT ��1 �

//SYSOPT_XOBJECT ��1 �

 //SYSTEM_ID ��6 CMS 13

//SYSIN_DSN �2� ASMASAMP ASSEMBLE A1

 //SYSIN_MEMBER NUL

 //SYSIN_VOLUME ��5 ADISK

//SYSLIB_DSN �2� ASMASAMP ASSEMBLE A1

 //SYSLIB_MEMBER NUL

 //SYSLIB_VOLUME ��5 ADISK

 //SYSPRINT_DSN �2� ASMASAMP LISTING A1

 //SYSPRINT_MEMBER NUL

 //SYSPRINT_VOLUME ��5 ADISK

 //SYSTERM_DSN NUL

 //SYSTERM_MEMBER NUL

 //SYSTERM_VOLUME NUL

 //SYSPUNCH_DSN NUL

 //SYSPUNCH_MEMBER NUL

 //SYSPUNCH_VOLUME NUL

 //SYSLIN_DSN �2� ASMASAMP TEXT A1

 //SYSLIN_MEMBER NUL

 //SYSLIN_VOLUME ��5 ADISK

 //SYSADATA_DSN NUL

 //SYSADATA_MEMBER NUL

Figure 99 (Part 3 of 7). Sample Program Using MHELP

 Appendix F. MHELP Sample Macro Trace and Dump 331

++//MHELP BRANCH FROM STMT ����7 TO STMT ����9 IN MACRO LNSRCH

| Active Usings: test+X'2',R12

 Page 6

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 //SYSADATA_VOLUME NUL

 //SYSPARM NUL

 //SYSM_SEV ��3 ���

 //SYSM_HSEV ��3 ���

////NAME; KEYWORD PARAMETERS; POSITIONAL PARAMETERS:

//PARAMETER LNTH VALUE (54 CHARS/LINE)

 //NAME NUL

 //KPARM���1 �17 listline-listnext

 //PPARM���1 ��8 listline

�4A� //MHELP AIF IN LNSRCH MODEL STMT=����7 DEPTH=��1 SYSNDX=������1 KWCNT=��1

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLC LABEL LNTH= ��5

 // VAL=A���1

�2A� ++//MHELP BRANCH FROM STMT ����7 TO STMT ����9 IN MACRO LNSRCH

 �����2 41�� ���2 ����2 56+A���1 la �,listline-listnext Load reg. � �1-���1�

�1B� ++//MHELP CALL TO MACRO SCHI DEPTH=��2 SYSNDX=������2 STMT=���11

�16B� //MHELP ENTRY TO SCHI MODEL STMT=����� DEPTH=��2 SYSNDX=������2 KWCNT=���

 ////SYSTEM PARAMETERS:

//SYSVAR NAME LNTH VALUE (56 CHARS/LINE)

 //SYSNDX ��4 ���2

 //SYSECT ��4 test

 //SYSLOC ��4 test

 //SYSTIME ��5 �6.48

 //SYSDATE ��8 �2/�2/��

//SYSASM �2� HIGH LEVEL ASSEMBLER

 //SYSVER ��5 1.4.�

 //SYSDATC ��8 2����2�2

 //SYSJOB ��7 (NOJOB)

 //SYSSTEP ��8 (NOSTEP)

 //SYSSTYP ��5 CSECT

 //SYSSTMT ��8 ������58

 //SYSCLOCK �26 2���-�2-�2 �6:48:42.915979

 //SYSNEST ��1 2

 //SYSSEQF ��8 ��3�����

 //SYSOPT_DBCS ��1 �

//SYSOPT_OPTABLE ��3 UNI

 //SYSOPT_RENT ��1 �

//SYSOPT_XOBJECT ��1 �

 //SYSTEM_ID ��6 CMS 13

//SYSIN_DSN �2� ASMASAMP ASSEMBLE A1

 //SYSIN_MEMBER NUL

 //SYSIN_VOLUME ��5 ADISK

//SYSLIB_DSN �2� ASMASAMP ASSEMBLE A1

 //SYSLIB_MEMBER NUL

 //SYSLIB_VOLUME ��5 ADISK

 //SYSPRINT_DSN �2� ASMASAMP LISTING A1

 //SYSPRINT_MEMBER NUL

Figure 99 (Part 4 of 7). Sample Program Using MHELP

332 HLASM V1R5 Programmer’s Guide

| Active Usings: test+X'2',R12

 Page 7

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 //SYSPRINT_VOLUME ��5 ADISK

 //SYSTERM_DSN NUL

 //SYSTERM_MEMBER NUL

 //SYSTERM_VOLUME NUL

 //SYSPUNCH_DSN NUL

 //SYSPUNCH_MEMBER NUL

 //SYSPUNCH_VOLUME NUL

 //SYSLIN_DSN �2� ASMASAMP TEXT A1

 //SYSLIN_MEMBER NUL

 //SYSLIN_VOLUME ��5 ADISK

 //SYSADATA_DSN NUL

 //SYSADATA_MEMBER NUL

 //SYSADATA_VOLUME NUL

 //SYSPARM NUL

 //SYSM_SEV ��3 ���

 //SYSM_HSEV ��3 ���

////NAME; KEYWORD PARAMETERS; POSITIONAL PARAMETERS:

//PARAMETER LNTH VALUE (54 CHARS/LINE)

 //NAME NUL

 //PPARM���1 ��8 listline

 //PPARM���2 ��4 �(1)

 �����6 9�1F D��4 ����4 58+ stm 1,15,4(13) �2-���21

�4B� //MHELP AIF IN SCHI MODEL STMT=���24 DEPTH=��2 SYSNDX=������2 KWCNT=���

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLA CNT VAL= ���������1

 //���2 LCLC CMPADR LNTH= ��1

 // VAL=l

�4C� //MHELP AIF IN SCHI MODEL STMT=���26 DEPTH=��2 SYSNDX=������2 KWCNT=���

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLA CNT VAL= ���������2

 //���2 LCLC CMPADR LNTH= ��1

 // VAL=l

++//MHELP BRANCH FROM STMT ���26 TO STMT ���22 IN MACRO SCHI

�4D� //MHELP AIF IN SCHI MODEL STMT=���24 DEPTH=��2 SYSNDX=������2 KWCNT=���

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLA CNT VAL= ���������2

 //���2 LCLC CMPADR LNTH= ��2

 // VAL=li

�4E� //MHELP AIF IN SCHI MODEL STMT=���26 DEPTH=��2 SYSNDX=������2 KWCNT=���

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLA CNT VAL= ���������3

 //���2 LCLC CMPADR LNTH= ��2

 // VAL=li

Figure 99 (Part 5 of 7). Sample Program Using MHELP

 Appendix F. MHELP Sample Macro Trace and Dump 333

 Page 8

| Active Usings: test+X'2',R12

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

++//MHELP BRANCH FROM STMT ���26 TO STMT ���22 IN MACRO SCHI

//MHELP AIF IN SCHI MODEL STMT=���24 DEPTH=��2 SYSNDX=������2 KWCNT=���

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLA CNT VAL= ���������3

 //���2 LCLC CMPADR LNTH= ��3

 // VAL=lis

//MHELP AIF IN SCHI MODEL STMT=���26 DEPTH=��2 SYSNDX=������2 KWCNT=���

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLA CNT VAL= ���������4

 //���2 LCLC CMPADR LNTH= ��3

 // VAL=lis

++//MHELP BRANCH FROM STMT ���26 TO STMT ���22 IN MACRO SCHI

//MHELP AIF IN SCHI MODEL STMT=���24 DEPTH=��2 SYSNDX=������2 KWCNT=���

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLA CNT VAL= ���������4

 //���2 LCLC CMPADR LNTH= ��4

 // VAL=list

//MHELP AIF IN SCHI MODEL STMT=���26 DEPTH=��2 SYSNDX=������2 KWCNT=���

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLA CNT VAL= ���������5

 //���2 LCLC CMPADR LNTH= ��4

 // VAL=list

++//MHELP BRANCH FROM STMT ���26 TO STMT ���22 IN MACRO SCHI

//MHELP AIF IN SCHI MODEL STMT=���24 DEPTH=��2 SYSNDX=������2 KWCNT=���

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLA CNT VAL= ���������5

 //���2 LCLC CMPADR LNTH= ��5

 // VAL=listl

//MHELP AIF IN SCHI MODEL STMT=���26 DEPTH=��2 SYSNDX=������2 KWCNT=���

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLA CNT VAL= ���������6

 //���2 LCLC CMPADR LNTH= ��5

 // VAL=listl

++//MHELP BRANCH FROM STMT ���26 TO STMT ���22 IN MACRO SCHI

//MHELP AIF IN SCHI MODEL STMT=���24 DEPTH=��2 SYSNDX=������2 KWCNT=���

Figure 99 (Part 6 of 7). Sample Program Using MHELP

334 HLASM V1R5 Programmer’s Guide

 Page 9

| Active Usings: test+X'2',R12

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLA CNT VAL= ���������6

 //���2 LCLC CMPADR LNTH= ��6

 // VAL=listli

//MHELP AIF IN SCHI MODEL STMT=���26 DEPTH=��2 SYSNDX=������2 KWCNT=���

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLA CNT VAL= ���������7

 //���2 LCLC CMPADR LNTH= ��6

 // VAL=listli

++//MHELP BRANCH FROM STMT ���26 TO STMT ���22 IN MACRO SCHI

//MHELP AIF IN SCHI MODEL STMT=���24 DEPTH=��2 SYSNDX=������2 KWCNT=���

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLA CNT VAL= ���������7

 //���2 LCLC CMPADR LNTH= ��7

 // VAL=listlin

//MHELP AIF IN SCHI MODEL STMT=���26 DEPTH=��2 SYSNDX=������2 KWCNT=���

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLA CNT VAL= ���������8

 //���2 LCLC CMPADR LNTH= ��7

 // VAL=listlin

 �����A 413� C�24 ���26 59+ la 3,listline Comparand �2-���28

++//MHELP BRANCH FROM STMT ���29 TO STMT ���37 IN MACRO SCHI

 �����E 4111 ���� ����� 6�+ la 1,�(1) List header �2-���38

 ����12 D2�2 C�24 ���� ���26 ����� 61+ mvc listline,�(�) Dummy move to get comp length �2-���39

 ����18 ���18 ���12 62+ org �-6 Change MVC to MVI �2-���4�

 ����12 92 63+ dc x'92' MVI Opcode �2-���41

 ����13 ���13 ���14 64+ org �+1 Preserve length as immed opnd �2-���42

 ����14 D��� 65+ dc x'd���' Result is MVI �(13),L �2-���43

 ����16 58F� C�2E ���3� 66+ l 15,=v(schi) �2-���44

 ����1A �5EF 67+ balr 14,15 �2-���45

 ����1C 981F D��4 ����4 68+ lm 1,15,4(13) �2-���46

�8A� //MHELP EXIT FROM SCHI MODEL STMT=���47 DEPTH=��2 SYSNDX=������2 KWCNT=���

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLA CNT VAL= ���������8

 //���2 LCLC CMPADR LNTH= ��7

 // VAL=listlin

 ����2� 471� C��� ����2 69+ bc 1,A���1 If max reached, continue �1-���12

�8B� //MHELP EXIT FROM LNSRCH MODEL STMT=���13 DEPTH=��1 SYSNDX=������1 KWCNT=��1

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //���1 LCLC LABEL LNTH= ��5

 // VAL=A���1
...

 Page 1�

| Active Usings: test+X'2',R12

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 ����24 7� listnext ds h ��3�1���

 ����26 71 listline ds fl3'�' ��3�2���

 ����3� 72 ltorg ��3�3���

 ����3� �������� 73 =v(schi)
...

New Floating-point Constants included for Verification Page 11

| Active Usings: test+X'2',R12

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 75 �� ��3�5���

76 � New FP definitions included to verify correct release of HLASM � ��3�6���

 77 �� ��3�7���

 ����34 ��������

 ����38 4�9348���������� 78 BFP1 DC DB'1234' ��3�8���

 ����4� 434D2����������� 79 HFP1 DC DH'1234' ��3�9���

 ������ 8� end test ��31����

Figure 99 (Part 7 of 7). Sample Program Using MHELP

 Appendix F. MHELP Sample Macro Trace and Dump 335

Appendix G. High Level Assembler Messages

High Level Assembler produces the following types of messages:

� Assembly error-diagnostic messages.
� Assembly abnormal-termination messages.
� ASMAHL command-error messages (CMS).

The following section describes the format and placement of messages issued by
the assembler. “Assembly Error Diagnostic Messages” on page 339, “Abnormal
Assembly Termination Messages” on page 380, and “ASMAHL Command Error
Messages (CMS)” on page 385, list and describe each message.

| Note: If you use the FLAG(severity code) assembler option, only error diagnostic
| messages with a severity of severity code or higher appear on the listing.

Message Code Format
Assembly error diagnostic messages, and assembly abnormal termination
messages, have the following message code format:

ASMAnnns

nnn a three-character message number

s severity indicator

The severity indicators, and the corresponding severity codes are:

I—Informational
(Severity code = 0)

This error does not affect the running of the program; rather, it is a
coding inefficiency or other such condition that can be changed. The
assembler has not detected any conditions affecting the correctness of
the program.

N—Notice
(Severity code = 2)

This type of message brings your attention to a condition that you might
wish to correct. The assembler has not detected any conditions affecting
the correctness of the program; however, the output from the assembly
might not be what you expect.

W—Warning
(Severity code = 4)

Although the statement in which the condition occurs is syntactically
correct, it has the potential for causing an error when the program is run.

E—Error
(Severity code = 8)

The condition is definitely an error. However, the assembler has tried to
correct the error, or has ignored the statement in error. The program
probably will not run successfully.

336 Copyright IBM Corp. 1982, 2004

S—Severe
(Severity code = 12)

The condition is a serious error. The assembler has either ignored the
statement in error, or the machine instruction has been assembled to
zero. It is not likely that the program will assemble as expected or that it
will run.

C—Critical
(Severity code = 16)

The condition is a critical error. It is not likely that the program will run
successfully.

U—Unrecoverable
(Severity code = 20)

The error condition is of such magnitude that the assembler could not
continue.

ASMAHL command error messages have the following message code format:

 ASMACMSnnne

where:

nnn Is a three-character message number

e Indicates the severity of an error. See “Severity Code” on page 338.

LANGUAGE Assembler Option: Unless otherwise indicated, the text of ASMAHL
command error messages is produced in the language specified on the
LANGUAGE operand in the installation default options.

 Message Descriptions
Each message entry for assembly error diagnostic messages and assembly
abnormal termination messages has the following five sections:

� Message Number and Text
� Explanation of Message

 � System Action
 � Programmer Response
 � Severity Code

Each message entry for ASMAHL command error messages has up to five of the
following sections:

� Message Number and Text
� Explanation of Message

 � Supplemental Information
 � System Action
 � Programmer Response

 Appendix G. High Level Assembler Messages 337

Message Number and Text
Only the message number and the major fixed portion of the message text are
included in the message description. Any abbreviations in actual message text are
described under the message explanation section. Unused message numbers
account for the gaps in the message number sequence. No messages are defined
for numbers which are not included in this section (for example, ASMA222).

Explanation of Message
For some messages there is more than one explanation, as different sections of the
assembler can generate the same message. Several assembler termination
messages have identical explanations.

 Supplemental Information
For ASMAHL command error messages, the supplemental information describes
the possible contents of the variables in the message text.

 System Action
This section describes how the assembler handles statements with errors. Some
actions include:

� A machine instruction assembles as all zeros.

� An assembler instruction is usually ignored; it is printed but has no effect on the
assembly. Many assembler instructions, however, are partially processed or
processed with a default value. For some instructions, the operands preceding
the operand in error, or every operand except the operand in error, is
processed. For example, if one of several operands on a DROP statement is a
symbol that cannot be evaluated to a register number, only that operand is
ignored. All the correctly-specified registers are processed correctly.

� For some assembler statements, especially macro prototype and conditional
assembly statements, the operand or term in error is given a default value.
Thus the statement assembles completely, but will probably cause incorrect
results if the program is run.

For ASMAHL command error messages, this section describes the command return
code and the status of the system after the error.

 Programmer Response
Many errors have specific or probable causes. In such a case, the Programmer
Response section gives specific steps for fixing the error. Most messages,
however, have too many possible causes to list (from keying errors to wrong use of
the statement). The Programmer Response section for these error messages does
not give specific directions. The cause of most such errors can be determined from
the message text and the explanation.

 Severity Code
The level of severity code indicates how critical the error might be. The severity
codes and their meanings are described in “Message Code Format” on page 336.

| ASMAHL messages (those messages starting with ASMACMS) have a severity
| code letter of E. The associated return code is shown in the System Action for each
| message. An ASMAHL message that causes the assembly to terminate generates
| a return code greater than 20.

338 HLASM V1R5 Programmer’s Guide

The severity code is used to determine the return code issued by the assembler
when it returns control to the operating system. The IBM-supplied cataloged
procedures (for MVS) include a COND parameter on the linkage edit and run steps.
The COND parameter prevents the running of these steps if the return code from
the assembler is greater than 8. Thus errors with a severity code of S prevent the
assembled program from linkage editing or running. Errors with a severity code of
E, or lower, in the message do not prevent the assembled program from linkage
editing or running.

Assembly Error Diagnostic Messages
High Level Assembler prints most error messages in the listing immediately
following the statements in error. It also prints the total number of flagged
statements and their statement numbers in the Diagnostic Cross Reference and
Assembler Summary section of the assembler listing.

The messages do not follow the statement in error when:

� Errors are detected during editing of macro definitions read from a library. A
message for such an error appears after the first call in the source program to
that macro definition. You can, however, bring the macro definition into the
source program with a COPY statement. The editing error messages will then
be attached to the statements in error.

� Errors are detected by the lookahead function of the assembler. (For attribute
references, lookahead processing scans statements after the one being
assembled.). Messages for these errors appear after the statements in which
they occur. The messages might also appear at the point at which lookahead
was called.

� Errors are detected on conditional assembly statements during macro
generation or MHELP testing. Such a message follows the most recently
generated statement or MHELP output statement.

A typical error diagnostic message is:

�� ASMA�57E Undefined operation code - xxxxx

A copy of a segment of the statement in error, represented above by xxxxx, is
inserted into many messages. Normally this segment begins at the bad character
or term. For some errors, however, the segment might begin after the bad
character or term. The segment might include part of the remarks field.

If a diagnostic message follows a statement generated by a macro definition, the
following items might be appended to the error message:

� The number of the model statement in which the error occurred, or the first five
characters of the macro name.

� The SET symbol, system variable, macro parameter, or value string associated
with the error.

Messages may reference three types of macro parameter: the name field
parameter, keyword parameters, and positional parameters. A reference to the
name field parameter is indicated by the word “NAME” appended to the message.
References to keyword and positional parameters (for which there may be multiple

 Appendix G. High Level Assembler Messages 339

occurrences) are in the form “KPARMnnnn” and “PPARMnnnn” respectively, where
nnnn is the relative number of the parameter within the macro definition.

Figure 100 shows an example of a macro with messages referencing each type of
variable or parameter.

Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.� 2��4/�6/11 17.48

 1 MACRO ����1���

 �3� �4� �4� �5�
 2 &z parms &kw1=a,&kw2=b,&kw3=c,&kw4=d,&kw5=e,&kw6=f,&pp1,&pp2 ����2���

3 &c SETC 'just a string' ┬─��1� ����3���

4 &ss SETA &c ┘ ����4���

5 &sv SETA &sysasm �2� ����5���

6 &z1 SETA &z �3� ����6���

7 &k1 SETA &kw1 ┬� �4� ����7���

8 &k5 SETA &kw5 ┘ ����8���

 9 &n SETA n'&syslist ����9���

1� &pn SETA &syslist(&n) �─┬� �5� ���1����

 11 &p2 SETA &pp2 ┘ ┌� �5� ���11���

 12 MEND ┌┴────┐ ���12���

 ������ ����� ����� 13 default CSECT ���13���

 14 n parms pp1,pp2,kw5=z,pp3,kw1=y,pp4,pp5,pp6 ���14���

 ASMA1�2E Arithmetic term is not self-defining term; default=� - ����4/C �1�
 ASMA1�2E Arithmetic term is not self-defining term; default=� - ����5/SYSASM �2�
 ASMA1�2E Arithmetic term is not self-defining term; default=� - ����6/NAME �3�
 ASMA1�2E Arithmetic term is not self-defining term; default=� - ����7/KPARM����1 ┬� �4�
 ASMA1�2E Arithmetic term is not self-defining term; default=� - ����8/KPARM����5 ┘

 ASMA1�2E Arithmetic term is not self-defining term; default=� - ���1�/PPARM����6 ┬� �5�
 ASMA1�2E Arithmetic term is not self-defining term; default=� - ���11/PPARM����2 ┘

 15 END ���15���

Figure 100. Sample Macro Parameter Messages

Notes to Figure 100:

�1� SET symbol, and related message

�2� System variable symbol, and related message

�3� The name field parameter, and related message

�4� Keyword parameters, and related messages

�5� Positional parameters, and related messages

If a diagnostic message follows a conditional assembly statement in the source
program, the following items are appended to the error message:

� The word “OPENC”, meaning “open code”.
� The SET symbol, or value string, associated with the error.

Several messages might be issued for a single statement or even for a single error
within a statement. This happens because each statement is usually evaluated on
more than one level (for example, term level, expression level, and operand level)
or by more than one phase of the assembler. Each level or phase can diagnose
errors; therefore, most or all of the errors in the statement are flagged.
Occasionally, duplicate error messages might occur. This is a normal result of the
error-detection process.

340 HLASM V1R5 Programmer’s Guide

Message Not Known
The following message might appear in a listing:

| �� ASMA���E Message not known - nnn

The statement preceding this message contains an error but the assembler routine
that detected the error issued the number (nnn) of a nonexistent error message to
the assembler's message generation routine. If you can correct the error, this
statement will assemble correctly. However, this message indicates an error in the
error detection process of the assembler. Save the output and the source files
from this assembly and report the problem to your IBM service representative.

 Appendix G. High Level Assembler Messages 341

 ASMA001E � ASMA008S

 Messages

ASMA001E Operation code not allowed to be
generated - xxxxxxxx

Explanation: An attempt was made to produce a
restricted operation code by variable symbol
substitution. Restricted operation codes are:

ACTR AGO AGOB AIF

AIFB ANOP AREAD COPY

GBLA GBLB GBLC ICTL

ISEQ LCLA LCLB LCLC

MACRO MEND MEXIT REPRO

SETA SETAF SETB SETC

SETCF

System Action: The statement is ignored.

Programmer Response: If you want a variable
operation code, use AIF to branch to the correct
unrestricted statement.

Severity: 8

ASMA002S Generated statement too long;
statement truncated - xxxxxxxx

Explanation: The statement generated by a macro
| definition is more than 3072 characters long.

System Action: The statement is truncated; the
leading 1728 characters are retained.

Programmer Response: Shorten the statement.

Severity: 12

ASMA003E Undeclared variable symbol; default=0,
null, or type=U - xxxxxxxx

Explanation: A variable symbol in the operand field of
the statement has not been declared (defined) in the
name field of a SET statement, in the operand field of
an LCL or GBL statement, or in a macro prototype
statement.

System Action: The variable symbol is given a default
value as follows:

SETA = �

SETB = �

SETC = null (empty) string

If the assembler is unable to determine an appropriate
type from the context of the symbol's use, a default type
of SETC is assigned.

The type attribute (T') of the variable is given a default
value of U (undefined).

Programmer Response: Declare the variable before
you use it as an operand.

Severity: 8

ASMA004E Duplicate SET symbol declaration; first
is retained - xxxxxxxx

Explanation: A SET symbol has been declared
(defined) more than once. A SET symbol is declared
when it is used in the name field of a SET statement, in
the operand field of an LCL or GBL statement, or in a
macro prototype statement.

System Action: The value of the first declaration of
the SET symbol is used.

Programmer Response: Eliminate the incorrect
declarations.

Severity: 8

ASMA005S No storage for macro call; continue with
open code

Explanation: An inner macro call could not be
processed because no main storage was available.

System Action: The assembly continues with the next
open code statement.

Programmer Response: Check whether the macro is
recursive, and, if so, whether termination is provided for;
correct the macro if necessary. If the macro is correct,
allocate more main storage.

Severity: 12

ASMA007S Previously defined sequence symbol -
xxxxxxxx

Explanation: The sequence symbol in the name field
has been used in the name field of a previous
statement.

System Action: The first definition of the sequence
symbol is used; this definition is ignored.

Programmer Response: Remove or change one of
the sequence symbols.

Severity: 12

ASMA008S Previously defined symbolic parameter -
xxxxxxxx

Explanation: The xxxxxxxx symbol has been used to
define two different symbolic parameters.

System Action: When the parameter name (the
variable symbol) is used inside the macro definition, it
refers to the first definition of the parameter in the
prototype. However, if the second parameter defined
by the variable symbol is a positional parameter, the
count of positional operands still increases by one. The
second parameter can then be referred to only through
use of &SYSLIST.

Programmer Response: Change one of the
parameter names to another variable symbol.

Severity: 12

342 HLASM V1R5 Programmer’s Guide

 ASMA009S � ASMA013S

ASMA009S System variable symbol illegally
re-defined

Explanation: A system variable symbol has been
used in the name field of a macro prototype statement.
The system variable symbols are:

System Action: The name parameter is ignored. The
name on a corresponding macro instruction is not
generated.

Programmer Response: Change the parameter to
one that is not a system variable symbol.

Severity: 12

ASMA010E Invalid use of symbol qualifier - xxxxxxxx

Explanation: One of the following has occurred:

� A symbol qualifier has been used to qualify a
symbol in other than:

– A machine instruction
– The nominal value of an S-type address

constant
– The supporting address operand of a

dependent USING statement

� A symbol qualifier is used to qualify a symbol that
has an absolute value where a symbol that
represents a relocatable address is required

� A symbol qualifier is used to qualify a symbol that is
not within the range of the corresponding labeled
USING statement

� A symbol qualifier is used to qualify an undefined
symbol

� A symbol qualifier is used to qualify an incorrect
symbol

� A period is used as the last character of a term, but
the symbol preceding the period has not been

defined in the name field of a labeled USING
statement

A symbol qualifier can only be used in machine
instructions, the nominal value of S-type address
constants, or the second operand (supporting base
address) of dependent USING instructions. A symbol
qualifier can only be used to qualify symbols that are
within the range of the corresponding labeled USING.

System Action: A machine instruction assembles as
zero. An assembler instruction is ignored. If there is a
further error in the statement, a message that describes
the error is issued.

Programmer Response: Correct the use of the
symbol qualifier, or check the statement for the error
indicated in the following message.

Severity: 8

ASMA011E Inconsistent global declarations; first is
retained - xxxxxxxx

Explanation: A global SET variable symbol has been
defined in more than one macro definition or in a macro
definition and in the source program, and the two
definitions are inconsistent in type or dimension.

System Action: The first definition encountered is
retained.

Programmer Response: Assign a new SET symbol or
make the declaration compatible.

Severity: 8

ASMA012S Undefined sequence symbol - xxxxxxxx;
macro aborted

Explanation: A sequence symbol in the operand field
is not defined; that is, it is not used in the name field of
a model statement.

System Action: Exit from the macro definition.

Programmer Response: Define the sequence symbol
or correct the reference to it.

Severity: 12

ASMA013S ACTR counter exceeded - xxxxxxxx

Explanation: The conditional assembly loop counter
(set by an ACTR statement) has been decremented to
zero. The ACTR counter is decremented by one each
time an AIF or AGO branch is processed successfully.
The counter is halved for most errors encountered by
the macro editor phase of the assembler.

System Action: Any macro expansion stops. If the
ACTR statement is in the source program, the assembly
stops.

Programmer Response: Check for an AIF/AGO loop
or another type of error. (You can use the MHELP
facility, described in Chapter 6, “Diagnosing Assembly
Errors” on page 152 and Appendix F, “MHELP Sample

&SYSADATA_DSN
&SYSADATA_MEMBER
&SYSADATA_VOLUME
&SYSASM
&SYSCLOCK
&SYSDATC
&SYSDATE
&SYSECT
&SYSIN_DSN
&SYSIN_MEMBER
&SYSIN_VOLUME
&SYSJOB
&SYSLIB_DSN
&SYSLIB_MEMBER
&SYSLIB_VOLUME
&SYSLIN_DSN
&SYSLIN_MEMBER
&SYSLIN_VOLUME
&SYSLIST
&SYSLOC
&SYSM_HSEV
&SYSM_SEV
&SYSMAC

&SYSNDX
&SYSNEST
&SYSOPT_DBCS
&SYSOPT_OPTABLE
&SYSOPT_RENT
&SYSOPT_XOBJECT
&SYSPARM
&SYSPRINT_DSN
&SYSPRINT_MEMBER
&SYSPRINT_VOLUME
&SYSPUNCH_DSN
&SYSPUNCH_MEMBER
&SYSPUNCH_VOLUME
&SYSSEQF
&SYSSTEP
&SYSSTMT
&SYSSTYP
&SYSTEM_ID
&SYSTERM_DSN
&SYSTERM_MEMBER
&SYSTERM_VOLUME
&SYSTIME
&SYSVER

 Appendix G. High Level Assembler Messages 343

 ASMA014E � ASMA021E

Macro Trace and Dump” on page 328, to trace macro
definition logic.) If there is no error, increase the initial
count on the ACTR instruction.

Severity: 12

ASMA014E Irreducible qualified expression

Explanation: The statement cannot be resolved
because two or more qualified symbols are used in a
complex relocatable expression, or two or more
qualified symbols with different symbol qualifiers are
paired in an absolute expression.

System Action: A machine instruction assembles as
zero. An assembler instruction is ignored.

Programmer Response: Supply an absolute
expression, or correct the qualified symbol in error.

Severity: 8

ASMA015W Literal bounds exceeded

Explanation: The expression containing the reference
to the literal:

| � resolves to an address outside the bounds of the
| literal
| � the length of the receiving field is longer than the
| length of the literal

This indicates a potential error.

System Action: The instruction assembles as
specified.

Programmer Response: Change the expression to
not exceed the bounds.

Severity: 4

| ASMA016W Literal used as the target of xxxxx
| instruction

| Explanation: The target of instruction xxxxx is a literal.
| This indicates a potential error. xxxxx is output in
| uppercase.

| System Action: The instruction assembles as
| specified.

| Programmer Response: Specify the instruction target
| correctly. You can suppress this warning for an EX
| instruction by specifying the NOEXLITW suboption of
| the FLAG option.

| Severity: 4

ASMA017W Undefined keyword parameter; default
to positional, including keyword -
xxxxxxxx

Explanation: A keyword parameter in a macro call is
not defined in the corresponding macro prototype
statement.

This message is also generated by a valid positional
parameter that contains an equal sign.

System Action: The keyword (including the equals
sign and value) is used as a positional parameter.

Programmer Response: Define the keyword in the
prototype statement, or enclose the valid positional
parameter in parentheses, or single quotation marks,
and adjust the macro coding appropriately.

Severity: 4

ASMA018S Duplicate keyword in macro call; last
value is used - xxxxxxxx

Explanation: A keyword operand occurs more than
once in a macro call.

System Action: The latest value assigned to the
keyword is used.

Programmer Response: Eliminate one of the keyword
operands.

Severity: 12

ASMA019W Length of EQUated symbol xxxxxxxx
undefined; default=1

Explanation: The value of the length attribute
extracted for an EQUated symbol with an unspecified
length has been set to the default: 1.

System Action: The instruction assembles as
specified.

Programmer Response: Ensure that the length
attribute of the symbol is defined.

Severity: 4

ASMA020E Illegal GBL or LCL statement - xxxxxxxx

Explanation: A global (GBL) or local (LCL) declaration
statement does not have an operand.

System Action: The statement is ignored.

Programmer Response: Remove the statement or
add an operand.

Severity: 8

ASMA021E Illegal SET statement - xxxxxxxx

Explanation: The operand of a SETB statement is not
0, 1, or a SETB expression enclosed in parentheses.

System Action: The statement is ignored.

Programmer Response: Correct the operand or
delete the statement.

Severity: 8

344 HLASM V1R5 Programmer’s Guide

 ASMA022I � ASMA029E

ASMA022I START value rounded up to required
boundary

Explanation: The value specified in the operand field
of the START instruction has been rounded up to the
required boundary.

System Action: The assembly continues.

Programmer Response: To stop the message
occurring, specify the required boundary for the value.

Severity: 0

ASMA023E Symbolic parameter too long - xxxxxxxx

Explanation: A symbolic parameter in this statement
is too long. It must not exceed 63 characters, including
the initial ampersand.

System Action: The symbolic parameter and any
operand following it in this statement are ignored.

Programmer Response: Make sure all symbolic
parameters consist of an ampersand followed by 1 to
62 alphanumeric characters, the first of which is
alphabetic.

Severity: 8

ASMA024E Invalid variable symbol - xxxxxxxx

Explanation: One of these errors has occurred:

� A symbolic parameter or a SET symbol is not an
ampersand followed by 1 to 62 alphanumeric
characters, the first being alphabetic.

� A created SET symbol definition is not a valid SET
symbol expression enclosed in parentheses.

System Action: The statement is ignored.

Programmer Response: Supply a valid symbol or
expression.

Severity: 8

ASMA025S Invalid macro prototype operand -
xxxxxxxx

Explanation: The format of the operand field of a
macro prototype statement is not correct. For example,
two parameters are not separated by a comma, or a
parameter contains characters that are not permitted.

System Action: The operand field of the prototype is
ignored.

Programmer Response: Supply a valid operand field.

Severity: 12

| ASMA026S Macro call operand too long; leading
| characters deleted - xxxxxxxx

| Explanation: An operand of a macro instruction is
| more than the allowable length.

| System Action: The leading characters (for the
| allowable length) are deleted.

| Programmer Response: Split the operand into two or
| more operands.

Severity: 12

ASMA027S Excessive number of operands

Explanation: One of the following has occurred:

� More than 32000 positional operands, keyword
operands, or both have been explicitly defined in a
macro prototype statement.

� There are more than 255 operands in a DC, DS, or
DXD statement.

System Action: The excess parameters are ignored.

Programmer Response: For a DC, DS, or DXD
statement, use more than one statement. For a macro
prototype statement, delete the extra operands and use
&SYSLIST to access the positional operands, or
redesign the macro definition.

Severity: 12

ASMA028E Invalid displacement

Explanation: One of the following has occurred:

� The displacement field of an explicit address is not
an absolute value within the range 0 through 4095.

� The displacement field of an S-type address
constant is not an absolute value within the range 0
through 4095.

System Action: The statement or constant assembles
as zero.

Programmer Response: Correct the displacement or
supply a correct USING statement containing an
absolute first operand before this statement.

Severity: 8

ASMA029E Incorrect register specification -
xxxxxxxx

Explanation: The value xxxxxxxx is invalid for one of
the following reasons:

� xxxxxxxx is not an absolute value within the range 0
through 15.

� an odd register is used where an even register is
required

� a register is not specified where one is required.

System Action: For machine instructions and S-type
address constants, the statement or constant

 Appendix G. High Level Assembler Messages 345

 ASMA030E � ASMA035S

assembles as zero. For USING and DROP statements,
the incorrect register operand is ignored.

Programmer Response: Specify a valid register.

Severity: 8

ASMA030E Invalid literal usage - xxxxxxxx

Explanation: A literal is used in an assembler
instruction, another literal, or a field of a machine
instruction where it is not permitted.

System Action: An assembler instruction containing a
literal is generally ignored and another message,
relative to the operation code of the instruction,
appears. A machine instruction assembles as zero.

Programmer Response: If applicable, replace the
literal with the name of a DC statement.

Severity: 8

ASMA031E Invalid immediate or mask field

Explanation: The value of an immediate or mask
operand of a machine instruction requires more bits to
represent it than allowed by the instruction, or the value
of the immediate operand exceeds 9 on an SRP
instruction or 15 on an MC instruction.

Immediate fields used in an arithmetic context are
allowed to be signed, those in a logical context are not;
for example:

AHI r1,-3���� is valid, but

 AHI r1,5���� is not

TMH r1,5���� is valid, but

 TMH r1,-3���� is not

System Action: The instruction assembles as zero.

Programmer Response: Use a valid immediate
operand, or specify the immediate information in a DC
statement or a literal and change the statement to a
non-immediate type.

Severity: 8

ASMA032E Relocatable value found when absolute
value required - xxxxxxxx

Explanation: One of the following has occurred:

� A relocatable or complex relocatable expression is
used where an absolute expression is required.

� A DSECT-based expression is used as an operand
for an address constant where an expression that
resolves into a storage address is required.

System Action: A machine instruction assembles as
zero. In a DC, DS, or DXD statement, the operand in
error and the following operands are ignored.

Programmer Response: Supply an absolute
expression or term, or for an address constant supply a
valid storage address expression.

Severity: 8

ASMA033I Storage alignment for xxxxxxxx
unfavorable

Explanation: An address referenced by this statement
might not be aligned to the optimal boundary for this
instruction; for example, the data referenced by a load
instruction (L) might be on a halfword boundary.

System Action: The instruction assembles as written.

Programmer Response: Correct the operand if it is in
error. If you are using an instruction that does not
require alignment, or you want to suppress alignment
checking for some other reason, you can specify the
NOALIGN assembler option or ACONTROL
FLAG(NOALIGN). If a particular statement is correct,
you can suppress this message by writing the statement
with an absolute displacement and an explicit base
register, as in this example:

 L 1,SYM-BASE(,2)

Severity: 0

| ASMA034E Operand operand beyond active USING
range by xxxx bytes

Explanation: The address of this statement does not
fall within the range of an active USING statement.

System Action: The instruction assembles as zero.

Programmer Response: Increase the range of the
active USING.

Severity: 8

ASMA035S Invalid delimiter - xxxxxxxx

Explanation:

1. A required delimiter in a DC, DS, or DXD statement
is missing or appears where none should be; the
error might be any of these:

� A quotation mark with an address constant.
� A left parenthesis with a non-address constant.
� A constant field not started with a quotation

mark, left parenthesis, space, or comma.
� An empty constant field in a DC.
� A missing comma or right parenthesis following

an address constant.
� A missing subfield right parenthesis in an S-type

address constant.
� A missing right parenthesis in a constant

modifier expression.

2. A parameter in a macro prototype statement was
not followed by a valid delimiter: comma, equal
sign, or space.

3. The DBCS option is on, and SO follows a variable
symbol without an intervening period.

System Action: The operand or parameter in error
and the following operands or parameters are ignored.

Programmer Response: Supply a valid delimiter.

346 HLASM V1R5 Programmer’s Guide

 ASMA036W � ASMA042E

Severity: 12

ASMA036W Reentrant check failed

Explanation: A machine instruction that might store
data into a control section or common area when run
has been detected. This message is generated only
when reentrant checking is requested by the assembler
option RENT or within an RSECT.

System Action: The statement assembles as written.

Programmer Response: If you want reentrant code,
correct the instruction. Otherwise, for a control section
that has not been defined by an RSECT instruction, you
can suppress reentrancy checking by specifying
NORENT as an assembler option. You cannot
suppress reentrancy checking for a control section
defined by an RSECT instruction.

Severity: 4

ASMA037E Illegal self-defining value - xxxxxxxx

Explanation: A decimal, binary (B), hexadecimal (X),
or character (C) self-defining term contains characters
that are not permitted or is in illegal format.

System Action: In the source program, the operand in
error and the following operands are ignored. In a
macro definition, the whole statement is ignored.

Programmer Response: Supply a valid self-defining
term.

Severity: 8

ASMA038S Operand value falls outside of current
section/LOCTR

Explanation: An ORG statement specifies a location
outside the control section or the LOCTR in which the
ORG is used. ORG cannot force a change to another
section or LOCTR.

System Action: The statement is ignored.

Programmer Response: Change the ORG statement
if it is wrong. Otherwise, insert a CSECT, DSECT,
COM, or LOCTR statement to set the location counter
to the correct section before the ORG statement is
processed.

Severity: 12

ASMA039S Location counter error

Explanation: The maximum location counter value
has been exceeded. When the OBJECT or DECK
assembler option is specified the maximum location
counter value is X'FFFFFF'.

When the GOFF assembler option is specified the
maximum location counter value is X'7FFFFFFF'.

System Action: The assembly continues, however,
the resulting code will probably not run correctly.

Programmer Response: The probable cause is a
high ORG statement value or a high START statement
value. Correct the value or split up the control section.

Severity: 12

ASMA040S Missing operand

Explanation: The statement requires an operand, and
none is present.

System Action: A machine instruction assembles as
zero. An assembler instruction is ignored.

Programmer Response: Supply the missing operand.

Severity: 12

ASMA041E Term expected; text is unclassifiable -
xxxxxxxx

Explanation: One of these errors has occurred:

� A term was expected, but the character
encountered is not one that starts a term (letter,
number, =, +, −, �).

� A letter and a quotation mark did not introduce a
valid term; the letter is not L, C, G (DBCS option),
X, or B.

System Action: Another message accompanies an
assembler statement. A machine instruction assembles
as zero.

Programmer Response: Check for missing
punctuation, a wrong letter on a self-defining term, a
bad attribute request, a leading comma, or a dangling
comma. Note that the length attribute is the only one
accepted here. If a defined, scale, type, or integer
attribute is needed, use a SETA statement and
substitute the variable symbol where the attribute is
needed.

Severity: 8

ASMA042E Length attribute of symbol is
unavailable; default=1

Explanation: This statement has a length attribute
reference to a symbol, and the length attribute of the
symbol is unavailable for one of the following reasons:

| � The symbol has not been previously defined.

� The type attribute of a symbol is U.

A symbol defined by an EQU instruction has a type
attribute of U, however, a reference to its length
does not produce this message.

� The length cannot be determined due to lookahead
processing. If a statement that defines a symbol,
and references a length attribute, causes lookahead
processing, the symbol might not be assigned a
length attribute until after lookahead processing is
complete. References to the same length attribute
in subsequent conditional assembly statements,

 Appendix G. High Level Assembler Messages 347

 ASMA043E � ASMA049W

before lookahead processing completes, might
cause this message to be produced.

System Action: The L' attribute defaults to 1.

Programmer Response: Ensure the symbol is
defined. If you suspect the error might be caused
because of lookahead processing, restructure your code
so that the symbol is defined before it is referenced.

Severity: 8

ASMA043E Previously defined symbol - xxxxxxxx

Explanation: The symbol in a name field or in the
operand field of an EXTRN or WXTRN statement was
defined (used as a name or an EXTRN/WXTRN
operand) in a previous statement.

System Action: The name or EXTRN/WXTRN
operand of this statement is ignored. The following
operands of an EXTRN or WXTRN are processed. The
first occurrence of the symbol defines it.

Programmer Response: Correct a possible spelling
error, or change the symbol.

Severity: 8

ASMA044E Undefined symbol - xxxxxxxx

Explanation: A symbol in the operand field has not
been defined, that is, used in the name field of another
statement, the operand field of an EXTRN or WXTRN,
or, in the case of a literal, the operand of a previously
processed machine instruction statement.

System Action: A machine instruction or an address
constant assembles as zero. In a DC, DS, or DXD
statement or in a duplication-factor or length- modifier
expression, the operand in error and the following
operands are ignored. In an EQU statement, zero is
assigned as the value of the undefined symbol. Any
other instruction is not processed.

Programmer Response: Define the symbol, or
remove the references to it.

Severity: 8

ASMA045W Register or label not previously used -
xxxxxxxx

Explanation: A register or label specified in a DROP
statement has not been previously specified in a USING
statement.

System Action: Registers or labels not active at the
time are ignored.

Programmer Response: Remove the unreferenced
registers or label from the DROP statement. You can
drop all active base registers and labels at once by
specifying DROP with a blank operand.

Severity: 4

ASMA046E Bit 7 of CCW flag byte must be zero

Explanation: Bit 7 of the flag byte of a channel
command word specified by a CCW, CCW0, or CCW1
statement is not zero.

System Action: The CCW, CCW0, or CCW1
assembles as zero.

Programmer Response: Set bit 7 of the flag byte to
zero to suppress this message during the next
assembly.

Severity: 8

ASMA047E Severity code too large

Explanation: The severity code (first operand) of an
MNOTE statement is not * or an unsigned decimal
number from 0 to 255.

System Action: The statement is printed in standard
format instead of MNOTE format. The MNOTE is given
the severity code of this message.

Programmer Response: Choose a severity code of *
or a number less than or equal to 255, or check for a
generated severity code.

Severity: 8

ASMA048E ENTRY error - xxxxxxxx

Explanation: One of the following errors was detected
in the operand of an ENTRY statement:

� Duplicate symbol (previous ENTRY)
� Symbol defined in a DSECT or COM section
� Symbol defined by a DXD statement

 � Undefined symbol
� Symbol defined by an absolute or complex

relocatable EQU statement
| � Symbol lies outside the bounds of the section in
| which it is defined

System Action: The external symbol dictionary output
is suppressed for the symbol.

Programmer Response: Define the ENTRY operand
correctly.

Severity: 8

ASMA049W Illegal range on ISEQ

Explanation: If this message is accompanied by
another, this one is advisory. If it appears by itself, it
indicates one of the following errors:

� An operand value is less than 1 or greater than 80,
or the second operand (rightmost column to be
checked) is less than the first operand (extreme left
column to be checked).

� More or fewer than two operands are present, or an
operand is null (empty).

� An operand expression contains an undefined
symbol.

� An operand expression is not absolute.

348 HLASM V1R5 Programmer’s Guide

 ASMA050E � ASMA056W

� The statement is too complex. For example, it
might have forward references or cause an
arithmetic overflow during evaluation.

� The statement is circularly defined.

System Action: Sequence checking stops.

Programmer Response: Supply valid ISEQ operands.
Also, be sure that the records following this statement
are in order; they have not been sequence checked.

Severity: 4

ASMA050E Illegal name field; name discarded -
xxxxxxxx

Explanation: One of these errors has occurred:

� The name field of a macro prototype statement
contains an incorrect symbolic parameter (variable
symbol)

� The name field of a COPY statement in a macro
definition contains an entry other than space or a
valid sequence symbol

System Action: The incorrect name field is ignored.

Programmer Response: Correct the incorrect name
field.

Severity: 8

ASMA051E Illegal statement outside a macro
definition

Explanation: A MEND, MEXIT, ASPACE, AEJECT or
AREAD statement appears outside a macro definition.

System Action: The statement is ignored.

Programmer Response: Remove the statement or, if
a macro definition is intended, insert a MACRO
statement.

Severity: 8

ASMA052S Record out of sequence - xxxxxxxx

Explanation: Input sequence checking, under control
of the ISEQ assembler instruction, has determined that
this statement is out of sequence. The sequence
number of the statement is appended to the message.

System Action: The statement assembles normally.
However, the sequence number of the next statement is
checked relative to this statement.

Programmer Response: Put the statements in correct
sequence. If you want a break in sequence, put in a
new ISEQ statement and sequence number. ISEQ
always resets the sequence number; the record
following the ISEQ is not sequence checked.

Severity: 12

ASMA053W Blank sequence field - xxxxxxxx

Explanation: Input sequence checking, controlled by
the ISEQ assembler statement, has detected a
statement with a blank sequence field. The sequence
number of the last numbered statement is appended to
the message.

System Action: The statement assembles normally.
The sequence number of the next statement is checked
relative to the last statement having a non-blank
sequence field.

Programmer Response: Put the correct sequence
number in the statement or discontinue sequence
checking over the blank statements by means of an
ISEQ statement with a blank operand.

Severity: 4

ASMA054E Illegal continuation record

Explanation: A statement has more than 10 records
or end-of-input has been encountered when a
continuation record was expected.

System Action: The records already read are
processed as is. If the statement had more than 10
records, the next record is treated as the beginning of a
new statement.

Programmer Response: In the first case, break the
statement into two or more statements. In the second
case, ensure that a continued statement does not span
the end of a library member. Check for lost records or
an extraneous continuation character.

Severity: 8

ASMA055S Recursive COPY

Explanation: A nested COPY statement (COPY within
another COPY) attempted to copy a library member
already being copied by a higher level COPY within the
same nest.

System Action: This COPY statement is ignored.

Programmer Response: Correct the operand of this
COPY if it is wrong, or rearrange the nest so that the
same library member is not copied by COPY
statements at two different levels.

Severity: 12

ASMA056W Absolute value found when relocatable
value expected - xxxxxxxx

Explanation: An absolute expression has been used
as the immediate field in a branch-relative instruction.
The immediate field in a branch-relative instruction is
used as signed number of halfwords relative to the
current location counter. The use of an absolute
expression for this value may cause unpredictable
results.

System Action: The instruction assembles as written.

 Appendix G. High Level Assembler Messages 349

 ASMA057E � ASMA061E

Programmer Response: Supply a relocatable
expression.

Severity: 4

ASMA057E Undefined operation code - xxxxxxxx

Explanation: One of the following errors has occurred:

� The operation code of this statement is not a valid
machine or assembler instruction or macro name.

� In an OPSYN statement, this operand symbol is
undefined or illegal or, if no operand is present, the
name field symbol is undefined.

� On VSE the High Level Assembler only reads
library macros that have a member type of A, or if
the // OPTION SUBLIB=DF statement is used, a
member type of D. Edited (E-Deck) macros, that
have a member type of E or F can only be read by
a LIBRARY exit.

System Action: The statement is ignored. Note that
OPSYN does not search the macro library for an
undefined operand.

Programmer Response: Correct the statement. In
the case of an undefined macro instruction, the wrong
data set might have been specified for the macro
library. In the case of OPSYN, a previous OPSYN or
macro definition might have failed to define the
operation code.

If the operation code shown is a VSE edited macro
(E-Deck), High Level Assembler can only find and read
it with a LIBRARY exit. You might want to use the VSE
supplied LIBRARY exit described in VSE/ESA Guide to
System Functions.

Severity: 8

| ASMA058E Invalid relative address - xxxxxxxx

| Explanation: One of the following has occurred:

| � The relative address is an odd value, and therefore
| cannot be represented as a number of halfwords.
| � The NOGOFF option has been specified and the
| relative address is not in the same control section
| as the instruction.

| System Action: The instruction assembles as zero.

| Programmer Response: Supply a valid relative
| address that is on a halfword boundary and within the
| same control section. To allow a relative address that is
| outside the current control section, specify the GOFF
| option.

Severity: 8

ASMA059C Illegal ICTL - xxxxxxxx

Explanation: An ICTL statement has one of the
following errors:

� The operation code was created by variable symbol
substitution

� It is not the first statement in the assembly
� The value of one or more operands is incorrect
� An operand is missing
� A character is detected in the operand field that is

not permitted

System Action: The ICTL statement is ignored.
Assembly continues with standard ICTL values.

Programmer Response: Correct or remove the ICTL.
The begin column must be 1-40; the end column must
be 41-80 and at least five greater than the begin
column; and the continue column must be 2-40.

Severity: 16

ASMA060S COPY code not found - xxxxxxxx

Explanation: (1) If this message is on a COPY
statement and no text is printed with it, one of the
following occurred:

� The library member was not found.
� The lookahead phase previously processed the

COPY statement and did not find the library
member, the copy was recursive, or the operand
contains a variable symbol. Variable symbols can
be used if the COPY statement is in open code.

(2) If this message is not on a COPY statement, but
has a library member name printed with it, the
lookahead phase of the assembler could not find the
library member because the name is undefined or
contains a variable symbol.

System Action: The COPY statement is ignored; the
library member is not copied.

Programmer Response: Check that the correct macro
library was assigned, or check for a possible misspelled
library member name.

If COPY member is not defined in any macro library,
and is not processed because of an AGO or AIF
assembler instruction, add a dummy COPY member
with the name to the macro library.

Severity: 12

ASMA061E Symbol not name of DSECT, DXD or
external label

Explanation: The operand of a Q-type address
constant is not a symbol or the name of a DSECT or
DXD statement, or an external label.

System Action: The constant assembles as zero.

Programmer Response: Supply a valid operand.

Severity: 8

350 HLASM V1R5 Programmer’s Guide

 ASMA062E � ASMA067S

ASMA062E Illegal operand format - xxxxxxxx

Explanation: One of the following errors has occurred:

� ADATA—more than five operands are specified, or
the value of one of the expressions specified in one
of the first four operands is outside the range −231

to +231−1, or the fifth operand is not a valid
character expression

� ACONTROL—one or more of the operands supplied
is invalid

� AINSERT—the first operand is not a valid string, or
the second operand is not BACK or FRONT

� AMODE—the operand does not specify 24, 31, or
ANY

� AREAD—the operand specifies an incorrect AREAD
operand.

� DROP or USING—more than 16 registers are
specified in the operand field

� EXITCTL—more than five operands are specified,
or the first operand is not a valid exit type, or the
value of one of the expressions specified in the
second and subsequent operands is outside the
range −231 to +231−1

� MNOTE—the syntax of the severity code (first
operand) is not correct, or the sum of the length of
the operands including quotes and commas
exceeds 1024 bytes

� PRINT—an operand specifies an incorrect print
option

� PUSH or POP—an operand does not specify a
PRINT or USING statement

� RMODE—the operand does not specify 24 or ANY
� TITLE—more than 100 bytes were specified

System Action: The first 16 registers in a DROP or
USING statement are processed. The operand in error
and the following operands of a PUSH, POP, or PRINT
statement are ignored. The AMODE or RMODE
instruction is ignored, and the name field (if any) does
not appear in the cross-reference listing. The first 100
bytes of the operand of the TITLE instruction are used
as the title.

Programmer Response: Supply a valid operand field.

Severity: 8

ASMA063E No ending apostrophe - xxxxxxxx

Explanation: The quotation mark terminating an
operand is missing, or the standard value of a keyword
parameter of a macro prototype statement is missing.

System Action: The operand or standard value in
error is ignored. If the error is in a macro definition
model statement, the whole statement is ignored.

Programmer Response: Supply the missing quotation
mark.

Severity: 8

ASMA064S Floating point characteristic out of
range

Explanation: A converted floating-point constant is too
large or too small for the processor. The allowable
range is approximately 5.4x10−79 to 7.2x1075..

System Action: The constant assembles as zero.

Programmer Response: Check the characteristic
(exponent), exponent modifier, scale modifier, and
mantissa (fraction) for validity. Remember that a
floating-point constant is rounded, not truncated, after
conversion.

Severity: 12

ASMA065E Unknown type - xxxxxxxx

Explanation: An unknown constant type has been
used in a DC or DS statement or in a literal, or the
assembler option required to support the constant type
has not been supplied.

System Action: The operand in error and the
following operands are ignored.

Programmer Response: Supply a valid constant or
the required assembler option. Look for an incorrect
type code or incorrect syntax in the duplication factor.

Severity: 8

ASMA066W 2-byte relocatable address constant

Explanation: This statement contains a relocatable
Y-type address constant or a 2-byte relocatable A-type
address constant. Addressing errors occur if the
address constant is used to refer to a storage address
equal to or greater than 64K (65,536).

System Action: The statement assembles as written.

Programmer Response: If the address constant is
used to refer to a storage address less than 64K
(65,536), the 2-byte relocatable address constant is
valid. You can use the assembler option RA2 to
suppress this message.

Severity: 4

ASMA067S Illegal duplication factor - xxxxxxxx

Explanation: One of the following errors has occurred:

� A literal has a zero duplication factor
� The duplication factor of a constant is greater than

the maximum of 224−1 bytes
� A duplication factor expression of a constant is not

correct

System Action: The operand in error and the
following operands of a DC, DS, or DXD statement are
ignored. The statement containing the literal assembles
as zero.

Programmer Response: Supply a valid duplication
factor. If you want a zero duplication factor, write the
literal as a DC statement.

 Appendix G. High Level Assembler Messages 351

 ASMA068S � ASMA075E

Severity: 12

ASMA068S Length error - xxxxxxxx

Explanation: One of the following errors has occurred:

� The length modifier of a constant is wrong
� The C, X, B, Z, or P-type constant is too long
� An operand is longer than 224−1 bytes
� A relocatable address constant has an illegal length
� The length field in a machine instruction is not

correct or is out of the permissible range
� The length modifier of a Character Unicode

constant must be a multiple of 2

System Action:

� A machine instruction assembles as zero
� A new floating point constant assembles as zero
� An address constant is truncated
� For other DC, DS or DXD statements, the operand

in error and the following operands are ignored
� The operand in error, and the operands following,

are ignored.

Programmer Response: Supply a valid length or
correct the length modifier.

Severity: 12

ASMA069S Length of second operand must be less
than length of first

Explanation: The length of the second operand must
be less than the length of the first operand. If it is not,
a specification exception is recognized.

System Action: The machine instruction assembles
as zero.

Programmer Response: Supply a second operand
with a length which is less than that of the first operand.

Severity: 12

ASMA070E Scale modifier error - xxxxxxxx

Explanation: A scale modifier in a constant is used
illegally, is out of range, or is relocatable, or there is an
error in a scale modifier expression.

System Action: If the scale modifier is out of range, it
defaults to zero. Otherwise, the operand in error and
the following operands are ignored.

Programmer Response: Supply a valid scale
modifier.

Severity: 8

ASMA071E Exponent modifier error

Explanation: The constant contains multiple internal
exponents, the exponent modifier is out of range or
relocatable, or the sum of the exponent modifier and the
internal exponent is out of range.

System Action: If the constant contains multiple
internal exponents, the operand in error and the

following operands are ignored. Otherwise, the
exponent modifier defaults to zero.

Programmer Response: Change the exponent
modifier or the internal exponent.

Severity: 8

ASMA072E Data item too large

Explanation: The value of a Y-type address constant
or H-type constant is larger than 215−1 or smaller than
−215, or the value of a F-type constant is larger than
231−1 or smaller than −231.

System Action: The constant is truncated. The
high-order bits are lost.

Programmer Response: Supply a smaller scale
modifier, a longer constant, or a smaller value.

Severity: 8

ASMA073E Precision lost

Explanation: The modifiers of a floating-point number
either truncate the exponent or shift the fraction out of
the converted constant.

System Action: The constant assembles with an
exponent but with a fraction of zero.

Programmer Response: Change the modifier or use
a longer constant type.

Severity: 8

ASMA074E Illegal syntax in expression - xxxxxxxx

Explanation: An expression has two terms or two
operations in succession, or incorrect or missing
characters or delimiters.

System Action: In a DC, DS, or DXD statement, the
operand in error and the following operands are
ignored. In a macro definition, the whole statement is
ignored. A machine instruction assembles as zero.

Programmer Response: Check the expression for
typing errors, or for missing or incorrect terms or
characters.

Severity: 8

ASMA075E Arithmetic overflow

Explanation: The intermediate or final value of an
expression is not within the range −231 through 231−1.

System Action: A machine instruction assembles as
zero; an assembler instruction is ignored; a conditional
assembly expression uses zero as the result.

Programmer Response: Change the expression.

Severity: 8

352 HLASM V1R5 Programmer’s Guide

 ASMA076E � ASMA084S

ASMA076E Statement complexity exceeded

Explanation: The complexity of this statement caused
the assembler's expression evaluation work area to
overflow.

System Action: A machine instruction assembles as
zero. An assembler instruction is ignored.

Programmer Response: Reduce the number of
terms, levels of expressions, or references to complex
relocatable EQU names.

Severity: 8

ASMA077E Circular definition

Explanation: The value of a symbol in an expression
is dependent on itself, either directly or indirectly, via
one or more EQU statements. In the following
example:

A EQU B

B EQU C

C EQU A

A is circularly defined.

System Action: The value of the EQU statement
defaults to the current value of the location counter. All
other EQU statements involved in the circularity are
defaulted in terms of this one.

Programmer Response: Supply a correct definition.

Severity: 8

ASMA078E Operand op expression complexly
relocatable - expr

Explanation: The expression specified is complexly
relocatable, but an absolute or simply relocatable
expression is required.

System Action: The instruction assembles as zero.

Programmer Response: Correct the expression.

Severity: 8

ASMA079E Illegal PUSH-POP

Explanation: More POP assembler instructions than
PUSH instructions have been encountered.

System Action: This POP instruction is ignored.

Programmer Response: Eliminate a POP statement,
or add another PUSH statement.

Severity: 8

ASMA080E Statement is unresolvable

Explanation: A statement cannot be resolved,
because it contains a complex relocatable expression or
because the location counter has been circularly
defined.

System Action: The statement is ignored.

Programmer Response: Untangle the forward

references or check the complex relocatable EQU
statements.

Severity: 8

ASMA081E Created SET symbol exceeds 63
characters - xxxxxxxx

Explanation: A SET symbol created by variable
symbol substitution is longer than 63 characters
(including the ampersand as the first character).

System Action: If the symbol is in the operand field of
a SET, AIF, or AGO statement, its value is set to zero
or null, and the type attribute is set to undefined (U). If
the symbol is in the operand field of a GBL, or LCL
statement or the name field of a SET statement,
processing of the macro stops.

Programmer Response: Shorten the symbol.

Severity: 8

ASMA082E Created SET symbol is null - xxxxxxxx

Explanation: A SET symbol created by variable
symbol substitution is null (empty string).

System Action: If the symbol is in the operand field of
a SET, AIF, or AGO statement, its value is set to zero
or null, and the type attribute is set to undefined (U). If
the symbol is in the operand field of a GBL, or LCL
statement or the name field of a SET statement,
processing of the macro stops.

Programmer Response: Supply a valid symbol.

Severity: 8

ASMA083E Created SET symbol is not a valid
symbol - xxxxxxxx

Explanation: A SET symbol created by variable
symbol substitution or concatenation does not consist of
an ampersand followed by up to 62 alphanumeric
characters, the first of which is alphabetic.

System Action: If the symbol is in the operand field of
a SET, AIF, or AGO statement, its value is set to zero
or null, and the type attribute is set to undefined (U). If
the symbol is in the operand field of a GBL or LCL
statement or the name field of a SET statement,
processing of the macro stops.

Programmer Response: Supply a valid symbol.

Severity: 8

ASMA084S Generated name field exceeds 63
characters; discarded - xxxxxxxx

Explanation: The name field on a generated
statement is longer than 63 characters.

System Action: The name field is not generated. The
rest of the statement assembles normally.

Programmer Response: Shorten the generated name
to 63 characters or fewer.

 Appendix G. High Level Assembler Messages 353

 ASMA085I � ASMA094I

Severity: 12

ASMA085I Generated operand field is null - xxxxxxxx

Explanation: The operand field of a generated
statement is null (empty).

System Action: The statement assembles as though
no operand were specified.

Programmer Response: Provide a non-empty
operand field. If you want the statement assembled
with no operand, substitute a comma rather than leave
the operand blank.

Severity: 0

ASMA086S Missing MEND generated - xxxxxxxx

Explanation: A macro definition, appearing in the
source program or being read from a library by a macro
call or a COPY statement, ends before a MEND
statement is encountered to end it.

System Action: A MEND statement is generated.
The portion of the macro definition read in is processed.

Programmer Response: Insert the MEND statement if
it was omitted. Otherwise, check if all the macro
definition is on the library.

Severity: 12

ASMA087S Generated operation code is null -
xxxxxxxx

Explanation: The operation code of a generated
statement is null (blank).

System Action: The generated statement is printed
but not assembled.

Programmer Response: Provide a valid operation
code.

Severity: 12

ASMA088E Unbalanced parentheses in macro call
operand - xxxxxxxx

Explanation: Excess left or too few right parentheses
occur in an operand (parameter) of a macro call
statement.

System Action: The parameter corresponding to the
operand in error is given a null (empty) value.

Programmer Response: Balance the parentheses.

Severity: 8

ASMA089E Arithmetic expression contains illegal
delimiter or ends prematurely - xxxxxxxx

Explanation: An arithmetic expression contains an
incorrect character or an arithmetic subscript ends
without enough right parentheses.

System Action: The statement is ignored.

Programmer Response: Supply a valid expression.

Severity: 8

ASMA090E Excess right parenthesis in macro call
operand - xxxxxxxx

Explanation: A right parenthesis without a
corresponding left parenthesis was detected in an
operand of a macro instruction.

System Action: The excess right parenthesis is
ignored. The macro expansion might be incorrect.

Programmer Response: Insert the correct
parenthesis.

Severity: 8

| ASMA091E Character string exceeds maximum
| length; truncated to maximum - xxxxxxxx

| Explanation: The value of the operand of a SETC or
| SETCF statement or the character relational operand of
| an AIF statement is longer than 1024 characters. This
| might occur before substrings are evaluated.

| System Action: The first 1024 characters are used.

| Programmer Response: Shorten the SETC or SETCF
expression value or the operand value.

Severity: 8

ASMA092E Substring expression 1 points past
string end; default=null - xxxxxxxx

Explanation: The first arithmetic expression of a
SETC substring points beyond the end of the
expression character string.

System Action: The substring is given a null value.

Programmer Response: Supply a valid expression.

Severity: 8

ASMA093E Substring expression 1 less than 1;
default=null - xxxxxxxx

Explanation: The first arithmetic expression of a
SETC substring is less than one; that is, it points before
the expression character string.

System Action: The substring expression defaults to
null.

Programmer Response: Supply a valid expression.

Severity: 8

ASMA094I Substring goes past string end;
default=remainder

Explanation: The second expression of a substring
notation specifies a length that extends beyond the end
of the string.

System Action: The result of the substring operation
is a string that ends with the last character in the
character string.

354 HLASM V1R5 Programmer’s Guide

 ASMA095W � ASMA103E

Programmer Response: Make sure the arithmetic
expression used to specify the length does not specify
characters beyond the end of the string. Either change
the first or the second expression in the substring
notation. You can use the assembler option
FLAG(NOSUBSTR) to suppress this message.

Severity: 0

ASMA095W Substring expression 2 less than 0;
default=null - xxxxxxxx

Explanation: The second arithmetic expression of a
SETC substring is less than or equal to zero.

System Action: No characters (a null string) from the
substring character expression are used.

Programmer Response: Supply a valid expression.

Severity: 4

ASMA096E Unsubscripted SYSLIST;
default=SYSLIST(1) - xxxxxxxx

Explanation: The system variable symbol, &SYSLIST,
is not subscripted. &SYSLIST(n) refers to the nth
positional parameter in a macro instruction.
N'&SYSLIST does not have to be subscripted.

System Action: The subscript defaults to one so that
it refers to the first positional parameter.

Programmer Response: Supply the correct subscript.

Severity: 8

ASMA097E Invalid attribute reference to SETA or
SETB symbol; default=U or 0 - xxxxxxxx

Explanation: A length (L'), scaling (S'), integer (I'),
or defined (D') attribute refers to a SETA or SETB
symbol.

System Action: The attributes are set to default
values: L'=0, S'=0, I'=0 ,and D'=0.

Programmer Response: Change or remove the
attribute reference.

Severity: 8

ASMA098E Attribute reference to invalid symbol;
default=U or 0 - xxxxxxxx

Explanation: An attribute attempted to reference a
symbol that is not correct or has a null value. (A valid
symbol is 1 to 63 alphanumeric characters, the first of
which is alphabetic.)

System Action: For a type (T') attribute, defaults to
U. For all other attributes, defaults to 0.

Programmer Response: Supply a valid symbol.

Severity: 8

ASMA099W Wrong type of constant for S or I
attribute reference; default=0 - xxxxxxxx

Explanation: An integer (I') or scaling (S') attribute
references a symbol whose type is other than
floating-point (E,D,L), decimal (P,Z), or fixed-point (H,F).

System Action: The integer or scaling attribute
defaults to zero.

Programmer Response: Remove the integer or
scaling attribute reference or change the constant type.

Severity: 4

ASMA100E Subscript less than 1; default to
subscript=1 - xxxxxxxx

Explanation: The subscript of a subscripted SET
symbol in the name field of a SET statement, the
operand field of a GBL or LCL statement, or an
&SYSLIST statement is less than 1.

System Action: The subscript defaults to 1.

Programmer Response: Supply the correct subscript.

Severity: 8

ASMA101E Subscript less than 1; default to value=0
or null - xxxxxxxx

Explanation: The subscript of a SET symbol in the
operand field is less than 1.

System Action: The value is set to zero or null.

Programmer Response: Supply a valid subscript.

Severity: 8

ASMA102E Arithmetic term is not self-defining term;
default=0 - xxxxxxxx

Explanation: A SETC term or expression used as an
arithmetic term is not a valid self-defining term.

System Action: The value of the SETC term or
expression is set to zero.

Programmer Response: Make the SETC a
self-defining term, such as C'A', X'1EC', B'1101', or
27. The C, X, or B and the quotation marks must be
part of the SETC value.

Severity: 8

ASMA103E Multiplication overflow; default
product=1 - xxxxxxxx

Explanation: A multiplication overflow occurred in a
macro definition statement.

System Action: The value of the expression up to the
point of overflow is set to one; evaluation continues.

Programmer Response: Change the expression so
that overflow does not occur; break it into two or more
operations, or regroup the terms by parentheses.

Severity: 8

 Appendix G. High Level Assembler Messages 355

 ASMA104W � ASMA111S

ASMA104W Statement processing incomplete

Explanation: This indicates that a previously-flagged
error has terminated processing for this statement.

System Action: The assembly continues.

Programmer Response: Correct previous errors.

Severity: 4

ASMA105U Arithmetic expression too complex

Explanation: An arithmetic expression in a macro
definition statement caused an internal workarea
overflow because it is too complex; that is, it has too
many terms, levels, or both.

System Action: The assembly stops.

Programmer Response: Simplify the expression or
break it into two or more expressions.

Severity: 20

ASMA106E Wrong target symbol type; value left
unchanged - xxxxxxxx

Explanation: The SET symbol in the name field has
already been declared, and is a different type to the
type of SETx instruction. For example, you might have
previously declared a SET symbol as arithmetic (SETA),
and you are attempting to use the SET symbol as the
target of a SETC instruction.

System Action: The statement is ignored.

Programmer Response: Make the declaration agree
with the SET statement type. If you want to store
across SET symbol types, first store into a SET symbol
of matching type, and then use another SETx
instruction to store the value, represented by the
matching SET symbol, into the non- matching SET
symbol.

Severity: 8

ASMA107E Inconsistent dimension on target
symbol; subscript ignored, or 1 used -
xxxxxxxx

Explanation: The SET symbol in the name field is
dimensioned (subscripted), but was not declared in a
GBL or LCL statement as dimensioned, or vice versa.

System Action: The subscript is ignored or a
subscript of 1 is used, in accordance with the
declaration.

Programmer Response: Make the declaration and
the usage compatible. Note that you can declare a
local SET symbol as dimensioned by using it,
subscripted, in the name field of a SET statement.

Severity: 8

ASMA108E Inconsistent dimension on SET symbol
reference; default = 0, null, or type=U -
xxxxxxxx

Explanation: A SET symbol in the operand field is
dimensioned (subscripted), but was not declared in a
GBL or LCL statement as dimensioned, or vice versa.

System Action: A value of zero or null is used for the
subscript. If the type attribute of the SET symbol is
requested, it is set to U.

Programmer Response: Make the declaration and
the usage compatible. You can declare a SET symbol
as dimensioned by using it, subscripted, in the name
field of a SET statement.

Severity: 8

ASMA109E Multiple SET operands for
undimensioned SET symbol; gets last
operand - xxxxxxxx

Explanation: Multiple operands were assigned to an
undimensioned (unsubscripted) SET symbol.

System Action: The SET symbol is given the value of
the last operand.

Programmer Response: Declare the SET symbol as
dimensioned, or assign only one operand to it.

Severity: 8

ASMA110S Library macro first statement not
'MACRO' or comment

Explanation: A statement other than a comment
statement preceded a MACRO statement in a macro
definition read from a library.

System Action: The macro definition is not read from
the library. A corresponding macro call cannot be
processed.

Programmer Response: Ensure that the library macro
definition begins with a MACRO statement preceded
(optionally) by comment statements only.

Severity: 12

ASMA111S Invalid AIF or SETB operand field -
xxxxxxxx

Explanation: The operand of an AIF or SETB
statement either does not begin with a left parenthesis
or is missing altogether.

System Action: The statement is ignored.

Programmer Response: Supply a valid operand.

Severity: 12

356 HLASM V1R5 Programmer’s Guide

 ASMA112S � ASMA119S

ASMA112S Invalid sequence symbol - xxxxxxxx

Explanation: One of the following errors has occurred:

� A sequence symbol does not begin with a period
followed by one to 62 alphanumeric characters, the
first being alphabetic.

� A sequence symbol in the name field was created
by substitution.

� Operand of AGO is blank or sequence symbol in
AIF is blank.

System Action: The sequence symbol in the name
field is ignored. A sequence symbol in the operand
field of an AIF or AGO statement causes the whole
statement to be ignored.

Programmer Response: Supply a valid sequence
symbol.

Severity: 12

ASMA113S Continue column blank

Explanation: A SET symbol declaration in a GBL or
LCL statement began with an ampersand in the end
column (normally column 71) of the previous record, but
the continue column (normally column 16) of this record
is blank.

System Action: This record and any following records
of the statement are ignored. Any SET symbols that
completely appear on the previous record(s), are
processed normally.

Programmer Response: Begin this record in the
continuation column.

Severity: 12

ASMA114S Invalid COPY operand - xxxxxxxx

Explanation: The operand of a COPY statement is not
a symbol of 1 to 8 alphanumeric characters, the first
being alphabetic.

System Action: The COPY statement is ignored.

Programmer Response: Supply a valid operand. In
open code the operand can be specified as a previously
defined SET symbol.

Severity: 12

ASMA115S COPY operand too long - xxxxxxxx

Explanation: The symbol in the operand field of a
COPY statement is more than 8 characters long.

System Action: The COPY statement is ignored.

Programmer Response: Supply a valid operand.

Severity: 12

ASMA116E Illegal SET symbol - xxxxxxxx

Explanation: A SET symbol in the operand field of a
GBL or LCL statement or in the name field of a SET
statement does not consist of an ampersand followed
by one to 62 alphanumeric characters, the first being
alphabetic.

System Action: For a GBL or LCL statement, the
incorrect SET symbol and all following SET symbols in
a GBL or LCL statement are ignored. For a SET
statement, the whole SET statement is ignored.

Programmer Response: Supply a SET symbol.

Severity: 8

ASMA117E Illegal subscript - xxxxxxxx

Explanation: The subscript following a SET symbol
contained unbalanced parentheses or an incorrect
arithmetic expression.

System Action: This statement is ignored.

Programmer Response: Supply an equal number of
left and right parentheses or a valid arithmetic
expression.

Severity: 8

ASMA118S Source macro ended by 'MEND' in
COPY code

Explanation: A library member, being copied by a
COPY statement within a macro definition, contained a
MEND statement.

System Action: The MEND statement is honored and
the macro definition stops. No more COPY code is
read. The statements brought in before the end of the
COPY code are processed.

Programmer Response: Make sure that each library
member to be used as COPY code contains balanced
MACRO and MEND statements.

Severity: 12

ASMA119S Too few MEND statements in COPY
code

Explanation: A macro definition is started in a library
member brought in by a COPY statement and the
COPY code ends before a MEND statement is
encountered.

System Action: A MEND statement is generated to
end the macro definition. The statements brought in
before the end of the COPY code are processed.

Programmer Response: Check to see if part of the
macro definition was lost. Also, ensure that each macro
definition to be used as COPY code contains balanced
MACRO and MEND statements.

Severity: 12

 Appendix G. High Level Assembler Messages 357

 ASMA120S � ASMA127S

ASMA120S EOD where continuation record
expected

Explanation: An end-of-data occurred when a
continuation record was expected.

System Action: The portion of the statement read in
is assembled. The assembly stops if the end-of-data is
on the PRIMARY INPUT. If a library member is being
copied, the assembly continues with the statement after
the COPY statement.

Programmer Response: Check to determine whether
any statements were omitted from the source program
or from the COPY code.

Severity: 12

ASMA121S Insufficient storage for editor work area

Explanation: The macro editor module of the
assembler cannot get enough main storage for its work
areas.

System Action: The assembly stops.

Programmer Response: Split the assembly into two
or more parts or give the macro editor more working
storage.

On MVS or CMS, this can be done by increasing the
region size for the assembler, decreasing blocking
factor or block size on the assembler data sets, or a
combination of both.

On VSE, this can be done by decreasing the value you
specify on the SIZE parameter of the JCL EXEC
statement, or by running the assembly in a larger
partition.

Severity: 12

ASMA122S Illegal operation code format

Explanation: The operation code is not followed by a
space or is missing altogether, or the first record of a
continued source statement is missing.

System Action: The statement is ignored.

Programmer Response: Ensure that the statement
has a valid operation code and that all records of the
statement are present.

Severity: 12

ASMA123S Variable symbol too long - xxxxxxxx

Explanation: A SET symbol, symbolic parameter, or
sequence symbol contains more than 62 characters
following the ampersand or period.

System Action: This statement is ignored.

Programmer Response: Shorten the SET symbol or
sequence symbol.

Severity: 12

ASMA124S Illegal use of parameter

Explanation: A symbolic parameter was used in the
operand field of a GBL or LCL statement or in the name
field of a SET statement. In other words, a variable
symbol has been used both as a symbolic parameter
and as a SET symbol.

System Action: The statement is ignored.

Programmer Response: Change the variable symbol
to one that is not a symbolic parameter.

Severity: 12

ASMA125S Illegal macro name - macro uncallable -
xxxxxxxx

Explanation: The operation code of a macro prototype
statement is not a valid symbol; that is, one to 63
alphanumeric characters, the first alphabetic.

System Action: The macro definition is edited.
However, since the macro name is not correct, the
macro cannot be called.

Programmer Response: Supply a valid macro name.

Severity: 12

ASMA126S Library macro name incorrect - xxxxxxxx

Explanation: The operation code of the prototype
statement of a library macro definition is not the same
as the operation code of the macro instruction (call).
Library macro definitions are located by their member
names. However, the assembler compares the macro
instruction with the macro prototype.

System Action: The macro definition is edited using
the operation code of the prototype statement as the
macro name. Thus, the definition cannot be called by
this macro instruction.

Programmer Response: Ensure that the member
name of the macro definition is the same as the
operation code of the prototype statement. This usually
requires listing the macro definition from the library, use
of the LIBMAC option to cause the macro definition to
be listed, or a COPY of the member name.

Severity: 12

ASMA127S Illegal use of ampersand

Explanation: One of the following errors has occurred:

� An ampersand was found where all substitution
should have already been done

� The standard value of a keyword parameter in a
macro prototype statement contained a single
ampersand or a string with an odd number of
ampersands

� An unpaired ampersand occurred in a character (C)
constant

System Action: In a macro prototype statement, all
information following the error is ignored. In other

358 HLASM V1R5 Programmer’s Guide

 ASMA128S � ASMA134S

statements, the action depends on which field the error
occurred in. If the error occurred in the name field, the
statement is processed without a name. If the error
occurred in the operation code field, the statement is
ignored. If the error occurred in the operand field,
another message is issued to specify the default.
However, if the error occurred in a C-type constant, the
operand in error and the following operands are
ignored.

Programmer Response: Ensure that ampersands
used in keyword standard values or in C-type constant
values occur in pairs. Also, avoid substituting an
ampersand into a statement unless there is a double
ampersand.

Severity: 12

ASMA128S Excess right parenthesis - xxxxxxxx

Explanation: An unpaired right parenthesis has been
found.

System Action: A machine instruction assembles as
zero. An assembler instruction is ignored and an
additional message relative to the statement type
appears. However, if the error is in the standard value
of a keyword on a macro prototype statement, only the
operands in error and the following operands are
ignored.

Programmer Response: Make sure that all
parentheses are paired.

Severity: 12

ASMA129S Insufficient right parentheses - xxxxxxxx

Explanation: An unpaired left parenthesis has been
found. Parentheses must balance at each comma in a
multiple operand statement.

System Action: A machine instruction assembles as
zero. An assembler instruction is ignored and an
additional message relative to the statement type
appears. However, if the error is in the standard value
of a keyword on a macro prototype statement, only the
operands in error and the following operands are
ignored.

Programmer Response: Make sure that all
parentheses are paired.

Severity: 12

ASMA130S Illegal attribute reference - xxxxxxxx

Explanation: One of the following errors has occurred:

� The symbol following a I, L, S, or T attribute
reference is not a valid variable symbol or ordinary
symbol or literal that has been previously used in a
machine instruction

� The symbol following a K or N attribute reference is
not a valid variable symbol

| � The symbol following a D or O attribute reference is
not a valid variable symbol or ordinary symbol

� The quotation mark is missing from a T attribute
reference

System Action: The statement is ignored.

Programmer Response: Supply a valid attribute
reference.

Severity: 12

ASMA131S Parenthesis nesting depth exceeds 255 -
xxxxxxxx

Explanation: There are more than 255 levels of
parentheses in a SETA expression.

System Action: The statement is ignored.

Programmer Response: Rewrite the SETA statement
using several statements to regroup the subexpressions
in the expression.

Severity: 12

ASMA132S Invalid logical expression - xxxxxxxx

Explanation: A logical expression in the operand field
of a SETB statement or an AIF statement does not
consist of valid character relational expressions,
arithmetic relational expressions, and single SETB
symbols, connected by logical operators.

System Action: The statement is ignored.

Programmer Response: Supply a valid logical
expression.

Severity: 12

ASMA133S Illegal substring reference - xxxxxxxx

Explanation: A substring expression following a SETC
expression does not consist of two valid SETA
expressions separated by a comma and enclosed in
parentheses.

System Action: The statement is ignored.

Programmer Response: Supply a valid substring
expression. The second value in the substring
expression can be �.

Severity: 12

ASMA134S Invalid relational operator - xxxxxxxx

Explanation: Characters other than EQ, NE, LT, GT,
LE, or GE are used in a SETB expression where a
relational operator is expected.

System Action: The statement is ignored.

Programmer Response: Supply a valid relational
operator.

Severity: 12

 Appendix G. High Level Assembler Messages 359

 ASMA135S � ASMA142E

ASMA135S Invalid logical operator - xxxxxxxx

Explanation: Characters other than AND, OR, NOT,
or XOR are used in a SETB expression where a logical
operator is expected.

System Action: The statement is ignored.

Programmer Response: Supply a valid logical
operator.

Severity: 12

ASMA136S Illegal logical/relational operator

Explanation: Characters other than a valid logical or
relational operator were found where a logical or
relational operator was expected.

System Action: The statement is ignored.

Programmer Response: Supply a valid logical or
relational operator.

Severity: 12

ASMA137S Invalid character expression - xxxxxxxx

Explanation: The operand of a SETC statement or the
character value used in a character relation is
erroneous. It must be a valid type attribute (T')
reference, a valid operation code attribute (O') or a
valid character expression enclosed in quotation marks.

System Action: The statement is ignored.

Programmer Response: Supply a valid character
expression.

Severity: 12

ASMA138W Non-empty PUSH xxxxxxx stack

Explanation: The number of PUSH instructions
exceeds the number of POP instructions at the end of
the assembly. This indicates a potential error.

System Action: The assembly continues.

Programmer Response: Change your program to
issue POP instructions for all PUSHes. You can
suppress this warning by specifying the NOPUSH
suboption of the FLAG option.

Severity: 4

ASMA139S EOD during REPRO processing

Explanation: A REPRO statement was immediately
followed by an end-of-data so that no valid record could
be punched. The REPRO is either the last record of
source input or the last record of a COPY member.

System Action: The REPRO statement is ignored.

Programmer Response: Remove the REPRO or
ensure that it is followed by a record to be punched.

Severity: 12

ASMA140W END record missing

Explanation: End-of-file on the source input data set
occurred before an END statement was read. One of
the following has occurred:

� The END statement was omitted or misspelled.
� The END operation code was changed or deleted

by OPSYN or by definition of a macro named END.
The lookahead phase of the assembler marks what
it thinks is the END statement. If an OPSYN
statement or a macro definition redefines the END
statement, premature end-of-input might occur
because the assembler does not pass the original
END statement.

System Action: An END statement is generated. It is
assigned a statement number but not printed. If any
literals are waiting, they are processed as usual
following the END statement.

Programmer Response: Check for lost records.
Supply a valid END statement; or, if you use OPSYN to
define another symbol as END, place it before the
possible entry into the lookahead phase.

Severity: 4

ASMA141E Bad character in operation code -
xxxxxxxx

Explanation: The operation code contains a
non-alphanumeric character, that is, a character other
than A to Z, 0 to 9, $, #, @ or _. Embedded spaces
are not allowed.

System Action: The statement is ignored.

Programmer Response: Supply a valid operation
code. If the operation code is formed by variable
symbol substitution, check the statements leading to
substitution.

Severity: 8

ASMA142E Operation code not complete on first
record

Explanation: The whole name and operation code,
including a trailing space, is not contained on the first
record (before the continue column—usually column 72)
of a continued statement.

System Action: The statement is ignored.

Programmer Response: Shorten the name, operation
code, or both, or simplify the statement by using a
separate SETC statement to create the name or
operation code by substitution.

Severity: 8

360 HLASM V1R5 Programmer’s Guide

 ASMA143E � ASMA150E

ASMA143E Bad character in name field - xxxxxxxx

Explanation: The name field contains a
non-alphanumeric character, that is, a character other
than A to Z, 0 to 9, $, #, @ or _.

System Action: If possible, the statement is
processed without a name. Otherwise, it is ignored.

Programmer Response: Put a valid symbol in the
name field.

Severity: 8

ASMA144E Begin-to-continue columns not blank -
xxxxxxxx

Explanation: On a continuation record, one or more
columns between the begin column (usually column 1)
and the continue column (usually column 16) are not
blank.

System Action: The extraneous characters are
ignored.

Programmer Response: Check whether the operand
started in the wrong column or whether the preceding
record contained an erroneous continuation character.

Severity: 8

ASMA145E Operator, right parenthesis, or
end-of-expression expected - xxxxxxxx

Explanation: One of the following has occurred:

� A letter, number, equal sign, quotation mark, or
undefined character occurred following a term
where a right parenthesis, an operator, a comma, or
a space ending the expression was expected

� In an assembler instruction, a left parenthesis
followed a term

System Action: A machine instruction assembles as
zero. An assembler instruction is ignored and another
message, relative to the operation code, is issued.

Programmer Response: Check for an omitted or
misplaced operator. Subscripting is not allowed on this
statement.

Severity: 8

ASMA146E Self-defining term too long or value too
large - xxxxxxxx

Explanation: A self-defining term is longer than 4
bytes, (8 hexadecimal digits, 32 bits, or 4 characters),
or the value of a decimal self-defining term is greater
than 231−1.

System Action: A machine instruction assembles as
zero. An assembler instruction is ignored. However,
another message, relative to the operation code, is
issued.

Programmer Response: Reduce the size of the
self-defining term, or specify it in a DC statement.

Severity: 8

ASMA147E Symbol too long, or first character not a
letter - xxxxxxxx

| Explanation: A symbol is longer than 63 characters,
| or does not begin with a letter, $, #, @ or underscore
| (_).

System Action: If the symbol is in the name field, the
statement is processed as unnamed. If the symbol is in
the operand field, an assembler operation or a macro
definition model statement is ignored and a machine
operation assembles as zero.

Programmer Response: Supply a valid symbol.

Severity: 8

ASMA148E Self-defining term lacks ending quote or
has bad character - xxxxxxxx

Explanation: A hexadecimal or binary self-defining
term contains a character that is not permitted or is
missing the final quotation mark, or a pure DBCS
self-defining term contains SO and SI with no
double-byte data between them.

System Action: A machine operation assembles as
zero. An assembler operation is ignored and another
message, relative to the operation code, is issued.

Programmer Response: Correct the incorrect term.

Severity: 8

ASMA149E Literal length exceeds 256 characters,
including = sign - xxxxxxxx

Explanation: A literal is longer than 256 characters.

System Action: The instruction assembles as zero.

Programmer Response: Shorten the literal, or change
it to a DC statement.

Severity: 8

ASMA150E Symbol has non-alphanumeric character
or invalid delimiter - xxxxxxxx

Explanation: The first character following a symbol is
not a valid delimiter (plus sign, minus sign, asterisk,
slash, left or right parenthesis, comma, or space).

System Action: A machine operation assembles as
zero. An assembler operation is ignored, and another
message, relative to this operation code, is issued.

Programmer Response: Ensure that the symbol does
not contain a non-alphanumeric character and that it is
followed by a valid delimiter.

Severity: 8

 Appendix G. High Level Assembler Messages 361

 ASMA151E � ASMA156S

ASMA151E Literal expression modifiers must be
absolute and predefined - xxxxxxxx

Explanation: The duplication factor or length modifier
in a literal is not a self- defining term, or an expression
using self-defining terms or previously defined symbols.

System Action: The statement assembles as zero.

Programmer Response: Supply a valid self-defining
term or ensure that symbols appear in the name field of
a previous statement.

Severity: 8

ASMA152S External symbol too long or
unacceptable character - xxxxxxxx

Explanation: One of the following errors has occurred:

� An external symbol is longer than 8 characters, or
the limit is 63 characters when the GOFF/XOBJECT

| option is in effect, or contains a bad character. An
| external symbol might be the name of a CSECT,
| RSECT, START, DXD, AMODE, RMODE, or COM

statement, or the operand of an ENTRY, EXTRN, or
WXTRN statement or a Q-type or V-type address
constant.

� The operand of an ENTRY, EXTRN, or WXTRN
statement or a Q-type or V-type address constant is
an expression instead of a single term, or contains
a bad character.

� A class name in a CATTR statement is longer than
16 characters, or contains a bad character.

System Action: The symbol does not appear in the
external symbol dictionary. If the error is in the name
field, an attempt is made to process the statement as
unnamed. If the error is in the operand field, the bad
operand is ignored and, if possible, the following
operands are processed. A bad constant assembles as
zero.

Programmer Response: Supply a shorter name or
replace the expression with a symbol.

Severity: 12

ASMA153S START statement illegal - CSECT
already begun

Explanation: A START statement occurred after the
beginning of a control section.

System Action: The statement is processed as a
CSECT statement; any operand is ignored.

Programmer Response: Ensure that the START
precedes all machine instructions and any assembler
instruction, such as EQU, that initiates a control section.
If you want EQU statements before the START, place
them in a dummy section (DSECT).

Severity: 12

ASMA154E Operand must be absolute, predefined
symbols; set to zero - xxxxxxxx

Explanation: The operand on a SETA, SETB, SETC,
START or MHELP statement is not correct. If there is
another message with this statement, this message is
advisory. If this message appears alone, it indicates
one of the following:

� There is a location counter reference (*) in a
START operand.

� An expression does not consist of absolute terms,
predefined symbols, or both.

� The statement is too complex. For example, it
might have too many forward references or cause
arithmetic overflow during evaluation.

� The statement is circularly defined.
� A relocatable term is multiplied or divided.

System Action: The operand of the statement is
treated as zero.

Programmer Response: Correct the error if it exists.
Paired relocatable symbols in different LOCTRs, even

| though in the same CSECT, DSECT, or RSECT, are
| not valid where an absolute, predefined value is

required.

Severity: 8

ASMA155S Previous use of symbol is not this
section type

| Explanation: The name on a CSECT, DSECT,
| RSECT, COM, CATTR, or LOCTR statement has been

used previously, on a different type of statement. For
example, the name on a CSECT has been used before
on a statement other than CSECT, such as a machine
instruction or a LOCTR.

System Action: This name is ignored, and the
statement processes as unnamed.

Programmer Response: Correct the misspelled
name, or change the name to one that does not conflict.

Severity: 12

ASMA156S Only ordinary symbols, separated by
commas, allowed

Explanation: The operand field of an ENTRY,
EXTRN, or WXTRN statement contains a symbol that
does not consist of 1-to-8 alphanumeric characters, the
first being alphabetic, or the operands are not separated
by a comma.

System Action: The operand in error is ignored. If
other operands follow, they process normally.

Programmer Response: Supply a correct symbol or
insert the missing comma. If you want an expression
as an ENTRY statement operand (such as
SYMBOL+4), use an EQU statement to define an
additional symbol.

Severity: 12

362 HLASM V1R5 Programmer’s Guide

 ASMA157S � ASMA163W

ASMA157S Operand must be a simply-relocatable
expression

Explanation: If there is another message with this
statement, this message is advisory. If this message
appears alone, the operand of an ORG or END
statement is not a simple relocatable expression, is too
complex, or is circularly defined. The error might also

| be that the END operand symbol is not in a CSECT, or
| is not an external symbol without addend.

System Action: An ORG statement or the operand of
an END statement is ignored.

Programmer Response: If an error exists, supply a
correct expression. Paired relocatable symbols in
different LOCTRs, even though in the same CSECT or
DSECT, might cause circular definition when used in an
ORG statement.

Severity: 12

ASMA158E Operand expression is defective; set to *

Explanation: The first operand of an EQU statement
is defective. If another message appears with this
statement, this message is advisory. If this message
appears alone, one of the following errors has occurred:

� The statement is too complex. For example, it has
too many forward references or causes an
arithmetic overflow during evaluation.

� The statement is circularly defined.
� The statement contains a relocatable term that is

multiplied or divided.

System Action: The symbol in the name field is
equated to the current value of the location counter (*),
and operands 2 and 3 of the statement, if present, are
ignored.

Programmer Response: If an error exists, supply a
correct expression for operand 1 of the statement.

Severity: 8

ASMA159S Operand must be absolute, proper
multiples of 2 or 4

Explanation: The combination of operands of a CNOP
statement is not one of the following valid combinations:

| �,4 2,4

| �,8 2,8

| 4,8 6,8

| �,16 2,16

| 4,16 6,16

| 8,16 1�,16

| 12,16 14,16

System Action: The statement is ignored. However,
the location counter is adjusted to a halfword boundary.

Programmer Response: Supply a valid combination
of CNOP operands.

Severity: 12

ASMA160W Invalid BYTE function operand xxxxxxxx

Explanation: The value xxxxxxxx of the operand of
the BYTE built-in function is outside the expected range
of 0–255.

System Action: The low-order eight bits of the
operand's value are used.

Programmer Response: Supply an arithmetic
expression which returns an acceptable value.

Severity: 4

ASMA161W Only one TITLE statement may have a
name field

Explanation: More than one TITLE statement has a
name field. The named TITLE statement need not be
the first one in the assembly, but it must be the only
one named.

System Action: The name on this TITLE statement is
ignored. The name used for deck identification is taken
from the first named TITLE statement encountered.

Programmer Response: Delete the unwanted name.

Severity: 4

ASMA162S PUNCH operand exceeds 80 columns;
ignored

Explanation: A PUNCH statement attempted to punch
more than 80 characters into a record.

System Action: The statement is ignored. The record
is not punched.

Programmer Response: Shorten the operand to 80
characters or fewer or use more than one PUNCH
statement.

Severity: 12

ASMA163W Operand not properly enclosed in
quotes

Explanation: The operand of a PUNCH or TITLE
statement does not begin with a quotation mark, or the
operand of a PUNCH, MNOTE, or TITLE statement
does not end with a quotation mark, or the ending
quotation mark is not followed by a space.

System Action: The statement is ignored.

Programmer Response: Supply the missing quotation
mark. Be sure that a quotation mark to be punched or
printed as data is represented as two quotation marks.

Severity: 4

 Appendix G. High Level Assembler Messages 363

 ASMA164W � ASMA170S

ASMA164W Operand is a null string - record not
punched

Explanation: A PUNCH statement does not have any
characters between its two single quotation marks, or a
single quotation mark to be punched as data is not
represented by two single quotation marks.

System Action: The statement is ignored.

Programmer Response: Correct the operand. If you
want to “punch” a blank record, the operand of the
PUNCH statement should be a space enclosed in single
quotation marks.

Severity: 4

ASMA165W Unexpected name field

Explanation: The name field on this statement is not
blank and is not a sequence symbol. The name field
can not be an ordinary symbol.

| For example, this message is generated by the
| statement

| X ANOP

System Action: The name is equated to the current
value of the location counter (*). However, if no control
section has been started, the name is equated to zero.

Programmer Response: Remove the name field, or
ensure the name is preceded with a period if you want
it to be a sequence symbol.

Severity: 4

ASMA166S Sequence symbol too long - xxxxxxxx

Explanation: A sequence symbol contains more than
62 characters following the period.

System Action: If the sequence symbol is in the
name field, the statement is processed without a name.
If it is in the operand field of an AIF or AGO statement,
the whole statement is ignored.

Programmer Response: Shorten the sequence
symbol.

Severity: 12

ASMA167E Required name missing

Explanation: This statement requires a name and has
none. The name field might be blank because an error
occurred during an attempt to create the name by
substitution or because a sequence symbol was used
as the name.

| For example, this message is generated by the
| statement

| EQU 3 Empty name field

System Action: The statement is ignored.

Programmer Response: Supply a valid name or
ensure that a valid name is created by substitution. If a
sequence symbol is needed, put it on an ANOP

statement ahead of this one and put a name on this
| statement. If this message is generated for a LOCTR,
| when attempting to continue a location counter for an
| unnamed section, then first supply an appropriately
| named LOCTR in the unnamed section so that
| subsequent LOCTRs can continue by specifying the
| name.

Severity: 8

ASMA168C Undefined sequence symbol - xxxxxxxx

Explanation: The sequence symbol in the operand
field of an AIF or AGO statement outside a macro
definition is not defined; that is, it does not appear in
the name field of an associated statement.

System Action: This statement is ignored; assembly
continues with the next statement.

Programmer Response: If the sequence symbol is
misspelled or omitted, correct it. When the sequence
symbol is not previously defined, the assembler looks
ahead for the definitions. The lookahead stops when
an END statement or an OPSYN equivalent is
encountered. Be sure that OPSYN statements and
macro definitions that redefine END precede possible
entry into look-ahead.

Severity: 16

ASMA169I Implicit length of symbol symbol used for
operand n

Explanation: A length subfield was omitted from
operand n in an SS-format machine instruction and the
implicit length of symbol is assembled into the object
code of the instruction.

System Action: The instruction is assembled using an
implicit length which:

� For an implicit address, is the length attribute of the
first or only term in the expression representing the
implicit address

� For an explicit address, is the length attribute of the
first or only term in the expression representing the
displacement

Programmer Response: Check the instruction to
ensure that the operation and operands are coded
correctly. You can suppress this warning by specifying
the NOIMPLEN suboption of the FLAG option.

Severity: 0

ASMA170S Interlude error-logging capacity
exceeded

Explanation: The table that the interlude phase of the
assembler uses to keep track of the errors it detects is
full. This does not stop error detection by other phases
of the assembler.

System Action: If there are additional errors, normally
detected by the interlude phase, in other statements

364 HLASM V1R5 Programmer’s Guide

 ASMA171S � ASMA177E

either before or after this one, they are not flagged.
Statement processing depends on the type of error.

Programmer Response: Correct the indicated errors,
and run the assembly again to diagnose any further
errors.

Severity: 12

ASMA171S Standard value too long

Explanation: The standard (default) value of a
keyword parameter on a macro prototype statement is
longer than 255 characters.

System Action: The parameter in error and the
following parameters are ignored.

Programmer Response: Shorten the standard value.

Severity: 12

ASMA172E Negative duplication factor; default=1 -
xxxxxxxx

Explanation: The duplication factor of a SETC
statement is negative.

System Action: The duplication factor is given a
default value of 1.

Programmer Response: Supply a positive duplication
factor.

Severity: 8

ASMA173S Delimiter error, expected blank -
xxxxxxxx

Explanation: The character string xxxxxxxx is found
where a blank (end of operand) is required.

System Action: A machine instruction assembles as
zero. An ORG statement is ignored. For an EQU or
END statement, the string is ignored and the operand
processes normally. For a CNOP statement, the
location counter is aligned to a halfword boundary.

Programmer Response: Insert a comma, or replace
the string with a space. Look for an extra operand or a
missing left parenthesis.

Severity: 12

ASMA174S Delimiter error, expected blank or
comma - xxxxxxxx

Explanation: The character string xxxxxxxx is found
where a blank or a comma is required.

System Action: A machine instruction assembles as
zero. For a USING or DROP statement, the incorrect
delimiter is ignored and the operand is processed
normally.

Programmer Response: Insert a comma, or replace
the string with a space. Look for an extra operand or a
missing left parenthesis.

Severity: 12

ASMA175S Delimiter error, expected comma -
xxxxxxxx

Explanation: The character string xxxxxxxx is used
where a comma is required.

System Action: A machine instruction assembles as
zero. For a CNOP statement, the location counter is
aligned to a halfword boundary.

Programmer Response: Insert a comma, or replace
the string with a space. Be sure each expression is
syntactically correct and that no parentheses are
omitted.

Severity: 12

| ASMA176E Operand 4 must be absolute, 1-4 bytes;
| ignored

| Explanation: If there is another message with this
| statement, this message is advisory. If this message
| appears alone, the fourth operand of an EQU statement
| contains one of the following errors:

| � It is not an absolute term or expression whose
| value is from 1 to 4 bytes in size
| � It contains a symbol that is not previously defined
| � It is circularly defined
| � It is too complex. For example, it causes an
| arithmetic overflow during evaluation.

| System Action: The fourth operand is ignored, and
| the program type of the EQU statement is set to binary
| zeros.

| Programmer Response: Correct the error if it exists.
| Note that paired relocatable symbols in different
| LOCTRs, even though in the same CSECT, are not
| valid where an absolute, predefined value is required.

| Severity: 8

| ASMA177E Operand 5 must be absolute, 1-4 bytes;
| ignored

| Explanation: If there is another message with this
| statement, this message is advisory. If this message
| appears alone, the fifth operand of an EQU statement
| contains one of the following errors:

| � It is not an absolute term or expression whose
| value is from 1 to 4 bytes in size.
| � It contains a symbol that is not previously defined
| � It is circularly defined
| � It is too complex. For example, it causes an
| arithmetic overflow during evaluation.

| System Action: The fifth operand is ignored, and the
| assembler type of the EQU statement is set to spaces.

| Programmer Response: Correct the error if it exists.
| Note that paired relocatable symbols in different
| LOCTRs, even though in the same CSECT, are not
| valid where an absolute, predefined value is required.

| Severity: 8

 Appendix G. High Level Assembler Messages 365

 ASMA178S � ASMA184C

ASMA178S Delimiter error, expected comma or right
parenthesis - xxxxxxxx

Explanation: The character string xxxxxxxx is used in
a machine instruction when a comma or a right
parenthesis is required.

System Action: The machine instruction assembles
as zero.

Programmer Response: Insert a comma, or replace
the string with a right parenthesis. Look for a missing
base field.

Severity: 12

ASMA179S Delimiter error, expected right
parenthesis - xxxxxxxx

Explanation: The character string xxxxxxxx is used in
a machine instruction when a right parenthesis is
required.

System Action: The machine instruction assembles
as zero.

Programmer Response: Replace the string with a
right parenthesis. Look for an index field used where it
is not allowed.

Severity: 12

ASMA180S Operand must be absolute

Explanation: The operand of a SPACE or CEJECT
statement or the first, third, or fourth operand of a CCW
statement is not an absolute term.

System Action: A SPACE or CEJECT statement is
ignored. A CCW statement assembles as zero.

Programmer Response: Supply an absolute operand.
Paired relocatable terms can span LOCTRs but must be
in the same control section.

Severity: 12

ASMA181S CCW operand value is outside allowable
range

Explanation: One or more operands of a CCW
statement are not within the following limits:

� 1st operand—0 to 255
� 2nd operand—0 to 16 777 215 (CCW, CCW0); or 0

to 2 147 483 647 (CCW1)
� 3rd operand—0-255 and a multiple of 8
� 4th operand—0-65 535

System Action: The CCW assembles as zero.

Programmer Response: Supply valid operands.

Severity: 12

ASMA182E Operand 2 must be absolute, 0-65535;
ignored

Explanation: If there is another message with this
statement, this message is advisory. If this message
appears alone, the second operand of an EQU
statement contains one of the following errors:

� It is not an absolute term or expression whose
value is within the range of 0 to 65,535

� It contains a symbol that is not previously defined
� It is circularly defined
� It is too complex; for example, it causes an

arithmetic overflow during evaluation
� It is derived from an absolute value

| � It contains an expression that cannot be fully
| evaluated

System Action: Operand 2 is ignored, and the length
attribute of the first operand is used. If the third
operand is present, it processes normally.

Programmer Response: Correct the error if it exists.
Paired relocatable symbols in different LOCTRs, even
though in the same CSECT, are not valid where an
absolute, predefined value is required.

Severity: 8

ASMA183E Operand 3 must be absolute, 0-255;
ignored

Explanation: If there is another message with this
statement, this message is advisory. If this message
appears alone, the third operand of an EQU statement
contains one of the following errors:

� It is not an absolute term or expression whose
value is within the range of 0 to 255

� It contains a symbol that is not previously defined
� It is circularly defined
� It is too complex; for example, it causes an

arithmetic overflow during evaluation.

System Action: The third operand is ignored, and the
type attribute of the EQU statement is set to U.

Programmer Response: Correct the error if it exists.
Note that paired relocatable symbols in different
LOCTRs, even though in the same CSECT, are not
valid where an absolute, predefined value is required.

Severity: 8

ASMA184C COPY disaster

Explanation: The assembler copied a library member
(processed a COPY statement) while looking ahead for
attribute references. However, when the complete text
was analyzed, the COPY operation code had been
changed by an OPSYN statement or read by an
AREAD statement, and the COPY should not have
been processed. (Lookahead phase ignores OPSYN
statements.) This message follows the first record of
the COPY code.

366 HLASM V1R5 Programmer’s Guide

 ASMA185W � ASMA191W

System Action: The library member assembles. If it
included an ICTL statement, the format of that ICTL is
used.

Programmer Response: Move COPY statements, or
OPSYN statements that modify the meaning of COPY,
to a point in the assembly before the entry into
lookahead mode (that is, prior to ASMA��6I Lookahead

invoked).

Severity: 16

ASMA185W Operand 2 is erroneous - xxxxxxxx

Explanation: The second operand is incorrect, or two
operands appear where there should be only one.

System Action: The second operand is ignored.

Programmer Response: Remove or correct the
second operand.

Severity: 4

ASMA186E AMODE/RMODE already set for this ESD
item

Explanation: A previous AMODE instruction has the
same name field as this AMODE instruction, or a
previous RMODE instruction has the same name field
as this RMODE instruction.

System Action: The instruction in error is ignored.

Programmer Response: Remove the conflicting
instruction or specify the name of another control
section.

Severity: 8

ASMA187E The name field is invalid - xxxxxxxx

Explanation: The name field of an AMODE, RMODE
or XATTR instruction is invalid. The name field must be
one of the following:

| � A valid control section name
� An ENTRY name (for AMODE or XATTR with the

GOFF option set)
� A valid external name (XATTR only)

If the XATTR statement uses the PSECT operand then
the name field must specify either a valid control section
name or ENTRY name.

System Action: The instruction in error is ignored,
and the name does not appear in the cross-reference
listing.

Programmer Response: Specify a valid name and
resubmit the assembly.

Severity: 8

ASMA188E Incompatible AMODE and RMODE
attributes

Explanation: A previous AMODE 24 instruction has
the same name field as this RMODE ANY instruction, or
a previous RMODE ANY instruction has the same name
field as this AMODE 24 instruction.

System Action: The instruction in error is ignored.

Programmer Response: Change the AMODE and
RMODE attributes so they are no longer incompatible.
All combinations except AMODE 24 and RMODE ANY
are valid.

Severity: 8

ASMA189E OPSYN not permitted for REPRO

Explanation: REPRO is specified in either the name
field or the operand field of an OPSYN instruction, but a
REPRO statement has been previously encountered in
the source module. Once a REPRO statement has
been encountered, the REPRO symbolic operation code
cannot be redefined using the OPSYN instruction.

System Action: The OPSYN instruction is ignored.

Programmer Response: Remove the OPSYN
instruction, or remove the previously encountered
REPRO statement.

Severity: 8

| ASMA190E CATTR instruction invalid because no
| executable section started

Explanation: A CATTR instruction must be preceded
by a CSECT, START, or RSECT instruction.

System Action: The CATTR instruction is ignored.

Programmer Response: Remove the CATTR
instruction, or precede it with a CSECT, START, or
RSECT instruction.

Severity: 8

ASMA191W CATTR instruction operands ignored

Explanation: You specified operands on a CATTR
instruction which has the same class name as a
previous CATTR instruction.

System Action: The assembler ignores the operands,
and continues as if you did not specify any operands.

Programmer Response: You can correct this error
by:

� Removing the operands from the CATTR instruction
in error

� Changing the class name for the CATTR instruction
in error

� Removing the CATTR instruction in error

Severity: 4

 Appendix G. High Level Assembler Messages 367

 ASMA192W � ASMA202W

ASMA192W Lost precision - underflow to zero

Explanation: The value supplied is non-zero and is
too small to be represented.

System Action: The constant assembles with an
exponent and fraction of zero.

Programmer Response: Supply a larger value or a
longer constant type.

Severity: 4

ASMA193W Lost precision - underflow to denormal

Explanation: The value supplied is non-zero and is
too small to be represented in normalized form, but can
be represented in denormalized form.

System Action: The constant assembles with the
denormalized form.

Programmer Response: Supply a larger value or a
longer constant type,

Severity: 4

ASMA194W Nominal value too large - overflow to
MAX

Explanation: The value supplied is too large to be
represented and the rounding mode of the constant
indicates rounding towards zero. The value is
represented as the signed maximum representable
value.

System Action: The constant assembles with the
signed maximum value.

Programmer Response: Supply a smaller value or a
longer constant type.

Severity: 4

ASMA195W Nominal value too large - overflow to
INF

Explanation: The value supplied is too large to be
represented and the rounding mode of the constant
indicates rounding away from zero. The value is
represented as a signed infinity.

System Action: The constant assembles with the
signed special value INF.

Programmer Response: Supply a smaller value or a
longer constant type.

Severity: 4

ASMA196W Scaling modifier ignored for binary
floating-point constant

Explanation: A scaling modifier has been included in
the definition of a binary floating-point constant.

System Action: The scaling modifier has been
ignored.

Programmer Response: Remove the scale modifier.

Severity: 4

ASMA198E Exponent modifier is not permitted for
special value

Explanation: The exponent modifier is not permitted
for a floating-point special value.

System Action: The constant assembles as zeros.

Programmer Response: Remove the exponent
modifier.

Severity: 8

ASMA199E Rounding indicator invalid

Explanation: The rounding indicator for the
floating-point constant is not a valid value.

System Action: The operand in error and the
following operands are ignored.

Programmer Response: Correct the rounding
indicator.

Severity: 8

ASMA201W SO or SI in continuation column - no
continuation assumed

Explanation: When High Level Assembler is invoked
with the DBCS option, the double-byte delimiters SO
and SI are treated as spaces in the continuation
column, and not as continuation indicators.

System Action: The SO or SI in the continuation
column assembles as a space, and the next line is not
treated as a continuation line.

Programmer Response: If continuation is required,
then rearrange the source line so that a non-space
EBCDIC character can be used to indicate continuation.
If continuation is not required, check that everything
preceding the SO or SI is complete and valid data.

Severity: 4

ASMA202W Shift-in not found at extended
continuation; check data truncation -
xxxxxxxx

Explanation: The assembler has detected an
extended continuation indicator that is not on a source
statement containing double-byte data. The extended
continuation indicator feature is provided to permit
continuation of double-byte data, and single-byte data
adjacent to double-byte data. If you use extended
continuation indicators anywhere else, the assembler
issues this message. As this situation can be caused
by a coding error, the assembler might unintentionally
treat the data as extended continuation indicators.

System Action: The extended continuation indicators
do not assemble as part of the operand.

Programmer Response: Change the continuation
indicator if unintentional truncation occurred.

368 HLASM V1R5 Programmer’s Guide

 ASMA203E � ASMA209E

Severity: 4

ASMA203E Unbalanced double-byte delimiters -
xxxxxxxx

Explanation: A mismatched SO or SI has been found.
This could be the result of truncated or nested
double-byte data. This error does NOT occur because
valid double-byte data is truncated to fit within the
explicit length specified for C-type DC, DS, and DXD
statements and literals - that condition produces error
ASMA208E.

System Action: The operand in error, and the
following operands are ignored.

Programmer Response: Correct the incorrect
double-byte data.

Severity: 8

ASMA204E Invalid double-byte data - xxxxxxxx

Explanation: All data between SO and SI must be
valid double-byte characters. A valid double-byte
character is defined as either double-byte space
(X'4040'), or two bytes each of which must be in the
range X'41' to X'FE' inclusive.

This error does not apply to the operands of macro
instructions.

System Action: The operand in error, and the
following operands are ignored.

Programmer Response: Correct the incorrect
double-byte data.

Severity: 8

ASMA205E Extended continuation end column must
not extend into continue column

Explanation: The extended continuation indicator
extended into the continue column.

System Action: The extended continuation indicator is
ignored. The following record or records might be
treated as incorrect. The extended continuation
indicators are treated as part of the source statement.

Programmer Response: If the data in the extended
continuation is to be regarded as valid input then
another non-space character must be used in the
continuation indication column to identify the data as
valid and to continue to the next record. If the data is
not to be part of the constant then remove the
characters of the extended continuation and add the
correct data to the continue record to the point where
the extended continuation is needed. This message
might be encountered when converting code that
assembled with the NODBCS option to code that is to
be assembled with the DBCS option.

Severity: 8

ASMA206E G-type constant must not contain
single-byte data - xxxxxxxx

Explanation: A G-type constant or self-defining term,
after substitution has occurred, must consist entirely of
double-byte data, correctly delimited by SO and SI. If
SO or SI are found in any byte position other than the
first and last respectively (excepting redundant SI/SO
pairs which are removed) then this error is reported.

System Action: The operand in error, and the
following operands are ignored.

Programmer Response: Either remove the
single-byte data from the operand, or change the
constant to a C-type.

Severity: 8

ASMA207E Length of G-type constant must be a
multiple of 2 - xxxxxxxx

Explanation: A G-type constant must contain only
double-byte data. If assembled with a length modifier
which is not a multiple of 2, incorrect double-byte data
is created.

System Action: The operand in error, and the
operands following are ignored.

Programmer Response: Either correct the length
modifier, or change the constant to a C-type.

Severity: 8

ASMA208E Truncation into double-byte data is not
permitted - xxxxxxxx

Explanation: The explicit length of a C-type constant
in a DS, DC or DXD statement or literal must not cause
the nominal value to be truncated at any point within
double-byte data.

System Action: The operand in error, and the
following operands are ignored.

Programmer Response: Either correct the length
modifier, or change the double-byte data so that it is not
truncated.

Severity: 8

ASMA209E Symbol not name of class, DXD or
DSECT

Explanation: The operand of a J-type address
constant is not the name of a class, DXD, or DSECT.

System Action: The constant assembles as zero.

Programmer Response: Supply a valid operand.

Severity: 8

 Appendix G. High Level Assembler Messages 369

 ASMA210E � ASMA254I

ASMA210E Illegal register usage

Explanation: The register operands for the machine
instruction must be unique.

System Action: The machine instruction assembles
as zero.

Programmer Response: Correct the instruction such
that the operands specified are unique.

Severity: 8

ASMA211E Unicode conversion table not available.

Explanation: The address of the UNICODE
conversion table is zero in the Code Page module
specified in the CODEPAGE option.

System Action: The constant is not converted.

Programmer Response: Ensure the code page
module is generated according to the instructions
described in Appendix M, “How to Generate a Unicode
Translation Table” on page 406.

Severity: 12

ASMA212W Branch address alignment for xxxxxxxx
unfavorable

Explanation: A branch address referenced by this
statement might not be aligned to the required boundary
for this instruction; for example, the target referenced by
a Branch and Save (BAS) instruction might not be
aligned on a halfword boundary.

System Action: The instruction assembles as written.

Programmer Response: Correct the operand if it is in
error. To suppress this message, use the
FLAG(NOALIGN) assembler option.

Severity: 4

ASMA213W Storage alignment for xxxxxxxx
unfavorable

Explanation: An address referenced by this statement
might not be aligned to the required boundary for this
instruction; for example, the data referenced by a
Compare and Swap (CS) instruction might not be
aligned on a fullword boundary.

System Action: The instruction assembles as written.

Programmer Response: Correct the operand if it is in
error. To suppress this message, use the

| FLAG(NOALIGN) assembler option, or specify a
| previous ACONTROL FLAG(NOALIGN) instruction.

Severity: 4

| ASMA214E Invalid operand value - &var

| Explanation: The contents of operand &var is invalid
| for one of the following reasons:

| null value

� a hexadecimal value is required in the operand of a
hexadecimal conversion function

� a binary value is required in the operand of a binary
conversion function

� the operand is longer than the function supports

| � A decimal value is required in the operand of a
| decimal conversion function

| � The operand is outside the range of acceptable
| values that the function supports

System Action: The statement is ignored.

Programmer Response: Supply a valid operand
value.

Severity: 8

ASMA253C Too many errors

Explanation: No more error messages can be issued
for this statement, because the assembler work area in
which the errors are logged is full.

System Action: If more errors are detected for this
statement, the messages, annotated text, or both, are
discarded.

Programmer Response: Correct the indicated errors,
and rerun the assembly. If there are more errors on
this statement, they will be detected in the next
assembly.

Severity: 16

ASMA254I *** MNOTE ***

Explanation: The text of an MNOTE statement, which
is appended to this message, has been generated by
your program or by a macro definition or a library
member copied into your program. An MNOTE
statement enables a source program or a macro
definition to signal the assembler to generate an error
or informational message.

System Action: None.

Programmer Response: Investigate the reason for
the MNOTE. Errors flagged by MNOTE often cause the
program to fail if it is run.

Severity: An MNOTE is assigned a severity code of 0
to 255 by the writer of the MNOTE statement.

370 HLASM V1R5 Programmer’s Guide

 ASMA300W � ASMA306W

ASMA300W USING overridden by a prior active
USING on statement number nnnnnn

Explanation: The USING instruction specifies the
same base address as a previous USING instruction at
statement number nnnnnn, and the base register
specified is lower-numbered than the previously
specified base register.

System Action: The assembler uses the
higher-numbered base register for address resolution of
symbolic addresses within the USING range.

Programmer Response: Check your USING
statements to ensure that you have specified the correct
base address and base register and that you have not
omitted a needed DROP statement for the previous
base register. You can suppress this message by
reducing the value specified in the WARN sub-option of
the USING option by 1.

Severity: 4

ASMA301W Prior active USING on statement
number nnnnnn overridden by this USING

Explanation: The USING instruction specifies the
same base address as a previous USING instruction at
statement number nnnnnn, and the base register
specified is higher-numbered than the previous base
register.

System Action: The assembler uses the
higher-numbered base register for address resolution of
symbolic addresses within the USING range.

Programmer Response: Check your USING
statements to ensure that you have specified the correct
base address and base register and that you have not
omitted a needed DROP statement for the previous
base register. You can suppress this message by
reducing the value specified in the WARN sub-option of
the USING option by 1.

Severity: 4

ASMA302W USING specifies register 0 with a
non-zero absolute or relocatable base
address

Explanation: The assembler assumes that when
register 0 is used as a base register, it contains zero.
Therefore, regardless of the value specified for the base
address, displacements are calculated from base 0.

System Action: The assembler calculates
displacements as if the base address specified were
absolute or relocatable zero.

Programmer Response: Check the USING statement
to ensure you have specified the correct base address
and base register. You can suppress this message by
reducing the value specified in the WARN suboption of
the USING option by 2.

Severity: 4

ASMA303W Multiple address resolutions may result
from this USING and the USING on
statement number nnnnnn

Explanation: The USING instruction specifies a base
address that lies within the range of an earlier USING
instruction at statement number nnnnnn. The
assembler might use multiple base registers when
resolving implicit addresses within the range overlap.

System Action: The assembler computes
displacements from the base address that gives the
smallest displacement, and uses the corresponding
base register when it assembles addresses within the
range overlap.

Programmer Response: Check your USING
instructions for unintentional USING range overlaps and
check that you have not omitted a needed DROP
statement. You can suppress this message by reducing
the value specified in the WARN suboption of the
USING option by 4.

Severity: 4

ASMA304W Displacement exceeds LIMIT value
specified

Explanation: The address referred to by this
statement has a valid displacement that is higher than
the displacement limit specified in the
USING(LIMIT(xxx)) option.

System Action: The instruction assembles correctly.

Programmer Response: This error diagnostic
message is issued at your request. You can suppress
this message by reducing the value specified in the
WARN suboption of the USING option by 8.

Severity: 4

ASMA305E Operand 1 does not refer to location
within reference control section

Explanation: The first operand in a dependent USING
statement does not refer to a location within a reference
control section defined by a DSECT, DXD, or COM
instruction.

System Action: The USING statement is ignored.

Programmer Response: Change the USING
statement to specify a location within a reference
control section.

Severity: 8

ASMA306W USING range overlaps implicit USING
0,0

Explanation: The USING range overlaps the
assembler's implicit USING 0,0. This implicit USING is
used to convert absolute implicit addresses in the range
0 to 4095. As a result of this USING, the assembler
may not generate the expected object code.

System Action: The assembly continues

 Appendix G. High Level Assembler Messages 371

 ASMA307E � ASMA314E

| Programmer Response: Correct the USING
| statement. If you believe it is correct, specify the
| FLAG(NOUSING0) option or a preceding ACONTROL
| FLAG(NOUSING0) instruction.

Severity: 4

ASMA307E No active USING for operand n

Explanation: The operand specified occurs in a
section without an active USING.

System Action: The instruction assembles as zero.

Programmer Response: Provide a USING instruction.

Severity: 8

ASMA308E Repeated register reg nullifies prior
USING range

Explanation: The repeated register nullifies the range
specified by a prior use of that register on the same
USING instruction.

System Action: The statement is ignored.

Programmer Response: Correct the USING
instruction.

Severity: 8

ASMA309W Operand xxxxxxxx resolved to a
displacement with no base register

Explanation: The machine instruction specifies an
operand which is resolved to a baseless address when
a base and displacement are expected. This might be
the programmer's intent, but will usually be an error.

System Action: Base register zero is assembled into
the object code of the instruction.

Programmer Response: Check the instruction to
ensure that the operation and operands are coded
correctly. If you want to reference page zero you can
specify a USING for the appropriate DSECT with a zero
base register. You can suppress this warning by
specifying the NOPAGE0 suboption of the FLAG option.

Severity: 4

ASMA310W Name already used in prior ALIAS or
XATTR - xxxxxxxx

Explanation: The name specified in the ALIAS or
XATTR statement has already been used in a previous
ALIAS or XATTR statement.

System Action: The statement is ignored.

Programmer Response: Change the program so that
the name is used in only one ALIAS or XATTR
statement.

Severity: 4

ASMA311E Illegal ALIAS string

Explanation: The ALIAS string is illegal for one of the
following reasons:

� The string is null

� The string is not in the form C'cccccccc' or
X'hhhhhhhh'

� The string is in the form X'hhhhhhhh' but an odd
number of hexadecimal digits has been specified

� The string contains a character outside the valid
range of X'42' to X'FE'

� The string has been used in the name entry on a
| previous CSECT, DSECT, RSECT, COM or LOCTR
| instruction

System Action: The statement is ignored.

Programmer Response: Change the program so that
the string conforms to the required syntax.

Severity: 8

ASMA312E ALIAS name is not declared as an
external symbol - xxxxxxxx

Explanation: The name specified on the ALIAS
| statement is not declared as an external symbol, either
| explicitly via an EXTRN, CSECT, RSECT, etc., or

implicitly via a V-type constant.

System Action: The statement is ignored.

Programmer Response: Change the program so that
the name is declared as an external symbol.

Severity: 8

ASMA313E The end value specified in the USING is
less than or equal to the base value

Explanation: The end value specified is less than or
equal to the base value which would result in a zero or
negative range.

System Action: The end value is ignored and the
default range value is used.

Programmer Response: Change the USING
statement to specify an end value that is greater than
the base value.

Severity: 8

ASMA314E The base and end values have differing
relocation attributes

Explanation: The base and end values have differing
relocation attributes; that is, they are defined in different
sections.

System Action: The end value is ignored and the
default range value is used.

Programmer Response: Change the USING
statement to specify an end value that is in the same
section as the base value.

372 HLASM V1R5 Programmer’s Guide

 ASMA315E � ASMA321E

Severity: 8

ASMA315E XATTR instruction invalid when
NOGOFF specified

Explanation: The XATTR instruction can only be used
when the GOFF option is set.

System Action: The statement is ignored.

Programmer Response: Either remove the XATTR
statement and resubmit the assembly or ensure that the
GOFF option is set and resubmit the assembly.

Severity: 8

ASMA316E Invalid PSECT symbol - nnnnnnnn

Explanation: The symbol nnnnnnnn specified in the
PSECT operand is invalid for one of the following
reasons:

� The name is undefined
� The name is a class name
� The name is not one of the following:

– A valid control section name
– A valid ENTRY name
– A valid DXD name

System Action: The PSECT operand is ignored.

Programmer Response: Correct the PSECT operand
and resubmit the assembly.

Severity: 8

ASMA317E Invalid ATTR symbol - nnnnnnnn

Explanation: The symbol nnnnnnnn specified in the
ATTR operand is invalid for one of the following
reasons:

� The name is undefined
� The name is a DSECT name
� The name is a qualifier name

System Action: The ATTR operand is ignored.

Programmer Response: Correct the ATTR operand
and resubmit the assembly.

Severity: 8

| ASMA318W Invalid message n specified for
| SUPRWARN option. Message ignored.

| Explanation: Message n, specified as a sub-option of
| option SUPRWARN, is not a valid High Level
| Assembler message. Message ignored.

| System Action: The specified message n is ignored.

| Programmer Response: Change the value n to a
| valid message, or remove it from option SUPRWARN.

| Severity: 4

| ASMA319W Message n specified for SUPRWARN
| option, but severity is too high. Message
| ignored.

| Explanation: Message n specified as a sub-option of
| option SUPRWARN is a valid High Level Assembler
| message, but the severity code of message n is higher
| than allowed by option SUPRWARN.

| System Action: The specified message n is ignored.

| Programmer Response: Change the value n to a
| valid message, or remove it from option SUPRWARN.

| Severity: 4

| ASMA320W Immediate field operand may have
| incorrect sign or magnitude

| Explanation: The value of a signed immediate
| operand of a machine instruction is beyond the allowed
| range for the instruction, where the normal allowed
| range of values for a 16-bit signed immediate operand
| is -32768 through to 32767, and for a 32-bit signed
| immediate operand is -2147483648 through to
| 2147483647. Immediate operands used in an
| arithmetic context are signed, with bit 0 of the
| immediate field being used to hold the sign bit. This
| reduces by one the number of bits available to hold the
| absolute value of the operand; for example:

| AHI r1,-30000 is valid, but
| AHI r1,50000 is not because bits 1-15 of the
| immediate field can only hold a
| maximum absolute value of
| 32767.

| System Action: The required number of low-order bits
| of the operand's value are used.

| Programmer Response: Use a valid immediate
| operand, or specify the immediate information in a DC
| statement or a literal and change the statement to a
| non-immediate type. You can suppress this message
| by specifying the TYPECHECK(NOMAGNITUDE)
| option.

| Severity: 4

| ASMA321E Invalid assembler type - xxxx

| Explanation: The fifth operand of an EQU statement
| contains an absolute value that does not match the
| allowed assembler type values.

| System Action: The fifth operand is ignored, and the
| assembler type of the EQU statement is set to spaces.

| Programmer Response: Supply a valid assembler
| type.

| Severity: 8

 Appendix G. High Level Assembler Messages 373

 ASMA322E � ASMA402W

| ASMA322E Program type error - xxxxxxxx

| Explanation: The program type subfield on a DC or
| DS assembler instruction contains one of the following
| errors:

| � It is not an absolute term or expression whose
| value is from 1 to 4 bytes in size.
| � It contains a symbol that is not previously defined
| � It is circularly defined
| � It is too complex; for example, it causes an
| arithmetic overflow during evaluation.

| System Action: The program type subfield is ignored,
| and the program type of the DC statement is set to
| binary zeros.

| Programmer Response: Correct the error if it exists.
| Note that paired relocatable symbols in different
| LOCTRs, even though in the same CSECT, are not
| valid where an absolute, predefined value is required.

| Severity: 8

| ASMA323W Symbol xxxxxxxx has incompatible type
| with yyyyyyyy register field

| Explanation: A symbol was used to provide an
| absolute value for a register field in a machine
| instruction, but the assembler type assigned to the
| symbol does not match the expected register type for
| the instruction.

| System Action: The register value is used and the
| object code is generated. Execution of the code will not
| be affected by this message.

| Programmer Response: Use a symbol with the
| correct assembler type. If the symbol was defined using
| the EQU assembler instruction, then the assembler type
| is assigned to the symbol using the fifth operand. This
| message can be suppressed using the
| TYPECHECK(NOREGISTER) assembler option.

| Severity: 4

| ASMA324I Symbol xxxxxxxx may have incompatible
| type with yyyyyyyy register field

| Explanation: A symbol was used to provide an
| absolute value for a register field in a machine
| instruction, but the assembler type assigned to the
| symbol does not appear to match the expected register
| type for the instruction. Once the assembler detects the
| definition of a symbol with a particular assembler type,
| within the current piece of source code, it uses this
| message to highlight apparent inconsistent use of that
| assembler type on machine instructions.

| System Action: The register value is used and the
| object code is generated. Execution of the code will not
| be affected by this message.

| Programmer Response: Use a symbol with the
| correct assembler type. If the symbol was defined using
| the EQU assembler instruction, then the assembler type
| is assigned to the symbol using the fifth operand. This
| message can be suppressed using the
| TYPECHECK(NOREGISTER) assembler option.

| Severity: 0

ASMA400W Error in invocation parameter - xxxxxxxx

Explanation: The parameter xxxxxxxx is not a
recognized assembler option, or is incorrectly specified.

System Action: If installation option PESTOP is
specified, the assembly stops. If installation option
NOPESTOP is specified, the assembly continues, using
the installation default value for the erroneously
specified option.

Programmer Response: Correct the parameter error
and resubmit the assembly.

Severity: 4

ASMA401N Fixed option cannot be overridden by
invocation parameter - xxxxxxxx

Explanation: The parameter xxxxxxxx cannot be
specified in the ASMAOPT file or as an invocation
parameter because the option it is attempting to
override was fixed when High Level Assembler was
installed.

System Action: If installation option PESTOP is
specified, the assembly stops. If installation option
NOPESTOP is specified, the assembly continues, using
the installation default value for the erroneously
specified option.

Programmer Response: Correct the parameter error
and resubmit the assembly.

Severity: 2

ASMA402W Invalid print line length xxxxxx returned
by LISTING exit; exit processing
bypassed

Explanation: When invoked with an OPEN request,
the LISTING exit specified a print line length that was
either outside the range 121 to 255 (MVS and CMS),
121 to 133 (VSE), or was not permitted for the device to
which the listing file is assigned.

System Action: The assembler bypasses the exit
when processing listing records, and writes the
assembly listing to the standard listing file. The print
line length is determined by the assembler.

Programmer Response: Correct the error in the
LISTING exit.

Severity: 4

374 HLASM V1R5 Programmer’s Guide

 ASMA404W � ASMA419C

ASMA404W Invalid term line length xxxxxx returned
by TERM exit; exit processing bypassed

Explanation: When invoked with an OPEN request,
the TERM exit specified a line length that was either
zero or greater than 255 (MVS and CMS), 125 (VSE),
or was not permitted for the device to which the
terminal file is assigned.

System Action: The assembler bypasses the exit
when processing terminal records, and writes the
terminal records to the standard terminal file. The line
length is determined by the assembler.

Programmer Response: Correct the error in the
TERM exit.

Severity: 4

ASMA409I Unable to load ASMAINFO

Explanation: The assembler attempted to load the
INFO option module ASMAINFO, but the load failed.

System Action: The assembly continues without
listing the INFO requested.

Programmer Response: Check that ASMAINFO is in
a library accessible by the assembler.

Severity: 0

ASMA413C Unable to open INPUT file

Explanation: The assembler encountered an error
when attempting to open the assembler input file. This
is usually caused by a job control language error.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check the JCL for the input
file.

Severity: 16

ASMA414C Unable to open LISTING file

Explanation: The assembler encountered an error
when attempting to open the assembler listing file. This
is usually caused by a job control language error.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check the JCL for the listing
file.

Severity: 16

ASMA415N Unable to open TERM file

Explanation: The assembler encountered an error
when attempting to open the assembler terminal output
file. This is usually caused by a job control language
error.

System Action: The assembly continues and no
terminal file is produced.

Programmer Response: Check the JCL for the
terminal output file.

Severity: 2

ASMA416C Unable to open DECK file

Explanation: The assembler encountered an error
when attempting to open the assembler deck output file.
This is usually caused by a job control language error.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check the JCL for the deck
output file.

Severity: 16

ASMA417C Unable to open OBJECT file

Explanation: The assembler encountered an error
when attempting to open the assembler object output
file. This is usually caused by a job control language
error.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check the JCL for the object
output file.

Severity: 16

ASMA418C Unable to open ADATA file

Explanation: The assembler encountered an error
when attempting to open the associated data file. This
is usually caused by a job control language error.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check the JCL for the
SYSADATA ddname (MVS and CMS), or the SYSADAT
file (VSE).

Severity: 16

ASMA419C Unable to open TRACE file

Explanation: The assembler encountered an error
when attempting to open the internal trace file. This is
usually caused by a job control language error.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check the JCL for the
SYSTRACE ddname (MVS and CMS), or the
SYSTRAC file (VSE).

Severity: 16

 Appendix G. High Level Assembler Messages 375

 ASMA420N � ASMA425N

ASMA420N Error in a *PROCESS statement
parameter - xxxxxxxx

Explanation: The parameter xxxxxxxx is not a
recognized assembler option, or is incorrectly specified.

System Action: If installation option PESTOP is
specified, the assembly stops. If installation option
NOPESTOP is specified, the assembly continues, using
the installation default value or the invocation parameter
value for the erroneously specified option.

Programmer Response: Correct the parameter error
and resubmit the assembly.

Severity: 2

ASMA421N Fixed option cannot be overridden by
*PROCESS statement parameter -
xxxxxxxx

Explanation: The parameter xxxxxxxx cannot be
specified in a *PROCESS statement parameter because
the option it is attempting to override was fixed when
High Level Assembler was installed.

System Action: If installation option PESTOP is
specified, the assembly stops. If installation option
NOPESTOP is specified, the assembly continues, using
the installation default value for the erroneously
specified option.

Programmer Response: Remove the option from the
*PROCESS statement and resubmit the assembly.

Severity: 2

ASMA422N Option xxxxxxxx is not valid in a
*PROCESS statement

Explanation: The following options cannot be
specified in a *PROCESS statement:

 ADATA|NOADATA OBJECT|NOOBJECT

 ASA|NOASA SIZE

 DECK|NODECK SYSPARM

 EXIT|NOEXIT TERM|NOTERM

 GOFF|NOGOFF TRANSLATE|NOTRANSLATE

 LANGUAGE XOBJECT|NOXOBJECT

 LINECOUNT

 LIST|NOLIST

System Action: If installation option PESTOP is
specified, the assembly stops. If installation option
NOPESTOP is specified, the assembly continues, using
the installation default value or the invocation parameter
value for the erroneously specified option.

Programmer Response: Remove the option from the
*PROCESS statement and resubmit the assembly.

Severity: 2

ASMA423N Option yyyyyyyy in a *PROCESS
OVERRIDE statement conflicts with an
invocation or default option. Option is
not permitted in *PROCESS statement
and has been ignored.

Explanation: The option yyyyyyyy specified in a
*PROCESS OVERRIDE statement conflicts with an
invocation or default option. The option is not permitted
in a *PROCESS statement and has been ignored.

System Action: If installation option PESTOP is
specified, the assembler stops. If installation option
NOPESTOP is specified, the assembly continues using
the invocation or default option.

Programmer Response: Correct the *PROCESS
OVERRIDE statement and resubmit the assembly.

Severity: 2

ASMA424W Continuation column is not blank.
*PROCESS statements may not be
continued.

Explanation: The continuation column (usually column
72) is not blank for a *PROCESS statement.
*PROCESS statements can not be continued.

System Action: If option PESTOP is specified, the
assembly stops. If option NOPESTOP is specified, the
assembly continues and processes the options
specified.

Programmer Response: Recode the *PROCESS
statement, leaving the continuation column blank. If
you need to specify more options that can fit on the
*PROCESS statement, add another *PROCESS
statement to your code. You can specify a maximum of
10 *PROCESS statements.

Severity: 4

ASMA425N Option conflict in invocation
parameters. yyyyyyyy overrides an
earlier setting.

Explanation: The option yyyyyyyy specified as an
invocation parameter in either the ASMAOPT file or the
invocation parameters overrides an earlier setting of the
option in either the same ASMAOPT file or the
invocation parameters.

System Action: If installation option PESTOP is
specified, the assembler stops. If installation option
NOPESTOP is specified, the assembly continues using
the last specified conflicting option.

Programmer Response: Correct the ASMAOPT file or
the invocation parameter and resubmit the assembly.

Severity: 2

376 HLASM V1R5 Programmer’s Guide

 ASMA426N � ASMA433W

ASMA426N Option conflict in *PROCESS
statements. yyyyyyyy overrides an earlier
setting.

Explanation: The option yyyyyyyy specified in a
*PROCESS statement overrides an earlier setting of the
option on the same statement or a previous *PROCESS
statement.

System Action: If installation option PESTOP is
specified, the assembly stops. If installation option
NOPESTOP is specified, the assembly continues using
the last conflicting option encountered.

Programmer Response: Correct the *PROCESS
statement error and resubmit the assembly.

Severity: 2

ASMA427N Invocation parameter option xxxxxxxx
ignored. This option is not valid under
VSE.

Explanation: The option xxxxxxxx specified in an
invocation parameter is not valid for the VSE operating
system.

System Action: If installation option PESTOP is
specified, the assembly stops. If installation option
NOPESTOP is specified, the assembly continues and
the option is ignored.

Programmer Response: Remove the option from the
invocation parameter and resubmit the assembly.

Severity: 2

ASMA428N *PROCESS statement option xxxxxxxx
ignored. This option is not valid under
VSE.

Explanation: The option xxxxxxxx specified in a
*PROCESS statement is not valid for the VSE operating
system.

System Action: If installation option PESTOP is
specified, the assembly stops. If installation option
NOPESTOP is specified, the assembly continues and
the option is ignored.

Programmer Response: Remove the option from the
*PROCESS statement and resubmit the assembly.

Severity: 2

ASMA429W SYSPRINT LRECL should be at least
133 when GOFF/XOBJECT option is
specified

Explanation: The GOFF or XOBJECT assembler
option has been specified, however the logical record
length of the listing file, SYSPRINT, is less than 133.

System Action: If installation option PESTOP is
specified, the assembly stops. If installation option
NOPESTOP is specified, the assembly continues,
however the lines in the source and object section are
truncated.

Programmer Response: Specify a record length of at
least 133 for SYSPRINT.

Severity: 4

ASMA430W Continuation statement does not start
in continue column.

Explanation: The operand on the continued record
ends with a comma and a continuation statement is
present but the continue column is blank. The continue
column is column 16, unless you redefined it with an
ICTL instruction.

System Action: Any remaining continuation lines
belonging to this statement are ignored.

Programmer Response: Check that the continuation
was coded as intended.

Severity: 4

ASMA431W Continuation statement may be in error
- continuation indicator column is blank.

Explanation: A list of one or more operands ends with
a comma, but the continuation indicator column is
blank. The continuation indicator column is column 72,
unless you redefined it with an ICTL instruction.

System Action: The next statement assembles as a
standard assembler source statement.

Programmer Response: Check that the continuation
was coded as intended.

Severity: 4

ASMA432W Continuation statement may be in error
- comma omitted from continued
statement.

Explanation: The continuation record starts in the
continue column (usually column 16) but there is no
comma present following the operands on the previous
record.

System Action: Any remaining continuation lines
belonging to this statement are ignored.

Programmer Response: Check that the continuation
was coded as intended.

Severity: 4

ASMA433W Statement not continued - continuation
statement may be in error

Explanation: The continued record is full but the
continuation record does not start in the continue
column (usually column 16).

System Action: Any remaining continuation lines
belonging to this statement are ignored.

Programmer Response: Check that the continuation
was coded as intended.

Severity: 4

 Appendix G. High Level Assembler Messages 377

 ASMA434N � ASMA439N

ASMA434N GOFF/XOBJECT option specified,
option LIST(133) will be used

Explanation: You specified the GOFF or XOBJECT
option, and the LIST suboption is 121.

System Action: The assembler sets the LIST
suboption to 133. If installation option PESTOP is
specified, the assembly stops. If installation option
NOPESTOP is specified, the assembly continues.

Programmer Response: To prevent this warning
message, run the assembly again specifying GOFF and
LIST(133).

Severity: 2

ASMA435I Record n in xxxxxxx on volume: vvvvvv

Explanation: The data set xxxxxxxx which is located
on volume serial vvvvvv, contains an error on record
number n. The volume serial might not be available.

For an AINSERT instruction:

n The number of the statement within the AINSERT
internal buffer. This number may not reflect the
statement's relative statement number within the
buffer at the point of retrieval, but does reflect the
relative retrieval number. This is because it is
possible to insert records into the buffer after
statements have been retrieved from the buffer.

xxxxxxxx
The constant AINSERT BUFFER to indicate that the
statement resulted from an AINSERT instruction.

vvvvvv
will be null.

System Action: See the System Action section of the
error message(s) which immediately precede this
message.

Programmer Response: Refer to the Programmer
Response section of the error messages which
immediately precede this message.

Severity: 0

ASMA436N Attempt to override invocation
parameter in a *PROCESS statement.
Option yyyyyyyy ignored.

Explanation: The option yyyyyyyy specified in a
*PROCESS statement conflicts with an option specified
either in the ASMAOPT file or in an invocation
parameter.

System Action: If installation option PESTOP is
specified, the assembler stops. If installation option
NOPESTOP is specified, the assembly continues using
the option specified in the ASMAOPT file or the
invocation parameters.

Programmer Response: Correct the *PROCESS
statement and resubmit the assembly.

Severity: 2

ASMA437N Attempt to override invocation
parameter in a *PROCESS statement.
Suboption yyyyyyyy of xxxxxxxx option
ignored.

Explanation: The suboption yyyyyyyy of option
xxxxxxxx specified on a *PROCESS statement conflicts
with a suboption specified in either the ASMAOPT file
or in the invocation parameters.

System Action: If installation option PESTOP is
specified, the assembler stops. If installation option
NOPESTOP is specified, the assembly continues using
the suboption specified in the *PROCESS OVERRIDE
statement.

Programmer Response: Correct the *PROCESS
statement and resubmit the assembly. the assembly.

Severity: 2

ASMA438N Attempt to override ASMAOPT
parameter. Option yyyyyyyy ignored

Explanation: The option yyyyyyyy specified as an
invocation parameter overrides the option specified in
the ASMAOPT file (CMS or MVS) or Librarian member
(VSE).

System Action: If installation option PESTOP is
specified, the assembly stops. If installation option
NOPESTOP is specified, the assembly continues using
the option specified in the ASMAOPT file (MVS and
CMS) or library member (VSE).

Programmer Response: Remove the option from the
invocation parameters and resubmit the assembly.

Severity: 2

ASMA439N Attempt to override ASMAOPT
parameter. Suboption yyyyyyyy of option
xxxxxxxx ignored

Explanation: The suboption xxxxxxxx of options
yyyyyyyy specified in an invocation parameter overrides
the suboption specified in the ASMAOPT file (MVS and
CMS) or library member (VSE)

System Action: If installation option PESTOP is
specified, the assembly stops. If installation option
NOPESTOP is specified, the assembly continues using
the suboption specified in the ASMAOPT file (MVS and
CMS) or library member (VSE).

Programmer Response: Remove the suboption from
the invocation parameters and resubmit the assembly.

Severity: 2

378 HLASM V1R5 Programmer’s Guide

 ASMA440N � ASMA703S

| ASMA440N Attempt to override OVERRIDE
| parameter in *PROCESS statement.
| Option yyyyyyyy ignored.

Explanation: The option yyyyyyyy specified on a
*PROCESS statement conflicts with an option specified
in a previous *PROCESS OVERRIDE statement.

System Action: If installation option PESTOP is
specified, the assembler stops. If installation option
NOPESTOP is specified, the assembly continues using
the option specified in the *PROCESS OVERRIDE
statement.

Programmer Response: Correct the *PROCESS
statement and resubmit the assembly.

Severity: 2

| ASMA441N Attempt to override OVERRIDE
| parameter in a *PROCESS statement.
| Suboption yyyyyyyy ignored.

Explanation: The suboption yyyyyyyy of option
xxxxxxxx specified on a *PROCESS statement conflicts
with a suboption specified in a previous *PROCESS
OVERRIDE statement.

System Action: If installation option PESTOP is
specified, the assembler stops. If installation option
NOPESTOP i specified, the assembly continues using
the suboption specified in the *PROCESS OVERRIDE
statement.

Programmer Response: Correct the *PROCESS
statement and resubmit the assembly.

Severity: 2

ASMA442N ASMAOPT internal buffer full - some
options ignored.

Explanation: The length of the options list provided by
the ASMAOPT file, including the delimiting commas
inserted by the assembler, exceeds 32766 bytes.

System Action: The record which caused the
message to be generated, together with those records
following, will be ignored.

Programmer Response: Reduce the length of the
options list provided by the ASMAOPT file.

Severity: 2

| ASMA443N ASMAOPT record format invalid -
| options provided via ASMAOPT ignored

| Explanation: The ASMAOPT DD statement or
| ASMAOPT FILEDEF refers to a file with a record format
| that is neither fixed-length nor variable-length.

| System Action: The ASMAOPT file is not processed
| and any options it contains are ignored.

| Programmer Response: Supply a file which is either
| fixed-length or variable-length record format.

| Severity: 2

| ASMA500W Requested alignment exceeds section
| alignment

| Explanation: The section alignment is lower than that
| requested on the instruction and hence the actual
| alignment may not be honored.

| Severity: 4

| System Action: The requested alignment is ignored.

| User Response: Change the requested alignment to
| be less than or equal to that of the section, or ensure
| that the desired alignment is achieved during program
| linking and loading.

| ASMA700I exit-type: exit supplied text

Explanation: The user supplied exit for exit-type exit
has requested the assembler to issue this message with
the exit supplied text.

System Action: None

Programmer Response: Check the user exit
documentation for the cause of this message and for
the correct response.

Severity: 0

ASMA701W exit-type: exit supplied text

Explanation: The user supplied exit for exit-type exit
has requested the assembler to issue this message with
the exit supplied text.

System Action: None

Programmer Response: Check the user exit
documentation for the cause of this message and for
the correct response.

Severity: 4

ASMA702E exit-type: exit supplied text

Explanation: The user supplied exit for exit-type exit
has requested the assembler to issue this message with
the exit supplied text.

System Action: None

Programmer Response: Check the user exit
documentation for the cause of this message and for
the correct response.

Severity: 8

ASMA703S exit-type: exit supplied text

Explanation: The user supplied exit for exit-type exit
has requested the assembler to issue this message with
the exit supplied text.

System Action: None

Programmer Response: Check the user exit
documentation for the cause of this message and for
the correct response.

 Appendix G. High Level Assembler Messages 379

 ASMA704C � ASMA714C

Severity: 12

ASMA704C exit-type: exit supplied text

Explanation: The user supplied exit for exit-type exit
has requested the assembler to issue this message with
the exit supplied text.

System Action: None

Programmer Response: Check the installation
documentation for the cause of this message and for
the correct response.

Severity: 16

ASMA710I function-name: function-supplied text

Explanation: The user supplied function
function-name has requested the assembler to issue
this message with the function-supplied text.

System Action: None

Programmer Response: Check the external function
documentation for the cause of this message and for
the correct response.

Severity: 0

ASMA711W function-name: function-supplied text

Explanation: The user supplied function
function-name has requested the assembler to issue
this message with the function-supplied text.

System Action: None

Programmer Response: Check the external function
documentation for the cause of this message and for
the correct response.

Severity: 4

ASMA712E function-name : function-supplied text

Explanation: The user supplied function
function-name has requested the assembler to issue
this message with the function-supplied text.

System Action: None

Programmer Response: Check the external function
documentation for the cause of this message and for
the correct response.

Severity: 8

ASMA713S function-name : function-supplied text

Explanation: The user supplied function
function-name has requested the assembler to issue
this message with the function-supplied text.

System Action: None

Programmer Response: Check the external function
documentation for the cause of this message and for
the correct response.

Severity: 12

ASMA714C function-name : function-supplied text

Explanation: The user supplied function
function-name has requested the assembler to issue
this message with the function-supplied text.

System Action: None

Programmer Response: Check the external function
documentation for the cause of this message and for
the correct response.

Severity: 16

Abnormal Assembly Termination
Messages

Whenever an assembly cannot complete, High
Level Assembler provides a message and, in
some cases, a specially formatted dump for
diagnostic information. This might indicate an
assembler malfunction or it might indicate a
programmer error. The statement causing the
error is identified and, if possible, the assembly
listing up to the point of the error is printed. The
messages in this book give enough information to
enable you to correct the error and reassemble
your program, or to determine that the error is an
assembler malfunction.

Note:

If SYSPRINT or SYSLST (VSE only) is
unavailable, the assembler uses the macro WTO
with a route code of 11 and a descriptor code of
7, or the system defaults, to output the
message(s).

 Messages

ASMA930U LOAD OF ASMA93 PHASE FAILED;
INSUFFICIENT GETVIS STORAGE OR
PHASE NOT FOUND

Explanation: The assembler attempted to load the
phase ASMA93, but the load failed either because there
was insufficient GETVIS storage available to complete
the load, or the phase could not be found.

Note: This message is only produced in uppercase
English.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check the LIBDEF chain to
ensure that the sublibrary containing High Level

380 HLASM V1R5 Programmer’s Guide

 ASMA932U � ASMA939U

Assembler is correctly concatenated. If it is, you should
consider increasing the partition size.

Severity: 20

ASMA932U Unable to load specified EXIT module -
xxxxxxxx

Explanation: The assembler attempted to load the
named exit module, but the load failed.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check that the specified exit
module is in a library accessible by the assembler.

Severity: 20

ASMA933U UNABLE TO LOAD SPECIFIED
MESSAGES MODULE - xxxxxxxx

Explanation: The assembler attempted to load the
named messages module, but the load failed. The
name of the messages module is determined from the
value specified in the LANGUAGE option.

Note: This message is only produced in uppercase
English.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check that you have
correctly specified the correct messages module using
the LANGUAGE option, and that the specified
messages module is in a library accessible by the
assembler.

Severity: 20

ASMA934U UNABLE TO LOAD DEFAULT OPTIONS
MODULE - xxxxxxxx

Explanation: The assembler attempted to load the
named default options module, but the load failed.

Note: This message is only produced in uppercase
English.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check that the default
options module is in a library accessible by the
assembler.

Severity: 20

ASMA935U One or more required files not available

Explanation: The assembler encountered an error
when attempting to open a required file.

System Action: Before this message is issued, one or
more associated messages are issued that describe
which file or files could not be opened. After this
message is issued, the assembly stops.

Programmer Response: Check the associated
message or messages.

Severity: 20

ASMA936U Assembly terminated due to errors in
invocation parameters

Explanation: The assembler detected an error in one
or more of the parameters specified when the
assembler was invoked, and the installation default
value for the PESTOP assembler option is YES.

System Action: Before this message is issued, one or
more associated messages are issued that describe
which parameter or parameters were in error. After this
message is issued, the assembly stops.

Programmer Response: Check the associated
message or messages. Invoke the assembler with
correct invocation parameters. Do not attempt to
override the fixed installation defaults.

Severity: 20

ASMA937U Unable to load specified translation
table - xxxxxxxx

Explanation: The assembler attempted to load the
translation table called xxxxxxxx, but the load failed.
The name of the translation table is determined from
the value specified in the TRANSLATE option.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check you have correctly
specified the translation table module using the
TRANSLATE option, and the module is in a library
accessible by the assembler.

Severity: 20

ASMA938U Module xxxxxxxx is not a valid
translation table

Explanation: The translation table specified in the
TRANSLATE option is not valid.

System Action: The assembly stops.

Programmer Response: Ensure the translation table
is generated according to the instructions described in
Appendix L, “How to Generate a Translation Table” on
page 404.

Severity: 20

ASMA939U Unable to load external function module
- xxxxxxxx

Explanation: The assembler attempted to load the
external function module xxxxxxxx, but the load failed.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check that the specified
module is in a library accessible by the assembler, and

 Appendix G. High Level Assembler Messages 381

 ASMA940U � ASMA946U

that the external function name has been spelled
correctly in the SETAF or SETCF statement.

Severity: 20

ASMA940U exit-type exit has requested termination
during operation processing; exit error
text: < none | error text >

Explanation: The user supplied exit for exit-type failed
when processing an operation request. The exit might
have provided error text to assist in determination of the
failure.

System Action: The assembly stops.

Programmer Response: Check the specified exit
program for the cause of failure.

Severity: 20

ASMA941U external function name has requested
termination during processing.

Explanation: The user supplied external function
external function name failed during processing.

System Action: The assembly stops.

Programmer Response: Check the specified external
function program for the cause of failure.

Severity: 20

ASMA942U xxxxxxxx IS NOT A VALID MODULE

Explanation: The default options module ASMADOPT,
or an operation code table module, is not in the
required format for this release of the assembler. The
assembler checks to ensure the release of the module
is the same as that of the assembler.

Note: This message may be produced in uppercase
English, even if you have specified a different language.

System Action: The assembly terminates

Programmer Response: Ensure that you have the
correct version of the ASMADOPT or ASMAOxxx
module available. You might need to reassemble your
default options module with the current ASMAOPT
macro.

Severity: 20

ASMA943U Unable to find listing header nnn

Explanation: The assembler tried to produce a
heading line in the assembler listing but could not find
the heading. This can be caused if the assembler load
module has been corrupted.

System Action: The assembly is aborted.

Programmer Response: Reassemble the program; it
might assemble correctly. If it does not reassemble
without error, save the output from the assembly, and
the input source(s), and contact IBM for support.

Severity: 20

ASMA944U LOAD OF ASMA93 MODULE FAILED.
INSUFFICIENT GETMAIN STORAGE, OR
MODULE NOT FOUND

Explanation: The assembler attempted to load the
module ASMA93, but the load failed either because

| there was insufficient main storage available to
| complete the load, or the module could not be found, or
| the Assembler was dynamically invoked by an
| APF-authorized program yet the Assembler does not
| reside in an APF-authorized library.

Note: This message is only produced in uppercase
English.

System Action: The assembly stops and no listing is
produced.

Programmer Response: On MVS, ensure that the
correct High Level Assembler load library is available in

| the standard load module search order. If the assembler
| is invoked by an APF-authorized program then ensure
| that the assembler resides in an APF-authorized library.
| Check that there is sufficient virtual storage available to
| the assembler and consider increasing the region size.

On CMS, ensure that the correct mini disk containing
the High Level Assembler modules is being accessed. If
it is, consider increasing your virtual machine storage
size.

Severity: 20

ASMA945U Unable to load code page xxxxxxxx

Explanation: The assembler attempted to load the
Code Page module called xxxxxxxx, but the load failed.
The name of the module is determined from the value
specified in the CODEPAGE option.

System Action: The assembly stops.

Programmer Response: Check that you have
correctly specified the Code Page module using the
CODEPAGE option, and that the module is in a library
accessible by the assembler.

Severity: 20

ASMA946U Module ASMAxxxx is not a valid code
page module.

Explanation: The code page module specified in the
CODEPAGE option is not valid.

System Action: The assembly stops.

Programmer Response: Ensure the code page
module is generated according to the instructions
described in Appendix M, “How to Generate a Unicode
Translation Table” on page 406.

Severity: 20

382 HLASM V1R5 Programmer’s Guide

 ASMA950U � ASMA970U

ASMA950U End of statement flag was expected in
Macro Edited Text, but was not found -
MACRO EDITOR is suspect

ASMA951U The MACRO GENERATOR has
encountered untranslatable Macro Edited
Text

ASMA952U Bad SET symbol name field or LCL/GBL
operand - check the Macro Edited Text

ASMA953U Bad subscript on SET symbol - check
the Macro Edited Text

ASMA954U Character expression followed by bad
subscripts - check the Macro Edited Text

ASMA955U A right parenthesis with no matching
left parenthesis was found in an
expression - check the Macro Edited
Text or the expression analysis work
area

ASMA956U Multiple subscripts or bad SET symbol
terminator - check the Macro Edited Text

ASMA957U Bad terminator on created SET symbol -
check the Macro Edited Text

ASMA958U Bad terminator on parameter - check the
Macro Edited Text

ASMA960U A bad internal file number has been
passed to the xxxxxxxx internal storage
management routine

ASMA961U An invalid storage request has been
made, or the free storage chain pointers
have been destroyed

ASMA962U A zero block address or bad block
number has been passed to an internal
storage management routine

ASMA963U Invalid pointer at entry to utility routine
ASMA964U Macro Edited Text Flag is not ICTL

Explanation: The assembly stops because of one of
the errors described in ASMA950U through ASMA964U.
This usually is caused by an error in the assembler
itself. Under certain conditions, however, the assembly
can be rerun successfully.

System Action: The assembly stops and a formatted
abnormal termination dump is produced. Depending on
where the error occurred, the assembly listing up to the
failing statement might also be produced. The dump
usually indicates which statement was being processed
at the time of abnormal termination. It also might
include contents of the assembler registers and work
areas and other status information for use by an IBM
support representative.

Programmer Response: Check the statement that
was being processed at the time of abnormal
termination. Correct any errors in it or, if the statement
is long or complex, rewrite it. Reassemble the program;
it might assemble correctly. However, even if the
program assembles correctly, there might be a problem
with the assembler. Save the abnormal termination
dump, the assembly listing (if one was produced), and
the source program, and contact IBM for support.

Severity: 20

ASMA966U Insufficient partition GETVIS storage to
load xxxxxxxx; increase the partition
GETVIS size

Explanation: The assembler attempted to load the
named phase, but there was not enough GETVIS
storage available for the phase.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Increase the amount of
GETVIS storage allocated to the partition.

Severity: 20

ASMA967U Insufficient partition GETVIS storage for
assembly initialization; increase the
partition GETVIS size

Explanation: The assembler attempted to acquire an
initial block of storage, but there is not enough GETVIS
storage available.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Increase the amount of
GETVIS storage allocated to the partition.

Severity: 20

ASMA970U Statement complexity exceeded, break
the statement into segments, and rerun
the assembly

Explanation: The statement is too complex to be
evaluated by the macro generator phase of the
assembler. It overflowed the evaluation work area of
the assembler. Normally, there is no assembler
malfunction; the statement can be corrected and the
program reassembled successfully.

System Action: A special abnormal termination dump
(High Level Assembler interrupt and diagnostic dump)
follows the message. The statement causing
termination is SETA, SETB, SETC, AGO, or AIF. The
dump does not indicate which statement caused
termination; however, it might show the last statement
generated in the macro. The dump might also include
contents of the assembler registers and work areas and
other status information for use by IBM or your
assembler maintenance programmers in determining
the cause of the termination. However, it is not needed
unless the error persists. This information could be
helpful in diagnosing and fixing an assembler error.

Programmer Response: Check the statement that
caused termination. Rewrite the statement or split it
into two or more statements. Reassemble the program;
it should assemble correctly. However, if the error
persists, there might be an assembler malfunction.
Save the abnormal termination dump, the assembly
listing (if one was produced), and the input source(s),
and contact IBM for support.

 Appendix G. High Level Assembler Messages 383

 ASMA971U � ASMA990U

Severity: 20

ASMA971U Insufficient storage available for Macro
Editor work area

ASMA972U Virtual storage exhausted; increase the
SIZE option

Explanation: The size of the dynamic storage area
allocated for assembler buffer areas, tables, and work
areas, as specified in the SIZE option, is not enough for
the assembly to complete.

System Action: A special abnormal termination dump
(High Level Assembler interrupt and diagnostic dump)
follows the message. The dump usually indicates the
statement being processed when the assembler
determined there was not enough dynamic storage
available to continue. Depending on where the error
occurred, the assembly listing up to the statement being
processed might also be produced. The other
information in the dump, such as register and work area
contents, is not needed.

Programmer Response: Increase the value specified
in the SIZE option, or split the assembly into two or
more assemblies. Check for conditional assembly
language loops in open code that could cause the
symbol table to overflow.

Severity: 20

ASMA974U Insufficient storage available to satisfy
the SIZE option

Explanation: The assembler attempted to acquire the
amount of storage specified in the SIZE option, but
there was not enough available storage in the region
(MVS), virtual machine (CMS), or partition GETVIS
(VSE).

System Action: The assembly stops and no listing is
produced.

Programmer Response: Increase the region size
(MVS), the virtual machine size (CMS), or the partition
GETVIS (VSE) size, or reduce the size requested in the
SIZE option.

Severity: 20

ASMA975U SIZE option specifies insufficient
storage for assembly

Explanation: The SIZE option was specified as
MAX-nnnK or MAX-nnM, but the amount of storage
available to the assembler using this formula is not
enough for the assembly to continue. The assembler
requires a minimum of either 200K bytes or 10 times
the work file blocksize, plus 20K, of working storage in
the region (MVS), virtual machine (CMS), or partition
GETVIS (VSE) to proceed.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Increase the region size
(MVS), virtual machine size (CMS), or the partition
GETVIS (VSE) size, or reduce the amount of storage to
be reserved in the MAX-nnnK or MAX-nnM form of the
SIZE option.

Severity: 20

ASMA976U Statement too complex for expression
analysis

Explanation: The statement is too complex to be
analyzed by the expression analysis routine of the
assembler. It overflowed the analysis work area. The
size of the analysis work area is the same as the work
file block size. Normally, there is no problem with the
assembler. The statement can be rewritten to simplify
it, and the program reassembled successfully.

System Action: The assembly stops and a formatted
abnormal termination dump is produced. The dump
indicates which statement was being processed at the
time of abnormal termination. It also includes the
contents of the assembler registers and work areas and
other status information that might be required by an
IBM support representative if the problem persists.

Programmer Response: Check the statement that
was being processed at the time of abnormal
termination. Rewrite the statement or split it into two or
more statements. Alternatively, increase the work file
block size. Reassemble the program; it should
assemble correctly. However, if the problem persists,
there might be a problem with the assembler. Save the
abnormal termination dump, the assembly listing (if one
was produced), and the input source(s), and contact
IBM for support.

Severity: 20

ASMA990U Location Counter does not match
symbol table value

Explanation: A difference has been detected between
the symbol table and the location counter. The
assembly stops and a special abnormal termination
dump (High Level Assembler interrupt and diagnostic
dump) is taken. The listing is not completed.

System Action: The High Level Assembler interrupt
and diagnostic dump shows the statement that was
being printed when the difference between the location
counter and the symbol table was detected.

Programmer Response: Reassemble the program
using NOALIGN. If alignment is needed, use CNOP or
DS to force alignment.

Severity: 20

384 HLASM V1R5 Programmer’s Guide

 ASMA998U � ASMA999U

ASMA998U The assembler could not resume
reading a LIBRARY member because it
could not FIND the member again

Explanation: The assembly stops, because the
assembler cannot find a COPY member that it has
already read. This usually is caused by an error in the
assembler itself or by an Operating System I/O error.
Under certain conditions, however, the assembly can be
rerun successfully.

System Action: A special abnormal termination dump
(High Level Assembler interrupt and diagnostic dump)
follows the message. The dump usually indicates which
statement caused termination. It also might include
contents of the assembler registers and work areas and
other status information for use by IBM or your
assembler maintenance programmers in determining
the cause of the termination.

Programmer Response: Reassemble the program; it
might assemble correctly. If it does not reassemble
without error, save the abnormal termination dump, the
assembly listing (if one was produced), and the input
source(s), and contact IBM for support.

Severity: 20

ASMA999U Assembly terminated - SYNAD Exit
taken - Permanent I/O error on xxxxxxx
data set

Explanation: The assembly was stopped because of a
permanent I/O error on the data set indicated in the
message. This is usually caused by a machine or an
operating system error. The assembly usually can be
rerun successfully. This message also appears on the
console output device.

System Action: A special abnormal termination dump
(High Level Assembler interrupt and diagnostic dump)
follows the message. Depending on where the error
occurred, the assembly listing up to the bad statement
might also be produced. The dump usually indicates
which statement caused termination. It also might
include contents of the assembler registers and work
areas and other status information for use by IBM or
your assembler maintenance programmers in
determining the cause of the termination.

Programmer Response: If the I/O error is on SYSIN
or SYSLIB, you might have concatenated the input or
library data sets incorrectly. Make sure that all input or
library data sets have the same device class (all DASD
or all tape). Please also check that file attributes such
as DSORG, RECFM, LRECL, and BLKSIZE have been
correctly specified.

If the I/O error is on SYSUT1, check that SYSUT1 is
allocated to a single volume—the assembler does not
support a multivolume work file.

Reassemble the program; it might assemble correctly.
If it does not reassemble without error, save the
abnormal termination dump, the assembly listing (if one
was produced), and the input source(s), and contact
IBM for support. Also, if the program assembles
correctly, submit a copy of the listing and input
source(s) of the correct assembly.

Severity: 20

ASMAHL Command Error
Messages (CMS)

ASMACMS002E File fn ft fm not found

Explanation: The file name you included in the
ASMAHL command does not correspond to the names
of any of the files on your disks.

Supplemental Information: The variable file name, file
type, and file mode in the text of the message indicate
the file that could not be found.

System Action: RC=28. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue the ASMAHL with
the correct file name.

ASMACMS003E Invalid option option

Explanation: You have included an option that is not
correct with your ASMAHL command.

Supplemental Information: The variable option in the
text of the message indicates the option that is not
correct.

System Action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Check the format of the
ASMAHL command, and reissue the command with the
correct option.

 Appendix G. High Level Assembler Messages 385

 ASMACMS004E � ASMACMS041E

ASMACMS004E Improperly formed option option

Explanation: You have included an improperly formed
option with your ASMAHL command.

Supplemental Information: The variable option in the
text of the message indicates the improperly formed
option.

System Action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Check the format of the
ASMAHL command, and reissue the command with the
correct option.

ASMACMS005E Truncation of options may have
occurred because of tokenized PLIST
format

Explanation: The options have been passed to the
ASMAHL command in tokenized PLIST format. Any
options passed might have been truncated to 8
characters. This message is only issued when an error
has been detected in one of the options that was
specified.

System Action: The options are accepted as entered
but might have been truncated.

Programmer Response: If the options have been
truncated, invoke the ASMAHL command with the
extended parameter list. If the SYSPARM option has
been truncated, specify SYSPARM(?).

ASMACMS006E No read/write disk accessed

Explanation: Your virtual machine configuration does
not include a read/write disk for this terminal session, or
you failed to specify a read/write disk.

System Action: RC=36. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Issue an ACCESS command
specifying a read/write disk.

ASMACMS007E File 'fn ft fm' does not contain fixed
length 80 character records

Explanation: The source file you specified in the
ASMAHL command does not contain fixed-length
records of 80 characters.

Supplemental Information: The variable file name, file
type, and file mode in the text of the message indicate
the file that is in error.

System Action: RC=32. The command cannot be
processed.

Programmer Response: You must reformat your file
into the correct record length. CMS XEDIT or
COPYFILE can be used to reformat the file.

ASMACMS010E file name omitted and FILEDEF
'ddname' is undefined

Explanation: You have not included a file name in the
ASMAHL command, and no FILEDEF could be found
for the ddname specified.

System Action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue the ASMAHL
command and specify a file name, or issue a FILEDEF
for the ddname specified.

ASMACMS011E file name omitted and FILEDEF
'ddname' is not for DISK

Explanation: You have not included a file name in the
ASMAHL command, and the FILEDEF for the ddname
specified is not for DISK.

System Action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue the ASMAHL
command and specify a file name, or reissue the
FILEDEF for the ddname specified with a device type of
'DISK'.

ASMACMS038E Filename conflict for the SYSIN
FILEDEF.

Explanation: The file name specified on the ASMAHL
command conflicts with the file name on the FILEDEF
for the SYSIN ddname.

System Action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue the FILEDEF
command or the ASMAHL command specifying the
same file name.

ASMACMS040E Saved segment xxxxxxxx does not
exist

Explanation: The specified saved segment has not
been included in the System Names Table (SNT).

System Action: RC=40. Processing of the command
terminates.

Programmer Response: See your system
administrator.

ASMACMS041E The storage for saved segment
xxxxxxxx is already in use

Explanation: The storage for the specified saved
segment has already been used by another saved
segment.

System Action: RC=40. Processing of the command
terminates.

386 HLASM V1R5 Programmer’s Guide

 ASMACMS042E � ASMACMS076E

Programmer Response: See your system
administrator.

ASMACMS042E SEGMENT error nnn loading saved
segment xxxxxxxx

Explanation: An error occurred when the ASMAHL
command attempted to load the specified saved
segment.

System Action: RC=40. Processing of the command
terminates.

Programmer Response: See your system
administrator.

ASMACMS043E DIAGNOSE error nnn loading saved
segment xxxxxxxx

Explanation: An error occurred when the ASMAHL
command attempted to load the specified saved
segment.

System Action: RC=40. Processing of the command
terminates.

Programmer Response: See your system
administrator.

ASMACMS044E NUCXLOAD error nnn loading
xxxxxxxx module

Explanation: An error occurred when the ASMAHL
command attempted to load the specified module.

System Action: RC=40. Processing of the command
terminates.

Programmer Response: See your system
administrator.

ASMACMS052E Option list exceeds 512 characters.

Explanation: The string of options that you specified
with your ASMAHL command exceeded 512 characters
in length.

System Action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue your ASMAHL
command with fewer options specified.

ASMACMS062E Invalid character c in file name
xxxxxxxx

Explanation: A character that is not permitted was
specified in the file name specified on the ASMAHL
command.

System Action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Check the format of the
option with its correct parameters, and reissue the
command with the correct parameter.

ASMACMS070E Left parenthesis '(' required before
option list

Explanation: An option was specified after the file
name but before the left parenthesis on the ASMAHL
command.

System Action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Issue the ASMAHL
command again with the option specified after the left
parenthesis. Only the file name can be specified before
the left parenthesis.

ASMACMS074E Required module xxxxxxxx MODULE
not found

Explanation: The ASMAHL command was unable to
load the specified module.

System Action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Verify you have accessed
the disk containing the assembler and issue the
ASMAHL command again.

ASMACMS075E Device device invalid for xxxxxxxx

Explanation: The device specified in your FILEDEF
command cannot be used for the input or output
operation that is requested in your program. For
example, you have tried to read data from the printer or
write data to the reader.

Supplemental Information: The variable device name
in the text of the message indicates the incorrect device
that was specified.

System Action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue your FILEDEF
command, specifying the correct device for the required
input operation.

| ASMACMS076E xxxxxxxx MODULE IS NOT IN
| RELEASE 5 FORMAT

Explanation: The module xxxxxxxx is not in the
| required format for Release 5.

Note: This message is only produced in uppercase
English.

System Action: RC=40. Processing of the command
terminates.

Programmer Response: Ensure that you have the
correct version of the module available. Check the
disks you have linked, and make sure you are not
accessing modules from an earlier release of High
Level Assembler. If the module is ASMADOPT, you

 Appendix G. High Level Assembler Messages 387

might need to reassemble your default options module
with the ASMAOPT macro provided with High Level

| Assembler Release 5. If you cannot resolve the

problem, contact your High Level Assembler
maintenance programmer, or your IBM service
representative.

388 HLASM V1R5 Programmer’s Guide

Appendix H. User Interface Macros

The macros identified in this appendix are provided as programming interfaces by
High Level Assembler.

Attention: Do not use any High Level Assembler macros, other than those
identified in this appendix, as programming interfaces.

The following macros intended for customers are all General-Use Programming
Interfaces.

ASMADATA Maps the records in the associated data file.

ASMAEFNP Maps the parameter list passed to external function routines for the
SETAF and SETCF conditional assembler instructions.

ASMAXFMB On MVS and CMS, generates the Filter Management Table used by
the sample ADATA user exit ASMAXADT.

ASMAXITP Maps the parameter list passed to the assembler user exits.

 Copyright IBM Corp. 1982, 2004 389

Appendix I. Sample ADATA User Exits (MVS and CMS)

ASMAXADT, ASMAXADC, and ASMAXADR are sample ADATA exits supplied with
High Level Assembler.

Sample ASMAXADT User Exit to Filter Records

 Function
This sample ADATA exit handles the details of interfaces to the assembler, and
provides associated data (ADATA) records to any of a number of filter modules that
inspect the records to extract the information they require. This allows filter
modules to be added or modified without impacting either the exit or the other filter
modules.

The design of the exit:

� Supports multiple simultaneous filter modules.

� Simplifies the ADATA record interface for each filter, because you don't need to
know about the complex details of interacting directly with the assembler.

� Supports filter modules written in high level languages.

The three components that make up the functional ADATA exit are:

1. The exit routine, ASMAXADT, which is invoked by High Level Assembler

2. A table of filter module names, contained in a Filter Management Table (FMT)
module ASMAXFMT. The FMT is loaded by the exit routine.

3. The filter modules. These are loaded by the exit as directed by the FMT. A
sample filter module, ASMAXFLU, is provided with High Level Assembler.

Preparing the Exit
Before the exit can be used it must be assembled and link-edited, and the load
module placed in a library in the standard search order. ASMAXADT, as supplied,
has the following attributes: reusable, reenterable, amode(24), rmode(24).

Refer to Chapter 4, “Providing User Exits” on page 85 for further information about
coding and preparing user exits.

Preparing the Filter Management Table
The names of the filter modules to be invoked by the user exit are contained in the
Filter Management Table (FMT). The FMT is generated by using the macro
ASMAXFMB. The names of the filter modules are specified as operands to the
ASMAXFMB macro. Figure 101 shows an example of how to create an FMT that
causes the filters MYFILT, YOURFILT, HERFILT, HISFILT, and OURFILT to be invoked
by the exit.

ASMAXFMT Title 'ADATA Exit Filter Management Table'

 ASMAXFMB MYFILT,YOURFILT,HERFILT,HISFILT,OURFILT

 END

Figure 101. Creating a Filter Management Table

390 Copyright IBM Corp. 1982, 2004

The object file produced from the assembly must be link-edited, and the load
module placed in a library in the standard search order. ASMAXFMT, as supplied,
has the following attributes: reusable, non-reenterable, non-shareable.

You can specify an initial character string as part of the filter operand that is passed
to the filter routine during initialization. Figure 102 shows two filter routines:
MYFILT, that receives the characters “A,B,C”, and ASMAXFLU, that receives the
characters “DUMP”.

ASMAXFMT Title 'ADATA Exit Filter Management Table'

 ASMAXFMB (MYFILT,'A,B,C'),(ASMAXFLU,'DUMP')

 END

Figure 102. Passing Initial Character String to Filter Routines

The default FMT control section (CSECT) name is ASMAXFMT. You can specify a
different CSECT name using the SECT keyword on the ASMAXFMB macro.
Figure 103 shows how to generate a CSECT name of MYFMT.

ASMAXFMT Title 'ADATA Exit Filter Management Table'

 ASMAXFMB SECT=MYFMT,(MYFILT,'A,B,C'),YOURFILT

 END

Figure 103. Generating an Alternative CSECT Name

Preparing the Filter Modules
The exit routine loads the Filter Management Table (FMT) module. The filter
modules specified in the FMT are then loaded by the exit routine. Each filter
module is called by the exit in three ways: once to process an OPEN request,
multiple times to process ADATA records, and once to process a CLOSE request.

Call Interface: The filter modules must be placed in a library in the standard
search order.

Each filter is called by the exit using the standard call interface in the following
form:

 CALL filter(exit_type,action,return_code,handle,record_length,record)

The exit branches to the filter module using the BASR assembler instruction.

Registers on Entry: Standard OS linkage conventions are used, and the registers
on entry to the filter module are:

� R13 contains the address of a standard 18-word save area

� R14 contains the return address to the exit

� R15 contains the filter's entry point address

� R1 contains the address of a list of six fullwords that address:

1. A fullword containing the exit_type

2. A fullword integer containing the action code

3. A fullword integer where the filter puts the return_code

4. A 4-fullword handle area

 Appendix I. Sample ADATA User Exits (MVS and CMS) 391

5. A fullword integer containing the ADATA record_length

6. The ADATA record

The high-order bit of the last fullword address is set to one.

Figure 104 shows the six fullwords in the parameter list.

 ┌───────────────┐

 ┌───────�│ exit_type │

 │ └───────────────┘

 │

 │ ┌───────────────┐

│ ┌─────�│ action │

 ┌───────────────┐ ┌──────────────────────────┐ │ │ └───────────────┘

 │ register 1 ├─────�│ address of exit_type ├─┘ │

 └───────────────┘ ├──────────────────────────┤ │ ┌───────────────┐

│ address of action ├───┘ ┌───�│ return_code │

 ├──────────────────────────┤ │ └───────────────┘

│ address of return_code ├─────┘

 ├──────────────────────────┤ ┌───────────────┐

│ address of handle ├─────────�│ handle │

 ├──────────────────────────┤ └───────────────┘

│ address of record_length ├─────┐

 ├──────────────────────────┤ │ ┌───────────────┐

│ address of record ├─┐ └───�│ record_length │

 └──────────────────────────┘ │ └───────────────┘

 │

 │ ┌───────────────┐

 └───────�│ record │

 └───────────────┘

Figure 104. Filter Module Parameter List Format

Parameters on Entry: The six parameters are:

exit_type (Input) The address of a fullword of storage that indicates the exit
type. The value is always 4, to indicate an ADATA exit.

action (Input) The address of a fullword integer that can be one of the
following three values:

0 OPEN Request. Open and initialize the filter. No ADATA
record is available with this call, although there may be initial
character string data supplied.

The exit accepts the following return codes:

0 The open action was successful. The exit subsequently
calls the filter module to inspect and process each
ADATA record.

12 The open action was unsuccessful. The filter module is
assumed to have closed itself, and is not called again.

1 CLOSE Request. The exit is requesting the filter module to
close itself. No ADATA record is available with this call and
no further calls are made to the filter module.

The exit accepts the following return codes:

0 The filter module has closed successfully. The exit can
delete the filter.

12 The filter module is assumed to have closed itself, and is
not called again. The exit can delete the filter.

392 HLASM V1R5 Programmer’s Guide

3 PROCESS Request. A record is available to the filter module
for processing. The ADATA record should not be modified.

The exit accepts the following return codes:

0 The filter module has completed its processing of this
record, and is ready to accept further records.

12 The filter module is assumed to have closed itself, and is
not called again.

return_code (Output) The address of a fullword integer where the filter module
should place a return code. Valid return codes are described under
each action.

handle (Input/Output) The address of a 4-fullword area of storage that is
initialized to zero before the OPEN (action=�) call to the filter. Its
contents are preserved across subsequent calls. The handle can
be used in any way by the filter module; for example, to address
working storage for a reenterable filter module.

record_length (Input) The address of a fullword integer containing the length of
the ADATA record. A length is provided for PROCESS (action=3)
calls, and for OPEN (action=�) calls when you supply an initial
character string.

record (Input) The address of the ADATA record. This points to the
ADATA record for PROCESS (action=3) calls, and to the initial
character string for OPEN (action=�) calls.

Information Messages: If all the filter modules request termination before the last
ADATA record is processed, the following message is issued and the assembly
continues:

ASMA7��I All SYSADATA filter modules requested early termination

Error Diagnostic Messages: When the Filter Management Table routine detects
an error it directs the assembler to issue message ASMA940U and the assembly
stops. The following text might be included in the ASMA940U message:

SYSADATA exit not coded at same level of interface definition (2) as

assembler

The exit uses version 2 of the exit definition, but the assembler uses a different
version.

SYSADATA exit called for other than SYSADATA

The exit was invoked with a valid type, but the type is not one that the exit can
process. This is probably caused by an incorrect ADEXIT() suboption of the
EXIT assembler option.

SYSADATA exit not initialized, and not entered for OPEN

The exit has not yet been initialized, but was not entered with an OPEN
request (action=�). There may be a failure in communication between the
assembler and the exit.

SYSADATA exit initialized, but was entered for OPEN

The exit has been initialized, but was unexpectedly entered with an OPEN
request (action=�). There may be a failure in communication between the
assembler and the exit.

 Appendix I. Sample ADATA User Exits (MVS and CMS) 393

SYSADATA exit - Invalid action or operation type requested

An action was requested that is inconsistent with the type of action the exit is
able or was expecting to take. There may be a failure in communication
between the assembler and the exit.

SYSADATA exit expecting input record, zero buffer length found

The exit was expecting an input record, but the record length was zero. There
may be a failure in communication between the assembler and the exit.

Unable to load xxxxxxxx module. SYSADATA exit failed

The assembler was unable to load the Filter Management Table module
xxxxxxxx. No SYSADATA processing is possible.

All SYSADATA filter modules failed to open

All of the filter modules loaded by the exit failed to open. No SYSADATA
processing is possible.

Preparing the Sample Filter Module ASMAXFLU
You can use the supplied filter routine, ASMAXFLU, to:

� Write the names of the primary input and library data sets to a data set.

� Dump the first 32 bytes of each ADATA record to a data set. This function is
only performed if you specify DUMP as the initial character string, as shown in
Figure 105.

ASMAXFMT Title 'ADATA Exit Filter Management Table'

 ASMAXFMB (ASMAXFLU,'DUMP')

 END

Figure 105. Initial Character String for ASMAXFLU

Output from ASMAXFLU: The output from ASMAXFLU is written to a data set
defined by the ddname XFLUOUT. The data set record length is 80 bytes. The
first record in the data set is a header record, and the last record in the data set is
a trailer record. The dump, header, and trailer records are prefixed with an
asterisk.

The data set records have one of the following formats:

Columns Contents

1 Record type: “P”=Primary Input, “L”=Library

2 Space

3–10 Date, in YYYYMMDD format (spaces for type “L”)

11–14 Time, in HHMM format (spaces for type “L”)

15–58 Data set name

59–66 Member name

67–72 Volume ID where file was found

73-80 Sequencing information

or

394 HLASM V1R5 Programmer’s Guide

Columns Contents

1 Record type: “M”=Inline MACRO

2 Space

3–15 “PRIMARY INPUT”

16–17 Space

18–80 Macro name (can be up to 63 characters)

Figure 106 shows a sample data set containing records written by ASMAXFLU:

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

� ASMAXFLU Filter Header Record

�Dump 1����2�3 �������� �������8 �������� �������� �������� �������� ��������

�Dump 1����1�3 �������� �������A B�CC4378 E5�BF9�� ��25���� �������� ��������

�Dump 1������3 �������� ������77 F1F9F9F8 F�F7F2F4 F1F9F3F3 F5F6F9F6 6�F2F3F4

P 1998�7241933AINSERT3 ASSEMBLE A1 ADISK �������1

�Dump 1���1��3 �������� ������68 A�CF��49 84BC�6�1 �F��8��� 4�4�4�4� 4�4�4�4�

�Dump 1���2��3 �������� ������28 �������� �������1 �������� �������� ��������

�Dump 1���3��3 �������� ������9C �������1 �������� �������1 �������� ���1����

�Dump 1���3��3 �������� ������9C �������2 �������� �������2 �������� ���1����

�Dump 1���3��3 �������� ������9C �������3 �������� �������3 �������� ���1����

�Dump 1���3��3 �������� ������9C �������4 �������� �������4 �������� ���1����

�Dump 1���3��3 �������� ������9C �������5 �������� �������5 �������� ���1����

�Dump 1���3��3 �������� ������9C �������6 �������� �������6 �������� ���1����

�Dump 1���42�3 �������� ������2A �������1 �������F �1D1���� ���1���1 ��������

�Dump 1���44�3 �������� ������1D ���8���� ���F���1 4������� �������� C1C9D5E3

�Dump 1���6��3 �������� ������3B ���2���D ����FFFF ���6���� ����D7D9 C9D4C1D9

M PRIMARY INPUT AINSERT_TEST_MACRO

M PRIMARY INPUT MAC1

�Dump 1���6��3 �������� ������39 ���2��14 ���5���1 ���6���� ����E3C5 E2E34�4�

L TEST MACLIB A1 XIT1 ADISK

L TEST MACLIB A1 XIT3 ADISK

�Dump 1���6��3 �������� ������33 ���1��14 ���5���2 ���6���� ����C4E2 C5C3E34�

L DSECT MACLIB A1 XIT2 ADISK

�Dump 1���62�3 �������� ������A6 �������� �������3 D74����� �������� ����C1C9

�Dump 1���62�3 �������� ������A6 �������� ������1C D74����� �������� ����D4C1

�Dump 1���62�3 �������� ������A6 �������2 �������� D34����� �������� ����E7C9

�Dump 1���62�3 �������� ������A6 �������3 �������� D34����� �������� ����E7C9

�Dump 1���62�3 �������� ������A6 �������2 �������� D34����� �������� ����E7C9

�Dump 1���9��3 �������� ������B� �����DF3 ������C8 ������12 �������� ��������

�Dump 1����2�3 �������� �������8 ���1���� ������3D �������� �������� ��������

� ASMAXFLU Filter Trailer Record

Figure 106. Sample Output Data Set from ASMAXFLU

Error Messages: When ASMAXFLU detects an error, it writes an error message
to the XFLUOUT data set. The following messages might be written:

� ASMAXFLU called with unknown ADATA Definition Level.

Check the value of ADATA_LEVEL in the ADATA record header.

� ASMAXFLU called for other than Assembler ADATA?

Check the value of ADATA_VERSION in the ADATA record header.

� ASMAXFLU library record has no member names?

| Check the value of ADMXREF_MACROS_NUM in the X'0060' ADATA record.

� ASMAXFLU library record missing member data?

| Check the value of ADMXREF_MACRO_NAME_LEN in the X'0060' ADATA
| record.

� ASMAXFLU Job-ID record has no file names?

 Appendix I. Sample ADATA User Exits (MVS and CMS) 395

| Check the value of ADJID_FILES_NUM in the X'0000' ADATA record.

� ASMAXFLU called with unrecognized action code.

The action code is not 0, 1, or 3.

� ASMAXFLU called with unrecognized exit type.

The exit_type is not 4.

Assembling and Link-Editing ASMAXFLU: You must assemble and link-edit
ASMAXFLU, placing the load module in a library in the standard search order.
ASMAXFLU, as supplied, has the following attributes: non-reusable,
non-reenterable, amode(24), rmode(24). See page 391 for details about preparing
filter modules.

Invoking the Exit
To invoke the exit, specify the EXIT assembler option as follows:

 EXIT(ADEXIT(ASMAXADT))

If you don't want to use the default filter management table ASMAXFMT, you can
specify a different name as follows:

 EXIT(ADEXIT(ASMAXADT(fmt_name))

where fmt_name is the load module name of the filter management table. See
Figure 103 on page 391, which shows you how to generate an alternative filter
management table.

| Sample ASMAXADC User Exit to Control Record Output

| Function
| This sample ADATA exit uses parameters specified on the assembler EXIT option
| to determine if it, or the assembler, is to perform output processing for the
| associated data records, and which record types are to be kept or discarded. The
| exit will accept records from the assembler, via either a PROCESS request or a
| WRITE request, and it will decide whether the record should be discarded, output,
| or perhaps modified and then output. The exit will then decide if an additional
| record should be inserted, and if so it will build the new record.

| For a PROCESS request the exit will set the appropriate flags and return to allow
| the assembler to perform the output processing. For a WRITE request the exit will
| perform the output processing itself.

| Preparing the Exit
| Before the exit can be used it must be assembled and link-edited, and the load
| module placed in a library in the standard search order. ASMAXADC, as supplied,
| has the following attributes: reusable, reenterable, amode(31), rmode(any).

| Refer to Chapter 4, “Providing User Exits” on page 85 for further information about
| coding and preparing user exits.

396 HLASM V1R5 Programmer’s Guide

| Invoking the Exit
| To invoke the exit, specify the EXIT assembler option as follows:

| EXIT(ADEXIT(ASMAXADC(parameter-string)))

| where parameter-string controls what action the exit performs.

| Parameter String|

| ┌ ┐─NOWRITE───────────────────────
| ��─ ──┼ ┼─────────────────────────────── ─�
| │ │┌ ┐──(SYSADATA|SYSADAT)
| └ ┘| ─WRITE─ ──┴ ┴──┬ ┬──────────── ────
| └ ┘──(filename)

| ┌ ┐─TYPE(�:FFFF)────────────────────
| �─ ──┼ ┼───────────────────────────────── ─��
| │ │┌ ┐─,───────────
| └ ┘── ──┬ ┬─TYPE─── (───

┴┬ ┬─aaaa──────)

| └ ┘─NOTYPE─ └ ┘─aaaa:zzzz─

| Default
| NOWRITE,TYPE(0:FFFF)

| Abbreviations
| W, NOW, T, N

| The abbreviations shown here are the minimum number of characters allowed.
| You can, for example, specify TYP or NOTY.

| WRITE(filename)
| Specifies that the exit will perform output processing for the associated data
| records, instead of the assembler, and optionally use the alternative filename
| filename instead of the default SYSADATA file (MVS and CMS) or SYSADAT
| file (VSE).

| NOWRITE
| Specifies that the assembler will perform output processing for the associated
| data records as per normal processing.

| TYPE(aaaa:zzzz)
| Specifies that these associated data record types will be output as per normal
| processing.

| Record types are specified as one to four character hex values, in the form of a
| list of single record types aaaa, or record type ranges aaaa:zzzz

| NOTYPE(aaaa:zzzz)
| Specifies that these associated data record types will be discarded.

| Record types are specified the same as for TYPE.

| Note: The parameter-string is processed left to right, so where a conflict occurs
| for a particular record type the last occurrence will take precedence.

| The default processing is to allow all associated data record types to be
| output by the assembler, as per normal processing. This means, for

 Appendix I. Sample ADATA User Exits (MVS and CMS) 397

| example, that a parameter-string of NOWRITE,TYPE(�:FFFF),NOTYPE(��3�)

| will have the same result as NOTYPE(��3�) alone.

| Messages
| When the exit detects an error it directs the assembler to issue message
| ASMA940U and the assembly stops. The following text might be included in the
| ASMA940U message:

| SYSADATA exit not coded at same level of interface definition (3) as

| Assembler

| The exit uses version 3 of the exit definition, but the assembler uses a different
| version.

| SYSADATA exit called for other than SYSADATA

| The exit was invoked with a valid type, but the type is not one that the exit can
| process. This is probably caused by an incorrect ADEXIT() suboption of the
| EXIT assembler option.

| SYSADATA exit not initialized, and not entered for OPEN

| The exit has not yet been initialized, but was not entered with an OPEN
| request (action=�). There may be a failure in communication between the
| assembler and the exit.

| SYSADATA exit initialized, but was entered for OPEN

| The exit has been initialized, but was unexpectedly entered with an OPEN
| request (action=�). There may be a failure in communication between the
| assembler and the exit.

| SYSADATA exit - Invalid action or operation type requested

| An action was requested that is inconsistent with the type of action the exit is
| able or was expecting to take. There may be a failure in communication
| between the assembler and the exit.

| SYSADATA exit - Supplied parameters contain a syntax error

| While parsing the supplied parameter string the exit has detected a syntax
| error. This is probably caused by an incorrect specification of parameters on
| the ADEXIT(ASMAXADC(parameter-string)) suboption of the EXIT assembler
| option.

| SYSADATA exit expecting input record, zero buffer length found

| The exit was expecting an input record, but the record length was zero. There
| may be a failure in communication between the assembler and the exit.

| Sample ASMAXADR User Exit to Reformat Records

| Function
| This sample ADATA exit uses parameters specified on the assembler EXIT option,
| to determine which associated data record types are to be reformatted from the
| High Level Assembler Release 5 format back to the Release 4 format. The exit will
| accept records from the assembler, via a PROCESS request, and it will decide
| whether the record should be reformatted.

398 HLASM V1R5 Programmer’s Guide

| High Level Assembler Release 5 has restructured the associated data records; so
| this sample exit is provided as a migration aid to allow existing associated data
| processing utilities to continue to function during the transition from Release 4 to
| Release 5.

| Preparing the Exit
| Before the exit can be used it must be assembled and link-edited, and the load
| module placed in a library in the standard search order. ASMAXADR, as supplied,
| has the following attributes: reusable, reenterable, amode(31), rmode(any).

| Refer to Chapter 4, “Providing User Exits” on page 85 for further information about
| coding and preparing user exits.

| Invoking the Exit
| To invoke the exit, specify the EXIT assembler option as follows:

| EXIT(ADEXIT(ASMAXADR(parameter-string)))

| where parameter-string controls what action the exit performs.

| Parameter String|

| ┌ ┐─REFORMAT(�:FFFF)────────────────────
| ��─ ──┼ ┼───────────────────────────────────── ─��
| │ │┌ ┐─,───────────
| └ ┘── ──┬ ┬─REFORMAT─── (───

┴┬ ┬─aaaa──────)

| └ ┘─NOREFORMAT─ └ ┘─aaaa:zzzz─

| Default
| REFORMAT(0:FFFF)

| Abbreviations
| R, N

| The abbreviations shown here are the minimum number of characters allowed.
| You can, for example, specify REF or NORE.

| REFORMAT(aaaa:zzzz)
| Specifies that these associated data record types will be reformatted from the
| High Level Assembler Release 5 format back to the Release 4 format.

| Record types are specified as one to four character hex values, in the form of a
| list of single record types aaaa, or record type ranges aaaa:zzzz

| NOREFORMAT(aaaa:zzzz)
| Specifies that these associated data record types will not be altered. They will
| remain in the High Level Assembler Release 5 format.

| Record types are specified the same as for REFORMAT.

| Note: The parameter-string is processed left to right, so where a conflict occurs
| for a particular record type the last occurrence will take precedence.

| The default processing is to allow all associated data record types to be
| reformatted. This means, for example, that a parameter-string of
| REFORMAT(�:FFFF),NOREFORMAT(��3�) will have the same result as
| NOREFORMAT(��3�) alone.

 Appendix I. Sample ADATA User Exits (MVS and CMS) 399

| Messages
| When the exit detects an error it directs the assembler to issue message
| ASMA940U and the assembly stops. The following text might be included in the
| ASMA940U message:

| SYSADATA exit not coded at same level of interface definition (3) as

| Assembler

| The exit uses version 3 of the exit definition, but the assembler uses a different
| version.

| SYSADATA exit called for other than SYSADATA

| The exit was invoked with a valid type, but the type is not one that the exit can
| process. This is probably caused by an incorrect ADEXIT() suboption of the
| EXIT assembler option.

| SYSADATA exit not initialized, and not entered for OPEN

| The exit has not yet been initialized, but was not entered with an OPEN
| request (action=�). There may be a failure in communication between the
| assembler and the exit.

| SYSADATA exit initialized, but was entered for OPEN

| The exit has been initialized, but was unexpectedly entered with an OPEN
| request (action=�). There may be a failure in communication between the
| assembler and the exit.

| SYSADATA exit - Invalid action or operation type requested

| An action was requested that is inconsistent with the type of action the exit is
| able or was expecting to take. There may be a failure in communication
| between the assembler and the exit.

| SYSADATA exit - Supplied parameters contain a syntax error

| While parsing the supplied parameter string the exit has detected a syntax
| error. This is probably caused by an incorrect specification of parameters on
| the ADEXIT(ASMAXADR(parameter-string)) suboption of the EXIT assembler
| option.

| SYSADATA exit expecting input record, zero buffer length found

| The exit was expecting an input record, but the record length was zero. There
| may be a failure in communication between the assembler and the exit.

400 HLASM V1R5 Programmer’s Guide

Appendix J. Sample LISTING User Exit (MVS and CMS)

ASMAXPRT is a sample LISTING exit supplied with High Level Assembler.

 Function
The sample LISTING exit suppresses printing of the High Level Assembler Options
Summary, or the Diagnostic Cross Reference and Assembler Summary, or both. It
can also print the Options Summary page at the end of the listing, instead of its
normal position at the beginning of the listing.

Preparing the Exit
Before the exit can be used it must be assembled and link-edited, and the load
module (phase) placed in a library in the standard search order. ASMAXPRT, as
supplied, has the following attributes: reusable, reenterable, amode(31),
rmode(any).

Refer to Chapter 4, “Providing User Exits” on page 85 for further information about
coding and preparing user exits.

Invoking the Exit
To invoke the exit, specify the EXIT assembler option as follows:

 EXIT(PRTEXIT(ASMAXPRT(parameter-string)))

where parameter-string controls what action the exit performs.

 Parameter String

 ┌ ┐─,───────────
��─ ──(───

┴┬ ┬─NOOPTION──) ─��

 ├ ┤─NOSUMMARY─
 └ ┘─OPTEND────

Default
None. At least one keyword is required.

Abbreviations
NOOP, NOSUM

The abbreviations shown here are the minimum number of characters allowed.
You can, for example, specify NOOPTI or NOSUMM.

NOOPTION
Suppress the Options Summary

NOSUMMARY
Suppress the Diagnostic Cross Reference and Assembler Summary

OPTEND
Print the Options Summary at the end of the assembler listing, instead of at the
beginning.

 Copyright IBM Corp. 1982, 2004 401

 Messages
ASMAXPRT might issue message ASMA701W as follows:

�� ASMA7�1W LISTING: ASMAXPRT - Invalid Option Specified: xxxxxxxx

This message is issued because the value xxxxxxxx, specified as an exit string
of the EXIT assembler option, is not recognized by ASMAXPRT.

The exit uses the keyword options processed until the error was detected. Any
values in the exit string after xxxxxxxx are ignored.

�� ASMA7�1W LISTING: ASMAXPRT - No options specified

This message is issued because ASMAXPRT expects one or more keyword
options in the exit string of the EXIT assembler option.

�� ASMA7�1W LISTING: ASMAXPRT - Exit buffer is full

This message is issued because ASMAXPRT, as supplied, only supports a
maximum of 60 lines for the Options Summary page. To increase this value, or
change it to allow an unlimited number of lines, modify the exit source then
assemble and link-edit it.

This error might cause an incomplete Options Summary page.

402 HLASM V1R5 Programmer’s Guide

Appendix K. Sample SOURCE User Exit (MVS and CMS)

ASMAXINV is a sample SOURCE exit supplied with High Level Assembler.

 Function
The sample SOURCE exit reads variable-length source data sets. Each record that
is read is passed to the assembler as an 80-byte source statement. If any record in
the input data set is longer than 71 characters, the remaining part of the record is
converted into continuation records.

The exit also reads a data set with a fixed record length of 80 bytes.

Preparing the Exit
Before the exit can be used it must be assembled and link-edited, and the load
module (phase) placed in a library in the standard search order. ASMAXINV, as
supplied, has the following attributes: reusable, reenterable, amode(24), rmode(24).

Refer to Chapter 4, “Providing User Exits” on page 85 for further information about
coding and preparing user exits.

Invoking the Exit
To invoke the exit specify the EXIT assembler option as follows:

 EXIT(INEXIT(ASMAXINV))

 Copyright IBM Corp. 1982, 2004 403

Appendix L. How to Generate a Translation Table

High Level Assembler uses the EBCDIC character set to represent characters
contained in character (C-type) data constants (DCs) and literals. The
TRANSLATE assembler option lets you specify a module containing a translation
table which the assembler uses to convert these characters into another character
set.

High Level Assembler provides an ASCII translation table; however, you can supply
your own translation table. The translation table module must be named
ASMALTxx, where xx is the suffix specified in the TRANSLATE assembler option.
See “TRANSLATE” on page 79.

Preparing the Translation Table: The user-supplied translation table must be
assembled and link-edited into a library in the standard load module search order.
The full name of the translation table load module name must occupy bytes 257 to
264 of the module. The first byte of the module must be the first byte of the
translation table.

A sample translation table to convert a subset of EBCDIC characters into ASCII
characters is shown in Figure 107 on page 405. Specify the TRANSLATE(U1)
assembler option to use this translation table.

404 Copyright IBM Corp. 1982, 2004

< SETC 'ASMALTU1'

< CSECT

 DC 256X'��'

 ORG <+64

DC X'2�' EBCDIC: X'4�' space

 ORG <+75

 DC X'2E3C282B' EBCDIC: .<(+

 ORG <+8�

 DC X'26' EBCDIC: &

 ORG <+9�

DC X'21242A293B' EBCDIC: !$�);

 ORG <+96

 DC X'2D2F' EBCDIC: -/

 ORG <+1�6

| DC X'7C2C255F3E3F' EBCDIC: ¦,%_>?

 ORG <+121

| DC X'6�3A234�273D' EBCDIC: �:#@'=
 ORG <+127

 DC X'22' EBCDIC: "

 ORG <+129

 DC X'616263646566' EBCDIC: abcdef

 ORG <+135

 DC X'676869' EBCDIC: ghi

 ORG <+145

 DC X'6A6B6C6D6E6F' EBCDIC: jklmno

 ORG <+151

 DC X'7�7172' EBCDIC: pqr

| ORG <+159

| DC X'A4' EBCDIC: X'A4' euro

 ORG <+161

 DC X'7E7374757677' EBCDIC: ˜stuvw

 ORG <+167

 DC X'78797A' EBCDIC: xyz

| ORG <+186

| DC X'5B5D' EBCDIC: ⅛‘

 ORG <+192

DC X'7B41424344' EBCDIC: {ABCD

 ORG <+197

DC X'4546474849' EBCDIC: EFGHI

 ORG <+2�8

DC X'7D4A4B4C4D' EBCDIC: }JKLM

 ORG <+213

DC X'4E4F5�5152' EBCDIC: NOPQR

 ORG <+224

 DC X'5C' EBCDIC: \

 ORG <+226

 DC X'53545556' EBCDIC: STUV

 ORG <+23�

 DC X'5758595A' EBCDIC: WXYZ

 ORG <+24�

DC X'3�31323334' EBCDIC: �1234

 ORG <+245

DC X'3536373839' EBCDIC: 56789

 ORG <+256

DC CL8'<' Table name = Module name

 END

Figure 107. Sample Translation Table

 Appendix L. How to Generate a Translation Table 405

Appendix M. How to Generate a Unicode Translation Table

High Level Assembler supports the definition of EBCDIC SBCS data constants
which are converted to Unicode data constants. A Unicode character (CU-type)
data constant (DC) is converted to a Unicode DBCS constant using a code page
module. This module is identified using the CODEPAGE assembler option (see
“CODEPAGE” on page 47). The code page module must be named ASMAxxxx,
where xxxx is the value supplied to the CODEPAGE assembler option.

Preparing the Unicode Translation Table: The user-supplied Unicode translation
table must be assembled and link-edited into a library in the standard load module
search order.

� The full name of the translation table load module name must occupy bytes 1
to 8 of the module.

� The address of the translation table must be in bytes 65 to 68 of the module.

| � The range of code pages handled by this translation table must be in bytes 69
| to 72 of the module. The start of the range must be in bytes 69 and 70, and the
| end of the range must be in bytes 71 and 72.

� The translation table must begin in byte 133 of the module and must be 512
bytes in length.

A sample Unicode translation table is shown in Figure 107 on page 405. Specify
the CODEPAGE(X'FFFF') assembler option to use this translation table.

The first five DCs in this module are an eye-catcher, which is information that is
easy to read from a dump. The eye-catcher includes useful information such as the
date and time the module was built, and the PTF level.

406 Copyright IBM Corp. 1982, 2004

ASMAFFFF CSECT

ASMAFFFF AMODE 31

ASMAFFFF RMODE ANY

 DC C'ASMAFFFF' Module name

 DC CL8'&SYSPARM ' PTF

 DC CL8'&SYSDATC' Date

 DC CL8'&SYSTIME' Time

 DC CL32'Module Description'
DC A(UNICODE) Address of UNICODE translation table

| DC X'47C' From code page number

| DC X'44B�' To code page number

| DC CL6� Reserved

UNICODE DS �H

DC X'����' EBCDIC hexadecimal value ��

DC X'���1' EBCDIC hexadecimal value �1

DC X'���2' EBCDIC hexadecimal value �2

DC X'���3' EBCDIC hexadecimal value �3

DC X'��9C' EBCDIC hexadecimal value �4

DC X'���9' EBCDIC hexadecimal value �5

DC X'��86' EBCDIC hexadecimal value �6

DC X'��7F' EBCDIC hexadecimal value �7

DC X'��97' EBCDIC hexadecimal value �8

DC X'��8D' EBCDIC hexadecimal value �9

DC X'��8E' EBCDIC hexadecimal value �A

DC X'���B' EBCDIC hexadecimal value �B

DC X'���C' EBCDIC hexadecimal value �C

DC X'���D' EBCDIC hexadecimal value �D

DC X'���E' EBCDIC hexadecimal value �E

DC X'���F' EBCDIC hexadecimal value �F

DC X'��1�' EBCDIC hexadecimal value 1�

DC X'��11' EBCDIC hexadecimal value 11

DC X'��12' EBCDIC hexadecimal value 12

DC X'��13' EBCDIC hexadecimal value 13

DC X'��9D' EBCDIC hexadecimal value 14

DC X'��85' EBCDIC hexadecimal value 15

DC X'���8' EBCDIC hexadecimal value 16

DC X'��87' EBCDIC hexadecimal value 17

DC X'��18' EBCDIC hexadecimal value 18

DC X'��19' EBCDIC hexadecimal value 19

DC X'��92' EBCDIC hexadecimal value 1A

DC X'��8F' EBCDIC hexadecimal value 1B

DC X'��1C' EBCDIC hexadecimal value 1C

DC X'��1D' EBCDIC hexadecimal value 1D

DC X'��1E' EBCDIC hexadecimal value 1E

DC X'��1F' EBCDIC hexadecimal value 1F

DC X'��8�' EBCDIC hexadecimal value 2�

DC X'��81' EBCDIC hexadecimal value 21

DC X'��82' EBCDIC hexadecimal value 22

DC X'��83' EBCDIC hexadecimal value 23

DC X'��84' EBCDIC hexadecimal value 24

DC X'���A' EBCDIC hexadecimal value 25

DC X'��17' EBCDIC hexadecimal value 26

DC X'��1B' EBCDIC hexadecimal value 27

DC X'��88' EBCDIC hexadecimal value 28

DC X'��89' EBCDIC hexadecimal value 29

DC X'��8A' EBCDIC hexadecimal value 2A

DC X'��8B' EBCDIC hexadecimal value 2B

DC X'��8C' EBCDIC hexadecimal value 2C

DC X'���5' EBCDIC hexadecimal value 2D

DC X'���6' EBCDIC hexadecimal value 2E

DC X'���7' EBCDIC hexadecimal value 2F

DC X'��9�' EBCDIC hexadecimal value 3�

DC X'��91' EBCDIC hexadecimal value 31

DC X'��16' EBCDIC hexadecimal value 32

DC X'��93' EBCDIC hexadecimal value 33

DC X'��94' EBCDIC hexadecimal value 34

DC X'��95' EBCDIC hexadecimal value 35

DC X'��96' EBCDIC hexadecimal value 36

DC X'���4' EBCDIC hexadecimal value 37

Figure 108 (Part 1 of 4). Sample Unicode Translation Table

 Appendix M. How to Generate a Unicode Translation Table 407

DC X'��98' EBCDIC hexadecimal value 38

DC X'��99' EBCDIC hexadecimal value 39

DC X'��9A' EBCDIC hexadecimal value 3A

DC X'��9B' EBCDIC hexadecimal value 3B

DC X'��14' EBCDIC hexadecimal value 3C

DC X'��15' EBCDIC hexadecimal value 3D

DC X'��9E' EBCDIC hexadecimal value 3E

DC X'��1A' EBCDIC hexadecimal value 3F

DC X'��2�' EBCDIC hexadecimal value 4�

DC X'��A�' EBCDIC hexadecimal value 41

DC X'��E2' EBCDIC hexadecimal value 42

DC X'��E4' EBCDIC hexadecimal value 43

DC X'��E�' EBCDIC hexadecimal value 44

DC X'��E1' EBCDIC hexadecimal value 45

DC X'��E3' EBCDIC hexadecimal value 46

DC X'��E5' EBCDIC hexadecimal value 47

DC X'��E7' EBCDIC hexadecimal value 48

DC X'��F1' EBCDIC hexadecimal value 49

DC X'��5B' EBCDIC hexadecimal value 4A

DC X'��2E' EBCDIC hexadecimal value 4B

DC X'��3C' EBCDIC hexadecimal value 4C

DC X'��28' EBCDIC hexadecimal value 4D

DC X'��2B' EBCDIC hexadecimal value 4E

DC X'��21' EBCDIC hexadecimal value 4F

DC X'��26' EBCDIC hexadecimal value 5�

DC X'��E9' EBCDIC hexadecimal value 51

DC X'��EA' EBCDIC hexadecimal value 52

DC X'��EB' EBCDIC hexadecimal value 53

DC X'��E8' EBCDIC hexadecimal value 54

DC X'��ED' EBCDIC hexadecimal value 55

DC X'��EE' EBCDIC hexadecimal value 56

DC X'��EF' EBCDIC hexadecimal value 57

DC X'��EC' EBCDIC hexadecimal value 58

DC X'��DF' EBCDIC hexadecimal value 59

DC X'��5D' EBCDIC hexadecimal value 5A

DC X'��24' EBCDIC hexadecimal value 5B

DC X'��2A' EBCDIC hexadecimal value 5C

DC X'��29' EBCDIC hexadecimal value 5D

DC X'��3B' EBCDIC hexadecimal value 5E

DC X'��5E' EBCDIC hexadecimal value 5F

DC X'��2D' EBCDIC hexadecimal value 6�

DC X'��2F' EBCDIC hexadecimal value 61

DC X'��C2' EBCDIC hexadecimal value 62

DC X'��C4' EBCDIC hexadecimal value 63

DC X'��C�' EBCDIC hexadecimal value 64

DC X'��C1' EBCDIC hexadecimal value 65

DC X'��C3' EBCDIC hexadecimal value 66

DC X'��C5' EBCDIC hexadecimal value 67

DC X'��C7' EBCDIC hexadecimal value 68

DC X'��D1' EBCDIC hexadecimal value 69

DC X'��A6' EBCDIC hexadecimal value 6A

DC X'��2C' EBCDIC hexadecimal value 6B

DC X'��25' EBCDIC hexadecimal value 6C

DC X'��5F' EBCDIC hexadecimal value 6D

DC X'��3E' EBCDIC hexadecimal value 6E

DC X'��3F' EBCDIC hexadecimal value 6F

DC X'��F8' EBCDIC hexadecimal value 7�

DC X'��C9' EBCDIC hexadecimal value 71

DC X'��CA' EBCDIC hexadecimal value 72

DC X'��CB' EBCDIC hexadecimal value 73

DC X'��C8' EBCDIC hexadecimal value 74

DC X'��CD' EBCDIC hexadecimal value 75

DC X'��CE' EBCDIC hexadecimal value 76

DC X'��CF' EBCDIC hexadecimal value 77

DC X'��CC' EBCDIC hexadecimal value 78

DC X'��6�' EBCDIC hexadecimal value 79

DC X'��3A' EBCDIC hexadecimal value 7A

DC X'��23' EBCDIC hexadecimal value 7B

DC X'��4�' EBCDIC hexadecimal value 7C

Figure 108 (Part 2 of 4). Sample Unicode Translation Table

408 HLASM V1R5 Programmer’s Guide

DC X'��27' EBCDIC hexadecimal value 7D

DC X'��3D' EBCDIC hexadecimal value 7E

DC X'��22' EBCDIC hexadecimal value 7F

DC X'��D8' EBCDIC hexadecimal value 8�

DC X'��61' EBCDIC hexadecimal value 81

DC X'��62' EBCDIC hexadecimal value 82

DC X'��63' EBCDIC hexadecimal value 83

DC X'��64' EBCDIC hexadecimal value 84

DC X'��65' EBCDIC hexadecimal value 85

DC X'��66' EBCDIC hexadecimal value 86

DC X'��67' EBCDIC hexadecimal value 87

DC X'��68' EBCDIC hexadecimal value 88

DC X'��69' EBCDIC hexadecimal value 89

DC X'��AB' EBCDIC hexadecimal value 8A

DC X'��BB' EBCDIC hexadecimal value 8B

DC X'��F�' EBCDIC hexadecimal value 8C

DC X'��FD' EBCDIC hexadecimal value 8D

DC X'��FE' EBCDIC hexadecimal value 8E

DC X'��B1' EBCDIC hexadecimal value 8F

DC X'��B�' EBCDIC hexadecimal value 9�

DC X'��6A' EBCDIC hexadecimal value 91

DC X'��6B' EBCDIC hexadecimal value 92

DC X'��6C' EBCDIC hexadecimal value 93

DC X'��6D' EBCDIC hexadecimal value 94

DC X'��6E' EBCDIC hexadecimal value 95

DC X'��6F' EBCDIC hexadecimal value 96

DC X'��7�' EBCDIC hexadecimal value 97

DC X'��71' EBCDIC hexadecimal value 98

DC X'��72' EBCDIC hexadecimal value 99

DC X'��AA' EBCDIC hexadecimal value 9A

DC X'��BA' EBCDIC hexadecimal value 9B

DC X'��E6' EBCDIC hexadecimal value 9C

DC X'��B8' EBCDIC hexadecimal value 9D

DC X'��C6' EBCDIC hexadecimal value 9E

DC X'2�AC' EBCDIC hexadecimal value 9F

DC X'��B5' EBCDIC hexadecimal value A�

DC X'��7E' EBCDIC hexadecimal value A1

DC X'��73' EBCDIC hexadecimal value A2

DC X'��74' EBCDIC hexadecimal value A3

DC X'��75' EBCDIC hexadecimal value A4

DC X'��76' EBCDIC hexadecimal value A5

DC X'��77' EBCDIC hexadecimal value A6

DC X'��78' EBCDIC hexadecimal value A7

DC X'��79' EBCDIC hexadecimal value A8

DC X'��7A' EBCDIC hexadecimal value A9

DC X'��A1' EBCDIC hexadecimal value AA

DC X'��BF' EBCDIC hexadecimal value AB

DC X'��D�' EBCDIC hexadecimal value AC

DC X'��DD' EBCDIC hexadecimal value AD

DC X'��DE' EBCDIC hexadecimal value AE

DC X'��AE' EBCDIC hexadecimal value AF

DC X'��A2' EBCDIC hexadecimal value B�

DC X'��A3' EBCDIC hexadecimal value B1

DC X'��A5' EBCDIC hexadecimal value B2

DC X'��B7' EBCDIC hexadecimal value B3

DC X'��A9' EBCDIC hexadecimal value B4

DC X'��A7' EBCDIC hexadecimal value B5

DC X'��B6' EBCDIC hexadecimal value B6

DC X'��BC' EBCDIC hexadecimal value B7

DC X'��BD' EBCDIC hexadecimal value B8

DC X'��BE' EBCDIC hexadecimal value B9

DC X'��AC' EBCDIC hexadecimal value BA

DC X'��7C' EBCDIC hexadecimal value BB

DC X'��AF' EBCDIC hexadecimal value BC

DC X'��A8' EBCDIC hexadecimal value BD

DC X'��B4' EBCDIC hexadecimal value BE

DC X'��D7' EBCDIC hexadecimal value BF

DC X'��7B' EBCDIC hexadecimal value C�

DC X'��41' EBCDIC hexadecimal value C1

Figure 108 (Part 3 of 4). Sample Unicode Translation Table

 Appendix M. How to Generate a Unicode Translation Table 409

DC X'��42' EBCDIC hexadecimal value C2

DC X'��43' EBCDIC hexadecimal value C3

DC X'��44' EBCDIC hexadecimal value C4

DC X'��45' EBCDIC hexadecimal value C5

DC X'��46' EBCDIC hexadecimal value C6

DC X'��47' EBCDIC hexadecimal value C7

DC X'��48' EBCDIC hexadecimal value C8

DC X'��49' EBCDIC hexadecimal value C9

DC X'��AD' EBCDIC hexadecimal value CA

DC X'��F4' EBCDIC hexadecimal value CB

DC X'��F6' EBCDIC hexadecimal value CC

DC X'��F2' EBCDIC hexadecimal value CD

DC X'��F3' EBCDIC hexadecimal value CE

DC X'��F5' EBCDIC hexadecimal value CF

DC X'��7D' EBCDIC hexadecimal value D�

DC X'��4A' EBCDIC hexadecimal value D1

DC X'��4B' EBCDIC hexadecimal value D2

DC X'��4C' EBCDIC hexadecimal value D3

DC X'��4D' EBCDIC hexadecimal value D4

DC X'��4E' EBCDIC hexadecimal value D5

DC X'��4F' EBCDIC hexadecimal value D6

DC X'��5�' EBCDIC hexadecimal value D7

DC X'��51' EBCDIC hexadecimal value D8

DC X'��52' EBCDIC hexadecimal value D9

DC X'��B9' EBCDIC hexadecimal value DA

DC X'��FB' EBCDIC hexadecimal value DB

DC X'��FC' EBCDIC hexadecimal value DC

DC X'��F9' EBCDIC hexadecimal value DD

DC X'��FA' EBCDIC hexadecimal value DE

DC X'��FF' EBCDIC hexadecimal value DF

DC X'��5C' EBCDIC hexadecimal value E�

DC X'��F7' EBCDIC hexadecimal value E1

DC X'��53' EBCDIC hexadecimal value E2

DC X'��54' EBCDIC hexadecimal value E3

DC X'��55' EBCDIC hexadecimal value E4

DC X'��56' EBCDIC hexadecimal value E5

DC X'��57' EBCDIC hexadecimal value E6

DC X'��58' EBCDIC hexadecimal value E7

DC X'��59' EBCDIC hexadecimal value E8

DC X'��5A' EBCDIC hexadecimal value E9

DC X'��B2' EBCDIC hexadecimal value EA

DC X'��D4' EBCDIC hexadecimal value EB

DC X'��D6' EBCDIC hexadecimal value EC

DC X'��D2' EBCDIC hexadecimal value ED

DC X'��D3' EBCDIC hexadecimal value EE

DC X'��D5' EBCDIC hexadecimal value EF

DC X'��3�' EBCDIC hexadecimal value F�

DC X'��31' EBCDIC hexadecimal value F1

DC X'��32' EBCDIC hexadecimal value F2

DC X'��33' EBCDIC hexadecimal value F3

DC X'��34' EBCDIC hexadecimal value F4

DC X'��35' EBCDIC hexadecimal value F5

DC X'��36' EBCDIC hexadecimal value F6

DC X'��37' EBCDIC hexadecimal value F7

DC X'��38' EBCDIC hexadecimal value F8

DC X'��39' EBCDIC hexadecimal value F9

DC X'��B3' EBCDIC hexadecimal value FA

DC X'��DB' EBCDIC hexadecimal value FB

DC X'��DC' EBCDIC hexadecimal value FC

DC X'��D9' EBCDIC hexadecimal value FD

DC X'��DA' EBCDIC hexadecimal value FE

DC X'��9F' EBCDIC hexadecimal value FF

 END

Figure 108 (Part 4 of 4). Sample Unicode Translation Table

410 HLASM V1R5 Programmer’s Guide

| Appendix N. TYPECHECK Assembler Option

| You can use the TYPECHECK option to control whether or not the assembler
| performs type checking of machine instruction operands.

| TYPECHECK has suboptions to enable or disable different type checking behavior:

| TYPECHECK(MAGNITUDE|NOMAGNITUDE)
| Specifies that the assembler performs (or does not perform) magnitude
| validation of signed immediate-data fields of machine instruction operands.

| TYPECHECK(REGISTER|NOREGISTER)
| Specifies that the assembler performs (or does not perform) type checking of
| register fields of machine instruction operands.

| Note: For details about the syntax for the TYPECHECK option, see
| “TYPECHECK” on page 79.

| For fine control, the TYPECHECK option is also supported on the PROCESS,
| ACONTROL, PUSH, and POP assembler instructions.

| Extensions to the DC, DS, and EQU Assembler Instructions
| The symbol table allows each symbol to have a program type and an assembler
| type assigned.

| The DC and DS assembler instructions allow you to specify a program type in the
| fourth subfield, following type_extension.

| The subfield has the format P(program_type), where program_type is a 32 bit
| self-defining term. For example:

| Honda DC HP(C'Car')'13'

| Nissan DC HP(C'Car')'32'

| Kenworth DC FP(C'Truk')'128'

| Mack DC FDP(C'Truk')'1�1'

| The assembler assigns a default assembler type to the symbol comprising the
| type_user subfield and, if specified, the type_extension subfield.

| The EQU assembler instruction allows you to specify a program type operand and
| an assembler type operand.

| You use the fourth operand (program type) to specify a 32-bit self-defining term.
| This value is assigned as the symbol's program type. For example:

| Payment EQU 13,,,C'Rate'

| Bonus EQU 42,,,12345

| You use the fifth operand (assembler type) to specify an assembler type keyword,
| which is restricted to a specific set of keywords. For a list of valid keywords for the
| EQU instruction, see the HLASM Language Reference. The value (1 to 4 bytes) is
| assigned as the symbol's assembler type. For example:

 Copyright IBM Corp. 1982, 2004 411

| R9 EQU 9,,,,C'FPR'

| R1� EQU 1�,,,,C'GR'

| R11 EQU 11,,,,C'GR'

| The SYSATTRP built-in function allows you to query the program type for a symbol.
| The SYSATTRA built-in function allows you to query the assembler type for a
| symbol.

| For details about the DC, DS, and EQU instructions, or the SYSATTRP and
| SYSATTRA built-in functions, see the HLASM Language Reference.

| Figure 109 shows the behavior using T' and built-in functions to retrieve the original
| type attribute, the program type, and the assembler type for a DC symbol. Also
| shown is the extended DC instruction allowing the assigning of the program type to
| the defined symbol.

| Macro

| &Lab Show_Types &Symbol

| &Original_Type SetC T'&Symbol

| &Program_Type SetC SYSATTRP('&Symbol')

| &Assembler_Type SetC SYSATTRA('&Symbol')

| MNote �,'Type Attribute via T'' is ''&Original_Type.''.'

| MNote �,'Program Type via function is ''&Program_Type.''.'

| MNote �,'Assembler Type via function is ''&Assembler_Type.''.

| MEnd

| �

| Show1 Show_Types Increment

| + �,Type Attribute via T' is 'F'.

| + �,Program Type via function is 'Mony'.

| + �,Assembler Type via function is 'F'.

| Show2 Show_Types PayRate

| + �,Type Attribute via T' is 'F'.

| + �,Program Type via function is 'Mony'.

| + �,Assembler Type via function is 'FD'.

| �

| Increment DC FP(C'Mony')'3'

| PayRate DC FDP(C'Mony')'42'

| Figure 109. Behavior to assign and retrieve a symbol's types

| Figure 110 on page 413 shows the behavior using T' and built-in functions to
| retrieve the original type attribute, the program type, and the assembler type for an
| EQU symbol. Also shown is the EQU instruction allowing the assigning of
| assembler types to symbols used to represent registers.

412 HLASM V1R5 Programmer’s Guide

| Macro

| &Lab Show_Types &Symbol

| &Original_Type SetC T'&Symbol

| &Program_Type SetC SYSATTRP('&Symbol')

| &Assembler_Type SetC SYSATTRA('&Symbol')

| MNote �,'Type Attribute via T'' is ''&Original_Type.''.'

| MNote �,'Program Type via function is ''&Program_Type.''.'

| MNote �,'Assembler Type via function is ''&Assembler_Type.''.

| MEnd

| �

| Show1 Show_Types R�

| + �,Type Attribute via T' is 'U'.

| + �,Program Type via function is 'Work'.

| + �,Assembler Type via function is 'GR'.

| Show2 Show_Types R1

| + �,Type Attribute via T' is 'U'.

| + �,Program Type via function is ''.

| + �,Assembler Type via function is 'GR32'.

| Show3 Show_Types A12

| + �,Type Attribute via T' is 'U'.

| + �,Program Type via function is ''.

| + �,Assembler Type via function is 'AR'.

| Show4 Show_Types FP4

| + �,Type Attribute via T' is 'U'.

| + �,Program Type via function is 'Spam'.

| + �,Assembler Type via function is 'FPR'.

| �

| R� EQU �,,,C'Work',C'GR'

| R1 EQU 1,,,,C'GR32'

| A12 EQU 12,,,,C'AR'

| FP4 EQU 4,,,C'Spam',C'FPR'

| Figure 110. Behavior to assign and retrieve a symbol's register types

| Type Checking Behavior for REGISTER
| Type checking for REGISTER cause the assembler to perform type checking of
| register fields of machine instruction operands.

| As described previously in “Extensions to the DC, DS, and EQU Assembler
| Instructions” on page 411, you can use the EQU assembler instruction to specify
| assembler types to be assigned to a symbol. The assembler types apply to
| registers. The REGISTER suboption (the default) controls whether the assembler
| uses these assembler types. To disable the checking, use the NOREGISTER
| suboption.

| When it is resolving register fields of machine instructions, the assembler uses the
| machine instruction format, expected operand format, and expected operand length,
| to check for acceptable types on any symbols specified as register operands or
| register parts of operands.

| The assembler maintains flags which track when one or more instances of a
| specific register assembler type has been encountered on an EQU instruction in the
| source code. The assembler uses these flags to decide on the depth of register
| type checking for that piece of source code.

 Appendix N. TYPECHECK Assembler Option 413

| The description and examples in the remainder of this section assume that
| checking is active, and describe assembler behavior when machine instruction
| register fields of specific types are being evaluated.

| Access Register Type Checking
| The following examples use the Load Access Multiple (LAM) instruction and are
| only concerned with the access register fields. The first and second operands are
| register fields requiring a resolved absolute value of 0 through to 15. This value
| specifies an Access Register (AR).

| Each unresolved access register field may be an expression comprised of one or
| more terms. The assembler checks only the first term as follows:

| � If the term is not a symbol, no more checking is performed.

| � If the assembler type of the symbol is AR, no more checking is performed

| � If the assembler type of the symbol is assigned but is not AR, the assembler
| issues a warning message (severity 4) about a type checking conflict.

| � If the assembler type of the symbol is not assigned, and the flag shows that at
| least one instance of an EQU statement with AR has been encountered, the
| assembler issues an informational message (severity 0) about a possible type
| checking conflict.

| � If the assembler type of the symbol is not assigned,and the flag shows that no
| instances of an EQU statement with AR have been encountered, no more
| checking is performed.

| Figure 111 shows an example of Access Register checking, with warning
| messages about incompatible symbol types, and an informational message about a
| symbol not assigned an assembler type due to the existence of an EQU statement
| with AR in the source code.

| �������� 9AEC D��C �������C 3� LAM 14,12,12(13)

| �������4 9AEC D��C �������C 31 LAM A14,A12,12(R13)

| �������8 9AEC D��C �������C 32 LAM R14,R12,12(R13)

| �� ASMA323W Symbol 'R14' has incompatible type with access register field

| �� ASMA323W Symbol 'R12' has incompatible type with access register field

| �������C 9AEC D��C �������C 33 LAM AR14,A12,12(R13)

| �� ASMA324I Symbol 'AR14' may have incompatible type with access register field

| 34 �

| �������C 35 A12 EQU 12,,,,C'AR'

| �������E 36 A14 EQU 14,,,,C'AR'

| 37 �

| �������C 38 R12 EQU 12,,,,C'GR'

| �������D 39 R13 EQU 13,,,,C'GR'

| �������E 4� R14 EQU 14,,,,C'GR'

| 41 �

| �������C 42 AR12 EQU 12

| �������E 43 AR14 EQU 14

| Figure 111. Access Register type checking with AR activated

| Figure 112 on page 415 shows an example of Access Register checking, with
| warning messages of incompatible symbol types, and tolerance of symbols not
| assigned an assembler type due to the lack of an EQU statement with AR in the
| source code.

414 HLASM V1R5 Programmer’s Guide

| �������� 9AEC D��C �������C 3� LAM 14,12,12(13)

| �������4 9AEC D��C �������C 31 LAM A14,A12,12(R13)

| �������8 9AEC D��C �������C 32 LAM R14,R12,12(R13)

| �� ASMA323W Symbol R14 has incompatible type with access register field

| �� ASMA323W Symbol R12 has incompatible type with access register field

| �������C 9AEC D��C �������C 33 LAM AR14,A12,12(R13)

| 34 �

| �������C 35 A12 EQU 12

| �������E 36 A14 EQU 14

| 37 �

| �������C 38 R12 EQU 12,,,,C'GR'

| �������D 39 R13 EQU 13,,,,C'GR'

| �������E 4� R14 EQU 14,,,,C'GR'

| 41 �

| �������C 42 AR12 EQU 12

| �������E 43 AR14 EQU 14

| Figure 112. Access Register type checking with AR inactive

| General Rregister Type Checking
| The following examples use two instructions and are only concerned with the
| general register fields:

| � The Load (L) instruction in which the first operand is a register field requiring a
| resolved absolute value of 0 through to 15. This value specifies a General
| Register (GR) which is treated as a 32-bit General Register (GR32).

| � The Load (LG) instruction in which the first operand is a register field requiring
| a resolved absolute value of 0 through to 15. This value specifies a General
| Register (GR) which is treated as a 64-bit General Register (GR64).

| Assembler type GR can normally be used for both the L and LG instructions,
| unless symbols have been defined with types of GR32 or GR64. Once use is made
| of the 32-bit or 64-bit types for general registers, then the assembler becomes
| more restrictive in its checking. This could be helpful when you are programming
| for a mix of hardware architectures, or converting code from 32-bit to 64-bit
| hardware.

| Each unresolved general register field may be an expression comprised of one or
| more terms. The assembler checks only the first term as follows for the L
| instruction:

| � If the term is not a symbol, no more checking is performed.

| � If the assembler type of the symbol is GR32, no more checking is performed

| � If the assembler type of the symbol is GR, and the flag shows that at least one
| instance of an EQU statement with GR32 has been encountered, the
| assembler issues an informational message (severity 0) about a possible type
| checking conflict.

| � If the assembler type of the symbol is assigned but is not GR or GR32, the
| assembler issues a warning message (severity 4) about a type checking
| conflict.

| � If the assembler type of the symbol is not assigned, and the flags show that at
| least one instance of an EQU with GR or GR32 has been encountered, the

 Appendix N. TYPECHECK Assembler Option 415

| assembler issues an informational message (severity 0) about a possible type
| checking conflict.

| � If the assembler type of the symbol is not assigned,and if the flags show that
| no instances of an EQU with GR or GR32 have been encountered, no more
| checking is performed.

| Each unresolved general register field may be an expression comprised of one or
| more terms. The assembler checks only the first term as follows for the LG
| instruction:

| � If the term is not a symbol, no more checking is performed.

| � If the assembler type of the symbol is GR64, no more checking is performed.

| � If the assembler type of the symbol is GR, and the flag shows that at least one
| instance of an EQU with GR64 has been encountered, the assembler issues an
| informational message (severity 0) about a possible type checking conflict.

| � If the assembler type of the symbol is assigned, but is not GR or GR64, the
| assembler issues a warning message (severity 4) about a type checking
| conflict.

| � If the assembler type of the symbol is not assigned, and if the flags show that
| at least one instance of an EQU with GR or GR64 has been encountered, the
| assembler issues an informational message (severity 0) about a possible type
| checking conflict.

| � If the assembler type of the symbol is not assigned,and if the flags show that
| no instances of an EQU with GR or GR64 have been encountered, no more
| checking is performed.

| Figure 113 shows an example of General Register checking, with a warning
| message about an incompatible symbol type, and an informational message about
| a symbol not assigned an assembler type due to the existence of an EQU
| statement with GR in the source code.

| �������� 5824 C��� �������� 3� L 2,�(4,12)

| �������4 5824 C��� �������� 31 L R2,�(R4,R12)

| �������8 5824 C��� �������� 32 L A2,�(R4,R12)

| �� ASMA323W Symbol A2 has incompatible type with general register field

| �������C 5824 C��� �������� 33 L REG2,�(R4,R12)

| �� ASMA324I Symbol REG2 may have incompatible type with general register field

| ������1� E324 C��� ���4 �������� 34 LG R2,�(R4,R12)

| 35 �

| �������2 36 R2 EQU 2,,,,C'GR'

| �������4 37 R4 EQU 4,,,,C'GR'

| �������C 38 R12 EQU 12,,,,C'GR'

| 39 �

| �������2 4� A2 EQU 2,,,,C'AR'

| 41 �

| �������2 42 REG2 EQU 2

| Figure 113. General Register type checking with GR activated

| Figure 114 on page 417 shows an example of General Register checking, with a
| warning message about an incompatible symbol type, and tolerance of symbols not
| assigned an assembler type due to the lack of an EQU statement with GR in the
| source code.

416 HLASM V1R5 Programmer’s Guide

| �������� 5824 C��� �������� 3� L 2,�(4,12)

| �������4 5824 C��� �������� 31 L R2,�(R4,R12)

| �������8 5824 C��� �������� 32 L A2,�(R4,R12)

| �� ASMA323W Symbol A2 has incompatible type with general register field

| �������C 5824 C��� �������� 33 L REG2,�(R4,R12)

| ������1� E334 C��� ���4 �������� 34 LG R3,�(R4,R12)

| 35 �

| �������2 36 R2 EQU 2

| �������3 37 R3 EQU 3

| �������4 38 R4 EQU 4

| �������C 39 R12 EQU 12

| 4� �

| �������2 41 A2 EQU 2,,,,C'AR'

| 42 �

| �������2 43 REG2 EQU 2

| Figure 114. General Register type checking with GR inactive

| Figure 115 shows an example of General Register checking, with an informational
| message about a symbol with a GR assembler type due to the existence of an
| EQU statement with GR32 in the source code, and a warning message about an
| incompatible symbol type.

| �������� 5824 C��� �������� 31 L R2,�(R4,R12)

| �� ASMA324I Symbol R2 may have incompatible type with general register field

| �������4 E334 C��� ���4 �������� 32 LG R3,�(R4,R12)

| �� ASMA323W Symbol R3 has incompatible type with general register field

| �������A E324 C��� ���4 �������� 33 LG R2,�(R4,R12)

| 34 �

| �������2 35 R2 EQU 2,,,,C'GR'

| �������3 36 R3 EQU 3,,,,C'GR32'

| �������4 37 R4 EQU 4,,,,C'GR'

| �������C 38 R12 EQU 12,,,,C"GR'

| Figure 115. General Register type checking with GR32 activated

| Figure 116 shows an example of General Register checking, with informational
| messages about symbols with a GR assembler type due to the existence of both
| an EQU statement with GR32 and an EQU statement with GR64 in the source
| code, and a warning message about an incompatible symbol type.

| �������� 5824 C��� �������� 31 L R2,�(R4,R12)

| �� ASMA324I Symbol R2 may have incompatible type with general register field

| �������4 E334 C��� ���4 �������� 32 LG R3,�(R4,R12)

| �� ASMA323W Symbol R3 has incompatible type with general register field

| �������A E324 C��� ���4 �������� 33 LG R2,�(R4,R12)

| �� ASMA324I Symbol R2 may have incompatible type with general register field

| 34 �

| �������2 35 R2 EQU 2,,,,C'GR'

| �������3 36 R3 EQU 3,,,,C'GR32'

| �������4 37 R4 EQU 4,,,,C'GR'

| �������5 38 R5 EQU 5,,,,C'GR64'

| �������C 39 R12 EQU 12,,,,C'GR'

| Figure 116. General Register type checking with GR32 and GR64 activated

 Appendix N. TYPECHECK Assembler Option 417

| Control Register Type Checking
| The following examples use two instructions and are only concerned with the
| control register fields:

| � The Load Control (LCTL) instruction, in which the first and second operands
| are register fields requiring a resolved absolute value of 0 through to 15. This
| value specifies a Control Register (CR) which is treated as a 32-bit Control
| Register.

| � The Load Control (LCTLG) instruction, in which the first and second operands
| are register fields requiring a resolved absolute value of 0 through to 15. This
| value specifies a Control Register (CR) which is treated as a 64-bit Control
| Register.

| Each unresolved control register field may be an expression comprised of one or
| more terms. The assembler checks only the first term as follows:

| � If the term is not a symbol, no more checking is performed.

| � If the assembler type of the symbol is CR, no more checking is performed.

| � If the assembler type of the symbol is assigned but is not CR, the assembler
| issues a warning message (severity 4) about a type checking conflict.

| � If the assembler type of the symbol is not assigned, and if the flags show that
| at least one instance of an EQU with CR has been encountered, the assembler
| issues an informational message (severity 0) about a possible type checking
| conflict.

| � If the assembler type of the symbol is not assigned,and if the flags show that
| no instances of an EQU with CR have been encountered, no more checking is
| performed.

| Figure 117 shows an example of Control Register checking, with a warning
| message about an incompatible symbol type, and an informational message about
| a symbol not assigned an assembler type due to the existence of an EQU
| statement with CR in the source code.

| �������� B7EC A��C �������C 3� LCTL 14,12,12(1�)

| �������4 B7EC A��C �������C 31 LCTL C14,C12,12(R1�)

| �������8 B72C A��C �������C 32 LCTL A2,C12,12(R1�)

| �� ASMA323W Symbol A2 has incompatible type with control register field

| �������C B7E1 A��C �������C 33 LCTL C14,CON1,12(R1�)

| �� ASMA324I Symbol CON1 may have incompatible type with control register field

| ������1� EBEC A��C ��2F �������C 34 LCTLG C14,C12,12(R1�)

| 35 �

| �������C 36 C12 EQU 12,,,,C'CR'

| �������E 37 C14 EQU 14,,,,C'CR'

| 38 �

| �������A 39 R1� EQU 1�,,,,C'GR'

| �������2 4� A2 EQU 2,,,,C'AR'

| �������1 41 CON1 EQU 1

| Figure 117. Control Register type checking with CR activated

| Figure 118 on page 419 shows an example of Control Register checking, with a
| warning message about an incompatible symbol type, and tolerance of symbols not
| assigned an assembler type due to the lack of an EQU statement with CR in the
| source code.

418 HLASM V1R5 Programmer’s Guide

| �������� B7EC A��C �������C 3� LCTL 14,12,12(1�)

| �������4 B7EC A��C �������C 31 LCTL C14,C12,12(R1�)

| �������8 B72C A��C �������C 32 LCTL A2,C12,12(R1�)

| �� ASMA323W Symbol A2 has incompatible type with control register field

| �������C B7E1 A��C �������C 33 LCTL C14,CON1,12(R1�)

| ������1� EBEC A��C ��2F �������C 34 LCTLG C14,C12,12(R1�)

| 35 �

| �������C 36 C12 EQU 12

| �������E 37 C14 EQU 14

| 38 �

| �������A 39 R1� EQU 1�,,,,C'GR'

| �������2 4� A2 EQU 2,,,,C'AR'

| �������1 41 CON1 EQU 1

| Figure 118. Control Register type checking with CR inactive

| Floating-Point Register Type Checking
| The following examples use two instructions and are only concerned with the
| floating-point register fields:

| � The first operand of the Load Short (LE) instruction is a register field requiring a
| resolved absolute value of 0 through to 15. This value specifies a Floating-Point
| Register (FPR).

| � The first operand of the Load Long (LD) instruction is a register field requiring a
| resolved absolute value of 0 through to 15. This value specifies a Floating-Point
| Register (FPR).

| Each unresolved floating-point register field may be an expression comprised of
| one or more terms. The assembler checks only the first term as follows:

| � If the term is not a symbol, no more checking is performed.

| � If the assembler type of the symbol is FPR, no more checking is performed.

| � If the assembler type of the symbol is assigned but is not FPR, the assembler
| issues a warning message (severity 4) about a type checking conflict.

| � If the assembler type of the symbol is not assigned, and if the flag shows that
| at least one instance of an EQU with FPR has been encountered, the
| assembler issues an informational message (severity 0) about a possible type
| checking conflict.

| � If the assembler type of the symbol is not assigned,and if the flag shows that
| no instances of an EQU with FPR have been encountered, no more checking is
| performed.

| Figure 119 on page 420 shows an example of Floating-Point Register checking,
| with a warning message about an incompatible symbol type, and an informational
| message about a symbol not assigned an assembler type due to the existence of
| an EQU statement with FPR in the source code.

 Appendix N. TYPECHECK Assembler Option 419

| �������� 7845 C��C �������C 3� LE 4,12(5,12)

| �������4 7845 C��C �������C 31 LE FP4,12(R5,R12)

| �������8 6825 C��C �������C 32 LD A2,12(R5,R12)

| �� ASMA323W Symbol A2 has incompatible type with floating-point register field

| �������C 6865 C��C �������C 33 LD FP6,12(R5,R12)

| �� ASMA324I Symbol FP6 may have incompatible type with floating-point register field

| 34 �

| �������4 35 FP4 EQU 4,,,,C'FPR'

| �������6 36 FP6 EQU 6

| 37 �

| �������5 38 R5 EQU 5,,,,C'GR'

| �������C 39 R12 EQU 12,,,,C'GR'

| �������2 4� A2 EQU 2,,,,C'AR'

| Figure 119. Floating-Point Register type checking with FPR activated

| Figure 120 shows an example of Floating-Point Register checking, with a warning
| message about an incompatible symbol type, and tolerance of symbols not
| assigned an assembler type due to the lack of an EQU statement with FPR in the
| source code.

| �������� 7845 C��C �������C 3� LE 4,12(5,12)

| �������4 7845 C��C �������C 31 LE FP4,12(R5,R12)

| �������8 6825 C��C �������C 32 LD A2,12(R5,R12)

| �� ASMA323W Symbol A2 has incompatible type with floating-point register field

| �������C 6865 C��C �������C 33 LD FP6,12(R5,R12)

| 34 �

| �������4 35 FP4 EQU 4

| �������6 36 FP6 EQU 6

| 37 �

| �������5 38 R5 EQU 5,,,,C'GR'

| �������C 39 R12 EQU 12,,,,C'GR'

| �������2 4� A2 EQU 2,,,,C'AR'

| Figure 120. Floating-Point Register type checking with FPR inactive

| Type Checking Behavior for MAGNITUDE
| Type checking for MAGNITUDE causes the assembler to perform magnitude
| validation of signed immediate-data fields of machine instruction operands. To
| disable the checking, use the NOMAGNITUDE suboption.

| For each violation, a warning message (severity 4) is issued and object code is
| created.

| For a 16-bit signed immediate-data field, the normal allowed range of values is
| -32768 through to 32767.

| For a 32-bit signed immediate-data field, the normal allowed range of values is
| -2147483648 through to 2147483647.

| Figure 121 on page 421 shows the assembler behavior, with the default of
| MAGNITUDE, which is to issue a warning message and to generate the object
| code.

420 HLASM V1R5 Programmer’s Guide

| �������� A72A 8��� ����8��� 12 AHI R2,32768

| �� ASMA32�W Immediate field operand may have incorrect sign or magnitude

| �������4 A72A 7FFF ����7FFF 13 AHI R2,32767

| �������8 A72A ���1 �������1 14 AHI R2,1

| �������C A72A ���� �������� 15 AHI R2,�

| ������1� A72A FFFF FFFFFFFF 16 AHI R2,-1

| ������14 A72A 8��� FFFF8��� 17 AHI R2,-32768

| ������18 A72A 7FFF FFFF7FFF 18 AHI R2,-32769

| �� ASMA32�W Immediate field operand may have incorrect sign or magnitude

| ������1C A72A FFFF ����FFFF 19 AHI R2,X'FFFF'

| �� ASMA32�W Immediate field operand may have incorrect sign or magnitude

| Figure 121. MAGNITUDE behavior

| Note: When generating object code, the assembler takes bits 16 to 31 of Addr2
| for use as the immediate-data field. Bits 0 to 15 are ignored.

| Figure 122 shows the assembler behavior, with NOMAGNITUDE, which is to issue
| no messages and to generate the object code.

| �������� A72A 8��� ����8��� 12 AHI R2,32768

| �������4 A72A 7FFF ����7FFF 13 AHI R2,32767

| �������8 A72A ���1 �������1 14 AHI R2,1

| �������C A72A ���� �������� 15 AHI R2,�

| ������1� A72A FFFF FFFFFFFF 16 AHI R2,-1

| ������14 A72A 8��� FFFF8��� 17 AHI R2,-32768

| ������18 A72A 7FFF FFFF7FFF 18 AHI R2,-32769

| ������1C A72A FFFF ����FFFF 19 AHI R2,X'FFFF'

| Figure 122. NOMAGNITUDE behavior

| Note: When generating object code, the assembler takes bits 16 to 31 of Addr2
| for use as the immediate-data field. Bits 0 to 15 are ignored.

 Appendix N. TYPECHECK Assembler Option 421

 Trademarks

 Notices

This information was developed for products and
services offered in the U.S.A.

IBM may not offer the products, services, or features
discussed in this document in other countries. Consult
your local IBM representative for information on the
products and services currently available in your area.
Any reference to an IBM product, program, or service is
not intended to state or imply that only that IBM
product, program, or service may be used. Any
functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility
to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications
covering subject matter described in this document.
The furnishing of this document does not give you any
license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 U.S.A.

Licensees of this program who wish to have information
about it for the purpose of enabling: (i) the exchange of
information between independently created programs
and other programs (including this one) and (ii) the
mutual use of the information which has been
exchanged, should contact:

 IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie New York 12601-5400

 U.S.A.

Such information may be available, subject to
appropriate terms and conditions, including in some
cases, payment of a fee.

The licensed program described in this document and
all licensed material available for it are provided by IBM
under terms of the IBM Customer Agreement, IBM
International Program License Agreement or any
equivalent agreement between us.

For license inquiries regarding double-byte (DBCS)
information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing,
to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United
Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or
typographical errors. Changes are periodically made to
the information herein; these changes will be
incorporated in new editions of the publication. IBM
may make improvements and/or changes in the
product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites
are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites.
The materials at those Web sites are not part of the
materials for this IBM product and use of those Web
sites is at your own risk.

If you are viewing this information softcopy, the
photographs and color illustrations may not appear.

 Trademarks

The following are trademarks of International Business
Machines Corporation in the United States, or other
countries, or both.

422 Copyright IBM Corp. 1982, 2004

 Trademarks

AIX
BookMaster
DFSMS
DFSMS/MVS
DFSMSdfp
Enterprise System/9000
Enterprise Systems Architecture/370
Enterprise Systems Architecture/390
ES/9000
ESA/390
IBM
MVS
MVS/DFP
MVS/ESA
OS/390
S/370
SP
System/370
System/390
VM/ESA
VSE/ESA
3090
z/OS

Linux is a trademark of Linus Torvalds in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in
the United States and other countries.

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries, or
both.

Other company, product, and service names may be
trademarks or service marks of others.

 Notices 423

 Glossary

 Glossary

This glossary defines terms that are used in the High
Level Assembler publications. Some of these terms
might not be used in this publication.

This glossary has three main types of definitions that
apply:

� To the assembler language in particular (usually
distinguished by reference to the words
“assembler,” “assembly,” etc.)

� To programming in general

� To data processing as a whole

If you do not understand the meaning of a data
processing term used in any of the definitions below,
refer to Vocabulary for Data Processing,
Telecommunications, and Office Systems, GC20-1699.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the American National Standard Vocabulary for
Information Processing, which was prepared by
Subcommittee X3K5 on Terminology and Glossary of
American National Standards Committee X3. ANSI
definitions are preceded by an asterisk (*).

absolute expression. An expression is absolute if its
value does not change upon program relocation.

absolute value. Is the value of a term when that value
does not change upon program relocation.

| ADATA. (See associated data.) An assembler option
| causing it to produce associated data.

addressing mode (24-bit). A System/370 addressing
mode (AMODE) of the extended architecture that allows
a program to run using 24-bit addresses. When
operating in 24-bit mode, S/370 addressing architecture
is applied. Other facilities of the extended architecture
(see below) may be utilized. Only the low-order 24 bits
of an address are used; the high-order bits are ignored.

addressing mode (31-bit). An extended architecture
addressing mode (AMODE) that allows a program to
run using 31-bit addresses, other facilities of the
extended architecture, or both. When operating in
31-bit mode, extended architecture addressing is
applied, and all but the high-order bit of an address are
used to address storage.

assemble. To prepare a machine language program
from a symbolic language program by substituting
machine operation codes for symbolic operation codes

and absolute or relocatable addresses for symbolic
addresses.

*assembler. A computer program that assembles.

assembler instruction. An assembler language
source statement that causes the assembler to do a
specific operation. Assembler instructions are not
translated into machine instructions.

assembler language. A source language that includes
symbolic machine language statements in which there
is a one-to-one correspondence with the instruction
formats and data formats of the computer. The
assembler language also contains statements that
represent assembler instructions and macro
instructions.

| associated data. Additional information produced by
| the assembler containing detailed machine-readable
| information about the assembly.

automatic library call. The process by which the
linkage editor or binder resolves external references by
including additional members from the automatic call
library.

bimodal program execution. A function of the
extended architecture (see “addressing mode (31-bit)”)
that allows a program to run in 24-bit or 31-bit
addressing mode. The addressing mode is under
program control.

binder. The component of DFSMS/MVS which is
responsible for linking and editing programs, to create
either record format load modules or program objects.
The z/OS binder is a functional replacement for the
MVS linkage editor.

bracketed DBCS. DBCS characters enclosed with a
shift-out (SO) character and a shift-in character (SI) to
identify them from SBCS, and containing no SBCS
characters except SO and SI.

| class. A cross-section of program object data with
| uniform format, content, function, and behavioral
| attributes.

code page. An assignment of graphic characters and
control function meanings to all code points.

code point. A 1-byte code representing one of 256
potential characters.

| COMMON. A control section having a length attribute
| but no machine language text, for which space is
| reserved in the executable program.

424 Copyright IBM Corp. 1982, 2004

 Glossary

conditional assembly language. A programming
language that the assembler processes during
conditional assembly. The conditional assembly
language can be used to perform general arithmetic and
logical computations, generate machine and assembler
instructions from model statements, and provide
variable symbols to represent data and vary the content
of model statements during generation. It can be used
in macro definitions, and in open code.

CONTROL PROGRAM.. A program that is designed to
schedule and supervise the performance of data
processing work by a computing system; an operating
system.

control section (CSECT). That part of a program
specified by the programmer to be a relocatable unit, all
elements of which are to be loaded into adjoining main
storage locations.

data attributes. Values assigned by the assembler
which describe the characteristics of ordinary symbols
and variable symbols that represent data.

*diagnostic. Pertaining to the detection and isolation
of a malfunction or mistake.

double-byte character set (DBCS). DBCS is a means
of providing support for Ideographic Languages which
contain too many symbols to be represented by a single
byte character set such as EBCDIC. A valid
double-byte character is defined as either DBCS space
(X'4040'), or a pair of bytes, each of which must be in
the range X'41' to X'FE', inclusive.

double-byte data. Double-byte character strings are
commonly referred to as double-byte data.

dummy control section (DSECT). A control section
that an assembler can use to map an area of storage
without producing any object code or data for that area.
Synonymous with dummy section.

edited text. Source statements modified by the
assembler for internal use. The initial processing of the
assembler is referred to as editing.

| element. The unit of program object data uniquely
| identified by a section name and a class name.

enterprise systems architecture. A hardware
architecture for the IBM 3090 processor. A major
characteristic is 31-bit addressing. See also
“addressing mode (31-bit).”

*entry point. A location in a module to which control
can be passed from another module or from the control
program.

extended architecture. A hardware architecture for
systems beginning with the IBM 3081. A major

characteristic is 31-bit addressing. See also
“addressing mode (31-bit).”

external symbol dictionary (ESD). Control
information associated with an object or load module
which identifies the external symbols in the module.

global dictionary. An internal table used by the
assembler during macro generation to contain the
current values of all unique global SETA, SETB, and
SETC variables from all text segments.

global vector table. A table of pointers in the skeleton
dictionary of each text segment showing where the
global variables are located in the global dictionary.

| GOFF. Generalized Object File Format.

| hierarchical file system. In z/OS UNIX System
| Services, a Hierarchical File System (HFS) is a

collection of files organized in a hierarchy, as in a UNIX
system. All files are members of a directory, and each
directory is in turn a member of another directory at a
higher level in the hierarchy. The highest level of the
hierarchy is the root directory. MVS views an entire file
hierarchy as a collection of hierarchical file system data
sets (HFS data sets). Each HFS data set is a
mountable file system. The Hierarchical File System is

| described in the z/OS UNIX System Services User's
| Guide.

instruction. *(1) A statement that specifies an
operation and the values and locations of its operands.
(2) See also “assembler instruction,” “machine
instruction,” and “macro instruction.”

job control language (JCL). A language used to code
job control statements.

*job control statement. A statement in a job that is
used in identifying the job or describing its requirements
to the operating system.

language. A set of representations, conventions, and
rules used to convey information.

*language translator. A general term for any
assembler, compiler, or other routine that accepts
statements in one language and produces equivalent
statements in another language.

library macro definition. A macro definition that is
stored in a macro library. The IBM-supplied supervisor
and data management macro definitions are examples
of library macro definitions.

linkage editor. A processing program that prepares
the output of language translators to enable it to run. It
combines separately produced object or load modules;
resolves symbolic cross references among them;
replaces, deletes, and adds control sections; generates

 Glossary 425

 Glossary

overlay structures on request; and produces executable
code (a load module) that is ready to be fetched into
main storage and run.

linker. Used in this publication as collective term for
binder and linkage editor.

load module. The output of a single linkage editor run.
A load module is in a format suitable for loading into
virtual storage and running.

loader. A processing program that does the basic
editing functions of the linkage editor, and also fetches
and gives control to the processed program. It accepts
object modules and load modules created by the
linkage editor and generates executable code directly in
storage. The loader does not produce load modules for
program libraries.

local dictionary. An internal table used by the
assembler during macro generation to contain the
current values of all local SET symbols. There is one
local dictionary for open code, and one for each macro
definition.

location counter. A counter whose value indicates the
assembled address of a machine instruction or a
constant or the address of an area of reserved storage,
relative to the beginning of the control section.

*machine instruction. An instruction that a machine
can recognize and execute.

*machine language. A language that is used directly
by the machine.

macro definition. A set of statements that defines the
name of, format of, and conditions for generating a
sequence of assembler language statements from a
single source statement. This statement is a macro
instruction that calls the definition. (See also “library
macro definition” and “source macro definition.”)

macro generation (macro expansion). An operation
in which the assembler generates a sequence of
assembler language statements from a single macro
instruction, under conditions described by a macro
definition.

macro instruction (macro call). An assembler
language statement that causes the assembler to
process a predefined set of statements (called a macro
definition). The statements normally produced from the
macro definition replace the macro instruction in the
source program.

macro library. A library containing macro definitions.
The supervisor and data management macro definitions
supplied by IBM (GET, LINK, etc.) are contained in the
system macro library. Private macro libraries can be
concatenated with the system macro library.

macro prototype statement. An assembler language
statement that specifies the mnemonic operation code
and the format of all macro instructions that are used to
call a macro definition.

MACRO statement. An assembler language statement
that indicates the beginning of a macro definition. (Also
known as a macro definition header).

main storage. All program addressable storage from
which instructions may be executed and from which
data can be loaded directly into registers.

MEND statement. An assembler language statement
that indicates the end of a macro definition. (Also known
as a macro definition trailer).

model statement. A statement from which assembler
language statements are generated during conditional
assembly.

object module. The machine-language output of a
single run of an assembler or a compiler. An object
module is used as input to the linkage editor, loader, or
binder.

open code. The portion of a source module that lies
outside of and after any source macro definitions that
may be specified.

*operating system. Software that controls the running
of computer programs and which may provide
scheduling, debugging, input/output control, accounting,
compilation, storage assignment, data management,
and related services. (see “control program.”)

ordinary symbol attribute reference dictionary. A
dictionary used by the assembler. The assembler puts
an entry in it for each ordinary symbol encountered in
the name field of a statement. The entry contains the
attributes (type, length, etc.) of the symbol.

| Part Reference. A named subdivision of a MERGE
| class in a program object. A Pseudo-Register (external
| dummy section) or an external data item, having length
| and alignment attributes. Space in the loaded program
| is reserved for Parts (which may contain machine
| language text), but not for Commons or
| Pseudo-Registers.

partitioned data set (PDS). A data set on direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data.

PDSE (partitioned data set extended). A
system-managed data set that contains an indexed
directory and members that are similar to the directory
and members of partitioned data sets.

426 HLASM V1R5 Programmer’s Guide

 Glossary

phase. The output of a single VSE linkage editor run.
A phase is in a format suitable for loading into virtual
storage

processing program. (1) A general term for any
program that is not a control program. (2) Any program
capable of operating in the problem program state.
This includes IBM-distributed language translators,
application programs, service programs, and
user-written programs.

program. A general term for any combination of
statements that can be interpreted by a computer or
language translator, and that serves to do a specific
function.

program fetch. A program that prepares programs for
execution by loading them at specific storage locations
and readjusting each (relocatable) address constant.

program library. A partitioned data set or PDSE
(MVS), or Librarian library (VSE), that always contains
named members.

program management binder. See binder.

program module. Used in this publication as
collective term for load module and program object.

| program object. A new form of executable program
| supporting one or more independently relocatable
| loadable segments. Program objects are stored in

PDSE program libraries, and are produced by the
Program Management Binder.

pure DBCS. DBCS characters not delimited by SO
and SI. These characters must be known to be DBCS
by some other method, such as the position in a record,
or a field type descriptor in a database environment.

real storage. The storage of a System/370 computer
from which the central processing unit can directly
obtain instructions and data, and to which it can directly
return results.

read-only control section (RSECT). That part of a
program specified by the programmer to be a read-only
executable control section. The assembler automatically
checks the control section for possible coding violations
of program reenterability, regardless of the setting of the
RENT assembler option.

reenterable. An attribute that allows a program to be
used concurrently by more than one task. This attribute
is sometimes called reentrant.

refreshable. An attribute that allows a program to be
replaced with a new copy without affecting its operation.

reusability. An attribute of a program that defines the
scope to which it can be reused or shared by multiple
tasks within an address space.

relocatable expression. An expression is relocatable
if its value changes because the control section in
which it appears is relocated.

relocatable value. Is the value of a term when that
value changes because the control section in which it
appears is relocated.

*relocation dictionary. The part of an object or load
module that identifies all addresses that must be
adjusted when a relocation occurs.

residence mode. An extended architecture addressing
mode (RMODE) that allows a program to specify the
residence mode (below 16 megabytes or anywhere) to
be associated with a control section.

return code. A value placed in the return code register
at the completion of a program. The value is
established by the user and may be used to influence
the running of succeeding programs or, in the case of
an abnormal end of task, may simply be printed for
programmer analysis.

| section. (1) A cross-section of program object data
| with a single name, consisting of elements belonging to
| one or more classes. (2) A control section.

| segment. The aggregate of all section contributions to
| a given class, loaded as a single entity into storage,
| and having its own relocation base address.

severity code. A code assigned by the assembler to
each error detected in the source code. The highest
code encountered during assembly becomes the return
code of the assembly step.

shift-in (SI). The shift-in (SI) EBCDIC character
(X'0F') delimits the end of double-byte data.

shift-out (SO). The shift-out (SO) EBCDIC character
(X'0E') delimits the start of double-byte data.

skeleton dictionary. A dictionary built by the
assembler for each text segment. It contains the global
vector table, the sequence symbol reference dictionary,
and the local dictionary.

source macro definition. A macro definition included
in a source module, either physically or as the result of
a COPY instruction.

source module. The source statements that constitute
the input to a language translator for a particular
translation.

 Glossary 427

 Glossary

source statement. A statement written in a
programming language.

*statement. A meaningful expression or generalized
instruction in a programming language.

symbol file. A data set used by the assembler for
symbol definitions and references and literals.

symbolic parameter. In assembler programming, a
variable symbol declared in the prototype statement of a
macro definition.

system macro definition. Loosely, an IBM-supplied
library macro definition which provides access to
operating system facilities.

| text. Machine language instructions and data.

text segment. The range over which a local dictionary
has meaning. The source module is divided into text
segments with a segment for open code and one for
each macro definition.

*translate. To transform statements from one
language into another without significantly changing the
meaning.

| trimodal program execution. A function of
| z/Architecture that allows a program to run in 24-bit,
| 31-bit, or 64-bit address mode. The addressing mode is
| under program control.

translate table. A table used to replace one or more
characters with alternative characters.

virtual storage. Address space appearing to the user
as real storage from which instructions and data are
mapped into real storage locations. The size of virtual
storage is limited by the addressing scheme of the
computing system and by the amount of auxiliary
storage available, rather than by the actual number of
real storage locations.

ward. A set of DBCS characters which have the same
high-order byte value. The first byte of a double-byte
character is known as the ward byte. A ward contains
190 characters. Ward X'42' defines the double-byte
representation of those EBCDIC characters which are in
the range X'41' to X'FE'.

428 HLASM V1R5 Programmer’s Guide

 Bibliography

 Bibliography

High Level Assembler
Publications

HLASM General Information, GC26-4943

HLASM Installation and Customization Guide,
SC26-3494

HLASM Language Reference, SC26-4940

HLASM Licensed Program Specifications,
GC26-4944

HLASM Programmer's Guide, SC26-4941

Toolkit Feature Publications
HLASM Toolkit Feature User's Guide, GC26-8710

HLASM Toolkit Feature Debug Reference
Summary, GC26-8712

HLASM Toolkit Feature Interactive Debug Facility
User's Guide, GC26-8709

HLASM Toolkit Feature Installation and
Customization Guide, GC26-8711

 Related Publications
(Architecture)

Enterprise Systems Architecture/390 Principles of
Operation, SA22-7201

System/370 Enterprise Systems Architecture
Principles of Operation, SA22-7200

System/370 Principles of Operation, GA22-7000

System/370 Extended Architecture Principles of
Operation, SA22-7085

| z/Architecture Principles of Operation, SA22-7832

Related Publications for MVS
| z/OS:

| z/OS MVS JCL Reference, SA22-7597

| z/OS MVS JCL User's Guide, SA22-7598

| z/OS MVS Programming: Assembler Services
| Guide, SA22-7605

| z/OS MVS Programming: Assembler Services
| Reference, Volumes 1 and 2, SA22-7606,
| SA22-7607

| z/OS MVS Programming: Authorized Assembler
| Services Guide, SA22-7608

| z/OS MVS Programming: Authorized Assembler
| Services Reference, Volumes 1 - 4, SA22-7609 -
| SA22-7612

| z/OS MVS Program Management: User's Guide and
| Reference, SA22-7643

| z/OS MVS System Codes, SA22-7626

| z/OS MVS System Commands, SA22-7627

| z/OS MVS System Messages, Volumes 1 - 10,
| SA22-7631 - SA22-7640

 OS/390:

OS/390 MVS JCL Reference, GC28-1757

OS/390 MVS JCL User's Guide, GC28-1758

OS/390 MVS Programming: Assembler Services
Reference, GC28-1910

OS/390 MVS System Codes, GC28-1780

OS/390 MVS System Commands, GC28-1781

OS/390 MVS System Messages, Volumes 1 - 5,
GC28-1784 - GC27-1788

 OpenEdition:

MVS/ESA OpenEdition MVS User's Guide,
SC23-3013

z/OS UNIX System Services User's Guide,
SA22-7801

 MVS/DFP:

MVS/DFP Version 3.3: Utilities, SC26-4559

MVS/DFP Version 3.3: Linkage Editor and Loader,
SC26-4564

 DFSMS/MVS:

| z/OS DFSMS Program Management, SC27-1130

| z/OS DFSMSdfp Utilities, SC26-7414

 TSO/E (z/OS):

| z/OS TSO/E Command Reference, SA22-7782

 TSO/E (OS/390):

OS/390 TSO/E Command Reference, SC28-1869

 SMP/E (z/OS):

SMP/E Messages, Codes and Diagnosis,
GA22-7770

SMP/E Reference, SA22-7772

SMP/E User's Guide, SA22-7773

 SMP/E (OS/390):

SMP/E Messages and Codes, SC28-1738

 Copyright IBM Corp. 1982, 2004 429

 Bibliography

SMP/E Reference, SC28-1806

SMP/E User's Guide, SC28-1740

Related Publications for VM
| z/VM:

| z/VM CMS Application Development Guide,
| SC24-6002

| z/VM CMS Application Development Guide for
| Assembler, SC24-6003

| z/VM CMS User's Guide, SC24-5968

| z/VM CMS Command Reference, SC24-5969

| z/VM CMS File Pool Planning, Administration, and
| Operation, SC24-6058

| z/VM System Messages and Codes - CMS,
| GC24-6031

| z/VM XEDIT User's Guide, SC24-5972

| z/VM XEDIT Command and Macro Reference,
| SC24-5973

| z/VM CP Command and Utility Reference,
| SC24-5967

| z/VM Planning and Administration, SC24-5995

| z/VM Service Guide, GC24-5946

| z/VM VMSES/E Introduction and Reference,
| GC24-5994

Related Publications for VSE
VSE/ESA Administration, SC33-6705

VSE/ESA Guide to System Functions, SC33-6711

VSE/ESA Installation, SC33-6704

VSE/ESA Planning, SC33-6703

VSE/ESA System Control Statements, SC33-6713

VSE/ESA Messages and Codes, Vols.1 - 3,
SC33-6796, SC33-6798, SC33-6799

430 HLASM V1R5 Programmer’s Guide

 Index

 Index

Special Characters
*PROCESS OVERRIDE assembler options 42
*PROCESS statements

OVERRIDE 43
precedence of assembler options 41

&SYSNDX system variable symbol, controlling its value
using MHELP 329

Numerics
121-character format, source and object listing 16
121, LIST assembler suboption 62
133-character format, source and object listing 16
133, LIST assembler suboption 62
370, OPTABLE assembler suboption 66

A
abnormal assembly termination 157
ABOVE, suboption of SIZE 74
accessing the assembler (CMS) 200
ACONTROL statement

COMPAT/NOCOMPAT option 48
FLAG option 55
LIBMAC/NOLIBMAC option 61
RA2/NORA2 option 71

active USINGs
in the assembler listing 21
UHEAD, PCONTROL assembler suboption 68

ADATA
assembler option 45, 268
definition 424
exit processing 120
GOFF assembler suboption 58, 268
XOBJECT assembler suboption 83

adding definitions to a macro Library
adding macro definitions to libraries 234

CMS 213
MVS 183

addressing mode 180
ADEXIT

EXIT assembler suboption 52
installation option 54

ALIGN
assembler option 46, 223
FLAG assembler suboption 55

ALIGNWARN installation option 58
alternate ddnames 165
AMODE

binder option 178
in ESD section of listing 16
processing option 180

architecture level in ADATA records 276
ASA assembler option 46
ASA assembler option (CMS) 205
ASA assembler option (MVS) 169
ASCII translation table 79
ASMAC

cataloged procedure for assembly 162, 184
ASMACG

cataloged procedure for assembly and run, using the
loader 190

ASMACL
cataloged procedure for assembly and link 186

ASMACLG
cataloged procedure for assembly, link, and

run 189
ASMADATA macro 268, 389
ASMAEFNP macro 145, 389
ASMAHL command

by FILEDEF for SYSIN 205
error messages 385
with filename of source 205
with the EXIT option 206

ASMAHL command-error messages 336
ASMAOPT

data set 167, 170
macro 42
options file/library member 42

ASMAPROF, default profile member name 70
ASMAXADC (ADATA user exit) 396
ASMAXADR (ADATA user exit) 398
ASMAXADT (ADATA user exit) 390
ASMAXFMB macro 389, 390
ASMAXINV (SOURCE user exit) 403
ASMAXITP macro 88, 389
ASMAXPRT (LISTING user exit) 401
assembler

language differences 240
sample program 313

assembler cataloged procedures 184
assembler data sets (MVS)

characteristics of 167
list of 167

assembler diagnostics
abnormal assembly termination 157
cross reference 24
differences 256
error messages 152
facilities 152
macro trace facility (MHELP) 157
MNOTE statements 154
National Language Support 61
reference information for statements in error 156

 Copyright IBM Corp. 1982, 2004 431

 Index

assembler diagnostics (continued)
register cross reference 34
suppressing specified message numbers

See SUPRWARN assembler option
suppression of error messages and MNOTE

statements 156
assembler files (CMS)

characteristics of 204
list of 203

assembler files (VSE)
characteristics of 225
list of 224

Assembler H Version 2 compatibility 7
Assembler information block 98
assembler language support 7
assembler listing

*PROCESS statements 9
121-character format 16
133-character format 16
CMS options that affect 9
diagnostic cross reference and assembler

summary 35
differences 254
DSECT cross reference 32
external symbol dictionary 13
general purpose register cross reference 34
macro and copy code cross reference 28
macro and copy code source summary 27
option summary 9
options that affect 8
parts of 8
relocation dictionary 23
source and object 16, 17
source and object, 121 character format 17
source and object, 133 character format 22
symbol and literal cross reference 24
unreferenced symbols defined in CSECTs 27
USING map 33

assembler macros
on CMS 213
on MVS 183

assembler option
OBJECT 60

assembler options
*PROCESS OVERRIDE 42
*PROCESS statements 43
ADATA 45, 268
ALIGN 46, 223
ASA 46, 169, 205
ASMAOPT 42
at invocation 42
BATCH 47
CODEPAGE 47
coding rules 44
COMPAT 48
conflicting 41

assembler options (continued)
DBCS 49
DECK 50, 223
default 44
differences 252
DISK (CMS) 70
DXREF 50
ERASE (CMS) 51
ESD 51
EXIT 52, 86
external source 42
external sources 41
fixed defaults 42
FLAG 55
FOLD 58
GOFF 58
in a parameter list 44
INFO 60
JCL options 223
LANGUAGE 61
LIBMAC 61
LINECOUNT 62
LIST 62, 223
MACHINE 63
MXREF 65
NOADATA 45, 268
NOALIGN 46, 223
NOASA 46, 169, 205
NOBATCH 47
NOCOMPAT 48
NODBCS 49
NODECK 50, 223
NODXREF 50
NOERASE (CMS) 51
NOESD 51
NOEXIT 52
NOFOLD 58
NOGOFF 58
NOINFO 60
NOLIBMAC 61
NOLIST 62, 223
NOMXREF 65
NOOBJECT 66, 223
NOPCONTROL 68
NOPRINT (CMS) 70
NOPROFILE 70
NORA2 71
NORENT 72
NORLD 72, 223
NORXREF 73
NOSEG 73
NOSUPRWARN 76
NOTERM 77, 223
NOTEST 78
NOTHREAD 78
NOTRANSLATE 79

432 HLASM V1R5 Programmer’s Guide

 Index

assembler options (continued)
NOTYPECHECK 79
NOUSING 80
NOXOBJECT 83
NOXREF 83, 223
OBJECT 66, 223
on CMS 202
OPTABLE 66
override 42
OVERRIDE on *PROCESS statement 43
overriding 192
overriding defaults 44, 192
overriding statements in cataloged procedures 192
PCONTROL 68
PESTOP 70
precedence 41
PRINT (CMS) 70
processing 178
PROFILE 70
RA2 71
RENT 72
restricted options 43
RLD 72, 223
RXREF 73
sample of use 315
SECTALGN 73
SEG 73
SIZE 74
source 41
SUPRWARN 76
SYSPARM 76
TERM 77, 223
TEST 78
THREAD 78
TRANSLATE 79
TYPECHECK 79
types of 41
USING 80
XOBJECT 83
XREF 83, 223

assembler statistics 39
assembler summary 35
assembling your program 218
assembly abnormal-termination messages 336
assembly and link, JCL for

See ASMACL
assembly and run using the loader, JCL for

See ASMACG
assembly error diagnostic messages 339
assembly error-diagnostic messages 336
assembly, JCL for

See ASMAC
assembly, link, and run, JCL for

See ASMACLG
associated data records

ADATA compilation unit start/end record -
X'0002' 279

associated data records (continued)
ADATA identification record - X'0001' 279
architecture level 268, 276
ASMADATA macro 268
common header section 276
DC extension record - X'0035' 302
DC/DS record - X'0034' 294
external symbol dictionary record - X'0020' 289
job identification record - X'0000' 277
library member and macro cross reference record -

X'0062' 307
library record - X'0060' 306
machine instruction record - X'0036' 302
options file information - X'000B' 283
options record - X'0010' 284
output file information record - X'000Aa' 279
register cross reference record - X'0045' 305
relocation dictionary record - X'0040' 302
source analysis record - X'0030' 290
statistics record - X'0090' 309
symbol and literal cross reference record -

X'0044' 304
symbol record - X'0042' 303
user-supplied information record - X'0070' 308
USING map record - X'0080' 308

associated data, definition 424
ATTACH macro instruction, (MVS) 164
automatic call library

definition 424
secondary data set 176

B
BATCH assembler option 47
batch assembling 222

CMS 202
MVS 166

batch facility on CMS 212
binder

generalized object format 83
options (MVS) 178
sample JCL 174

BLKSIZE for assembler files 226
CMS 205
MVS 169

books
High Level Assembler xiv

C
CALL binder option 178
CALL macro instruction 222
CALL macro instruction (MVS) 164
calling the assembler from a problem program 222
calling the assembler from program (MVS) 164

 Index 433

 Index

CASE, COMPAT assembler suboption 48
cataloged procedures

for assembling (ASMAC) 184
for assembling and linking (ASMACL) 186
for assembling and running using the loader

(ASMACG) 190
for assembling, linking, and run (ASMACLG) 189
invoking 184
overriding 192

CATTR instruction, interaction with GOFF 59
CD-ROM publications xv
CDLOAD macro instruction 222
characteristics of assembler data sets (MVS) 167
characteristics of assembler files (CMS) 204
characteristics of assembler files (VSE) 225
class, definition 424
CLOSE calls to user exit 90
CMS

ASMAHL command error messages 385
assembler macros supported by 213
assembling on 201
batch facility 212
diagnostic messages 385
logical saved segments 73
relationship to assembler 200
running on 210

CMS assembler options 202
CMS diagnostic messages 209
CMSBATCH command 212
CODEPAGE assembler option 47
codes

See return codes
coding rules for assembler options 44
COM instruction

interaction with GOFF 59
COMMON, definition 424
COMPAT assembler option 48
compatibility with earlier assemblers 7
concatenation of sublibraries 227
concatenation of SYSLIB data sets 170, 207
COND parameter 171, 192
conditional assembly external functions 144
CONT, FLAG assembler suboption 55
CONTWARN installation option 58
create, phase 229
cross reference

See also diagnostic cross reference and assembler
summary

binder (MVS) 178
data variables (MVS) 178
examples 8, 327
linkage editor 232
linkage editor (MVS) 178

cross reference list
DSECT 32

CSECT instruction
interaction with GOFF 59

Customization book xiv

D
data

variables, cross reference 178
data sets, assembler (MVS)

characteristics of 167
list of 167

DATA, PCONTROL assembler suboption 68
DBCS assembler option 49
DD statements, overriding in cataloged

procedures 192
ddnamelist 165
ddnames

alternate 165
SYSADATA 171, 208
SYSIN 170, 207
SYSLIB 170, 177, 207
SYSLIN 171, 177, 208
SYSLMOD 177
SYSPRINT 170, 177, 207
SYSPUNCH 171, 208
SYSTERM 171, 177, 208
SYSUT1 177
user-specified 177

DE, LANGUAGE assembler suboption 61
DECK assembler option 50, 223
default options 44
default profile member name 70
diagnostic cross reference and assembler summary 35
diagnostic facilities

See assembler diagnostics
diagnostic messages written by CMS 209, 385
diagnostic messages, assembly error 339
DISK assembler option (CMS) 70
documentation

High Level Assembler xiv, 429
DOS, OPTABLE assembler suboption 66
DOS/VSE assembler compatibility 7
DSECT cross reference listing format 32
DXREF assembler option 50
dynamic invocation of assembler 222
dynamic invocation of assembler (MVS) 164

E
E-Decks, processing 234
element, definition 425
EN, LANGUAGE assembler suboption 61
END OF MEMBER calls to user exit 90
END Record format 264
entry point restatement 196

434 HLASM V1R5 Programmer’s Guide

 Index

ERASE assembler option (CMS) 51
erasing files (CMS) 51
error messages

abnormal assembly termination messages 380
ASMAHL command error messages (CMS) 385
assembly error diagnostic messages 152, 339
reference information 156
suppression of 55, 156

error, binder (MVS) 181
error, link-edit 232
ES, LANGUAGE assembler suboption 61
ESA

OPTABLE assembler suboption 66
ESD assembler option 51
ESD Record format 261
ESDID, external symbol dictionary ID

in Ordinary Symbol and Literal Cross Reference 26
in USING Map 33

examples
cataloged procedures coding 192
register saving and restoring coding 236
register saving and restoring coding (CMS) 214
register saving and restoring coding (MVS) 195

EXEC statements, overriding in cataloged
procedures 192

EXIT assembler option 52, 86
EXIT option with the ASMAHL command 206
exit parameter list 88
exit types 85
exit-specific information block 99
EXITCTL assembler instruction 86
exits

user-supplied 85
EXLITW, FLAG assembler suboption 55
external functions 144
external symbol dictionary (ESD)

entry types 13
examples 14, 315
listing format 13

F
FILEDEF with the ASMAHL command 205
filename with ASMAHL command 205
files, assembler (CMS)

characteristics of 204
list of 203

files, assembler (VSE)
characteristics of 225
list of 224

files, linkage editor
SYSIPT 231
SYSLNK 231
SYSLOG 231
SYSLST 231
SYSRDR 231

filter management table (ADATA user exit) 390
filter modules (ADATA user exit) 390
FIND COPY calls to user exit 90
FIND MACRO calls to user exit 90
FLAG assembler option 55
FOLD assembler option 58
format notation, description xvi—xviii
FULL

MXREF assembler suboption 65
XREF assembler suboption 83

function calls, external 144

G
GEN, PCONTROL assembler suboption 68
General Information book xiv
general purpose register cross reference 34
generalized object format data set 83
generate a translation table 404
generate a Unicode translation table 406
GENMOD command (CMS) 210
GOFF

assembler option 58
definition 425

graphic constants 49

H
hierarchical file system

definition 425
object data sets 168

High Level Assembler
publications xiv

High Level Assembler messages 336
See also assembler diagnostics
See also error messages

High Level Assembler option summary 9

I
I/O Exit Usage Statistics

in the listing 39
ICCF, assembling on 220
identification-sequence field 19
IF statement 228
IJSYS01 230
IJSYS03 219, 225
IMPLEN, FLAG assembler suboption 55
INCLUDE control statement 177, 231
INEXIT

EXIT assembler suboption 52
installation option 54

INFO assembler option 60
input, binder (MVS) 175
input, linkage editor 230

 Index 435

 Index

installation and customization
book information xiv

invoking cataloged procedures 184
invoking the assembler from a problem program 222
invoking the assembler from a program (MVS) 164

J
job control language cataloged procedures

See cataloged procedures
JP, LANGUAGE assembler suboption 61

L
LANGUAGE assembler option 61
Language Reference xv
LET binder option 178
LIBEXIT

EXIT assembler suboption 52
installation option 54

LIBMAC assembler option 61
Library 225, 227
LIBRARY control statement 177
LIBRARY exit processing 106
license inquiry 422
Licensed Program Specifications xv
LIMIT installation option 82
LIMIT, USING assembler suboption 80
LINECOUNT assembler option 62
LINK macro instruction (MVS) 164
linkage conventions for external functions 145
linkage editor

CMS
See GENMOD command (CMS)

control statements 231
errors 232
files 230
INCLUDE statement 231
input 230
libraries 231
MVS

AMODE option 178
call library 176
CALL option 178
data sets used 177
ddnames 176
errors 181
INCLUDE statement 177
input 175
LET option 178
LIBRARY statement 177
LIST option 178
MAP option 178
output 178
primary 176
PRINT option 178
processing options 178

linkage editor (continued)
MVS (continued)

RMODE option 178
sample 174
secondary 176
TSO LINK command 180
XREF option 178

on TSO 175
output 232
sample 229

linkage, object program 196
linker

definition 426
LIST assembler option 62, 223
LIST binder option 178
LIST, OPTABLE assembler suboption 66
listing control instructions, printing of 19
LISTING exit processing 112
listing format 14
LITTYPE, COMPAT assembler suboption 48
LKED command (CMS) 211
LOAD command (CMS) 210
load module

on TSO 175
sample 174

load module modification 196
loader 174
loading user exits 87
LOADLIB (CMS) 211
logical saved segments (CMS) 73
LookAt message retrieval tool xv
LRECL for assembler files 226

CMS 205
MVS 169

LSEG
See logical saved segments (CMS)

M
MACHINE assembler option 63
machine instructions 259
machine instructions, publications 429
macro and copy code cross reference listing format 28
macro and copy code cross reference with LIBMAC

option 29
macro and copy code source summary listing

format 27
macro definition libraries, additions to 234

CMS 213
MVS 183

macro trace facility
See MHELP

macro-generated statements
format of 19
in diagnostic messages 339

436 HLASM V1R5 Programmer’s Guide

 Index

MACROCASE, COMPAT assembler suboption 48
macros

ASMADATA 268, 389
ASMAEFNP 145, 389
ASMAXFMB 389
ASMAXITP 88, 389

macros, error messages in 152
macros, external function calls 144
MAGNITUDE, TYPECHECK assembler suboption 79
manuals

High Level Assembler xiv, 429
map

binder option (MVS) 178
link-edit option 232
load module 178
processing option 178

MAP installation option 82
MAP, USING assembler suboption 80
MAX

LIST assembler option 62
SIZE assembler option 74

MCALL, PCONTROL assembler suboption 68
message code format 336
message retrieval tool, LookAt xv
messages

See assembler diagnostics
MHELP

description 157
global suppression—operand=32 328
macro AIF dump—operand=4 328
macro branch trace—operand=2 328
macro call trace—operand=1 328
macro entry dump—operand=16 328
macro exit dump—operand=8 328
macro hex dump—operand=64 328
MHELP control on &SYSNDX 329
MHELP suppression—operand=128 328
sample program and listing 328

MHELP instruction
format 157

migration considerations 7
migration to High Level Assembler 240
MNOTE statements 154
MSOURCE, PCONTROL assembler suboption 68
MVS publications 429
MVS/ESA 183

assembler macros supported by 183
assembling on 161
running 181

MXREF assembler option 65

N
National Language Support 61
NLS

See National Language Support

NOADATA
assembler option
GOFF assembler suboption
XOBJECT assembler suboption

NOADEXIT, EXIT assembler suboption 52
NOALIGN

assembler option 46, 223
FLAG assembler suboption 55

NOASA assembler option 46
NOASA assembler option (CMS) 205
NOASA assembler option (MVS) 169
NOBATCH assembler option 47
NOCALL link-edit option 178
NOCASE, COMPAT assembler suboption 48
NOCOMPAT assembler option 48
NOCONT, FLAG assembler suboption 55
NODATA, PCONTROL assembler suboption 68
NODBCS assembler option 49
NODECK assembler option 50, 223
NODXREF assembler option 50
NOERASE assembler option (CMS) 51
NOESD assembler option 51
NOEXIT assembler option 52
NOEXLITW, FLAG assembler suboption 55
NOFOLD assembler option 58
NOGEN, PCONTROL assembler suboption 68
NOGOFF assembler option 58
NOIMPLEN, FLAG assembler suboption 55
NOINEXIT, EXIT assembler suboption 52
NOINFO assembler option 60
NOLET binder option 178
NOLIBEXIT, EXIT assembler suboption 52
NOLIBMAC assembler option 61
NOLIMIT, USING assembler suboption 80
NOLIST assembler option 62, 223
NOLIST, OPTABLE assembler suboption 66
NOLITTYPE, COMPAT assembler suboption 48
NOMACROCASE, COMPAT assembler suboption 48
NOMAGNITUDE, TYPECHECK assembler

suboption 79
NOMAP

binder option 178
USING assembler suboption 80

NOMCALL, PCONTROL assembler suboption 68
NOMSOURCE, PCONTROL assembler suboption 68
NOMXREF assembler option 65
NOOBJECT assembler option 66, 223
NOOBJEXIT, EXIT assembler suboption 52
NOPAGE0, FLAG assembler suboption 55
NOPCONTROL assembler option 68
NOPRINT assembler option (CMS) 70
NOPRINT binder option 178
NOPROFILE assembler option 70
NOPRTEXIT, EXIT assembler suboption 52
NOPUSH, FLAG assembler suboption 55

 Index 437

 Index

NORA2 assembler option 71
NORECORD, FLAG assembler suboption 55
NOREGISTER, TYPECHECK assembler suboption 79
NORENT assembler option 72
NORLD assembler option 72, 223
NORXREF assembler option 73
NOSEG assembler option 73
NOSUBSTR, FLAG assembler suboption 55
NOSUPRWARN assembler option 76
NOSYSLIST, COMPAT assembler suboption 48
notation, description xvi—xviii
NOTERM assembler option 77, 223
NOTEST assembler option 78
NOTHREAD assembler option 78
NOTRANSLATE assembler option 79
NOTRMEXIT, EXIT assembler suboption 52
NOTYPECHECK assembler option 79
NOUHEAD, PCONTROL assembler suboption 68
NOUSING assembler option 80
NOUSING0, FLAG assembler suboption 55
NOWARN, USING assembler suboption 80
NOXOBJECT assembler option 83
NOXREF assembler option 83, 223

O
object

extended format 83
file format 59, 261, 425
modules 177, 230, 231, 259
program linkage 196
program migration 7

OBJECT assembler option 60, 66, 223
OBJECT exit processing 116
OBJEXIT

EXIT assembler suboption 52
installation option 54

OFF, PCONTROL assembler suboption 68
ON statement 228
ON, PCONTROL assembler suboption 68
online publications xv
OPEN calls to user exit 90
OPTABLE assembler option 66
option summary listing format 9
options

assembler
See assembler options

binder (MVS) 178
options file

overriding *PROCESS OVERRIDE option 42
options library member

overriding *PROCESS OVERRIDE option 42
ordinary symbol and literal cross reference 24, 83
organization of this manual xi
OSRUN command (CMS) 211

output format listing 14
output, linkage editor 178, 232
OVERRIDE on *PROCESS statement 43
overriding ddname 165
overriding default options 44, 192
overriding statements in cataloged procedures 192

P
PAGE0, FLAG assembler suboption 55
PARM field 41
Part Reference, definition 426
partitioned data set definition 426
PCONTROL assembler option 68
PDSE definition 426
PESTOP assembler option 70
phase

create 229
sample 229

portability
machine instructions 259
object modules 259
system macros 259

precedence of assembler options 41
primary binder data set 176
PRINT assembler option (CMS) 70
PRINT binder option 178
procedures

See cataloged procedures
PROCESS calls to user exit 90
PROCESS COPY calls to user exit 90
PROCESS MACRO calls to user exit 90
PROCESS statements

See *PROCESS statements
processing E-Decks 234
processor time for the assembly 39
PROFILE assembler option 70
PROFMEM, default profile member name 70
program execution 181
program fetch definition 427
program library definition 427
program management binder definition 427
program module definition 427
program module modification 196
program object, definition 427
program termination 236

CMS 214
MVS 195

Programmer's Guide xv
PRTEXIT

assembler suboption 52
installation option 54

publications xiv
High Level Assembler xiv, 429
HLASM Toolkit 429
machine instructions 429

438 HLASM V1R5 Programmer’s Guide

 Index

publications (continued)
MVS 429
online (CD-ROM) xv
VM 430
VSE 430

PUNCH exit processing 116
PUSH

FLAG assembler suboption 55
level, in the assembler listing 21

R
RA2 assembler option 71
railroad track format, how to read xvi—xviii
range, in USING Map 33
READ calls to user exit 90
RECFM for assembler files 226

CMS 205
MVS 169

RECORD, FLAG assembler suboption 55
RECORDINFO installation option 58
reference information for statements in error 156
register cross reference 34
REGISTER, TYPECHECK assembler suboption 79
registers, saving and restoring

CMS 213
MVS 194, 196
VSE 235

REINIT calls to user exit 90
relocation dictionary

examples 14, 321
listing format 23

RENT assembler option 72
residency mode 180
restoring registers

CMS 213
MVS 194
VSE 235

return codes 171, 228
See also FLAG assembler option

RETURN macro instruction
CMS 213
MVS 194
VSE 235

RLD assembler option 72, 223
RLD Record format 263
RMODE

binder option 178
in ESD section of listing 16
processing option 180

RSECT instruction
interaction with GOFF 59

running
CMS 210
MVS/ESA 181
TSO 181

running (continued)
using batch facility 212
using LKED and OSRUN commands 211
using LOAD and START commands 210
using the GENMOD command 210

running programs on CMS 210
running your program 233
RXREF assembler option 73

S
S370, MACHINE assembler suboption 63
S370ESA, MACHINE assembler suboption 63
S370XA, MACHINE assembler suboption 63
S390, MACHINE assembler suboption 63
S390E, MACHINE assembler suboption 63
sample ADATA user exits 390
sample LISTING user exit 401
sample program to call the assembler dynamically 222

MVS 166
sample programs and listings

assembler language features, using 313
assembler listing description 9
diagnostic error messages 156
MHELP 328

sample SOURCE user exit 403
SAVE macro instruction

CMS 213
MVS 194
VSE 235

saving registers
CMS 213
MVS 194
VSE 235

SDB
See system-determined blocksize

secondary data set 176
SECTALGN assembler option 73
section, definition 427
SEG assembler option 73
segment, definition 427
sequence number 19
severity codes

See FLAG assembler option
See return codes

SHORT, XREF assembler suboption 83
SIZE assembler option 74
SIZE installation option 75
softcopy publications xv
source and object assembler listing format 16
source and object listing 16
source and object listing, 121 character format 17
source and object listing, 133 character format 22
SOURCE exit processing 104
source program migration 7

 Index 439

 Index

SOURCE, MXREF assembler suboption 65
stacked items xvii
START command (CMS) 210
start time of assembly 39
Static Assembler information block 98
Static Assembler Information Pointer 98
statistics, assembler 39
stop time of assembly 39
STORAGE installation option 75
SUBLIB JCL option 227
SUBSTR, FLAG assembler suboption 55
suppression of error messages and MNOTE

statements 156
SUPRWARN assembler option 76
SYM Record format 265
syntax notation, description xvi—xviii
SYSADAT 225, 228
SYSADATA data set 167, 171
SYSADATA file 204, 208
SYSIN data set 167, 170
SYSIN file 204, 207
SYSIPT 225, 226, 231
SYSLIB data set 167, 170, 177
SYSLIB file 204, 207
SYSLIN data set 167, 171, 177
SYSLIN file 204, 208
SYSLIST, COMPAT assembler suboption 48
SYSLMOD data set 177
SYSLNK 219, 225, 227, 230, 231
SYSLOG 225, 227, 231
SYSLST 225, 227, 231
SYSPARM assembler option 76
SYSPCH 225, 227
SYSPRINT data set 167, 170, 177
SYSPRINT file 204, 207
SYSPUNCH data set 167, 171
SYSPUNCH file 204, 208
SYSRDR 231
system macros 259
system variable symbols

comparison with earlier assemblers 243
in diagnostic messages 339
MHELP numbering system 329
setting data set information 101

system-determined blocksize 169
SYSTERM data set 167, 171, 177
SYSTERM file 204, 208
SYSUT1 data set 177

T
TERM assembler option 77, 223
TERM exit processing 122
termination

abnormal assembly 156, 157
program 236

CMS 214

termination (continued)
program (continued)

MVS 195
TEST assembler option 78
text, definition 428
THREAD assembler option 78
Toolkit Customization book xv
TRANSLATE assembler option 79
translation table generation 404
TRMEXIT

EXIT assembler suboption 52
installation option 54

TSO
assembling on 163
LINK command 180
link-edit options 180
running 181

TXT Record format 263
TYPECHECK assembler option

description 79, 411

U
UE, LANGUAGE assembler suboption 61
UHEAD, PCONTROL assembler suboption 68
UNI, OPTABLE assembler suboption 66
Unicode translation table generation 406
unreferenced symbols defined in CSECTs 83
unreferenced symbols defined in CSECTs listing

format 27
UNREFS, XREF assembler suboption 83
user exit

ADATA exit processing 120
addressing mode (AMODE) 87
ASMAXADC (ADATA user exit) 396
ASMAXADR (ADATA user exit) 398
ASMAXADT (ADATA user exit) 390
ASMAXFMB (ADATA user exit) 390
ASMAXFMT (ADATA user exit) 390
ASMAXINV (SOURCE user exit) 403
ASMAXPRT (LISTING user exit) 401
calling 88
coding example 125
error handling 99
EXIT assembler option 52
exit parameter list 88
exit-specific information block 88, 99
failure handling 99
filter management table (ADATA user exit) 390
filter modules (ADATA user exit) 390
LIBRARY exit processing 106
linkage conventions 88
LISTING exit processing 112
loading 87
locating 87
OBJECT exit processing 116

440 HLASM V1R5 Programmer’s Guide

 Index

user exit (continued)
PUNCH exit processing 116
reason codes 93
residency mode (RMODE) 87
return codes 92
sample ADATA user exit 390, 396, 398
sample LISTING user exit 401
sample SOURCE user exit 403
samples 125
SOURCE exit processing 104
specifying 86
TERM exit processing 122
types 85
user error handling 99

user-specified data set 177
USING assembler option 80
USING map listing format 33
using the assembler 218

CMS 200
MVS 161
TSO 163
VSE 218

using the assembler (ICCF) 220
USING0, FLAG assembler suboption 55
USINGs, active

in the assembler listing 21
UHEAD, PCONTROL assembler suboption 68

utility data set 167
utility file 204, 225

V
variable symbols, system

comparison with earlier assemblers 243
VM publications 430
VSE 218

relationship to assembler 218
VSE publications 430
VSE/ESA

JCL options 223
running your program 233

W
WARN

installation option 82
USING assembler suboption 80

web site xv
WRITE calls to user exit 90

X
XA, OPTABLE assembler suboption 66
XCTL macro instruction (MVS) 164
XOBJECT assembler option 83

XREF assembler option 83, 223
XREF binder option (MVS) 178
XREF, MXREF assembler suboption 65

Z
z/OS publications
ZOP, OPTABLE assembler suboption 66
ZS-2, MACHINE assembler suboption 63
ZS, MACHINE assembler suboption 63
ZSERIES-2, MACHINE assembler suboption 63
ZSERIES, MACHINE assembler suboption 63

 Index 441

We'd Like to Hear from You

High Level Assembler for MVS & VM & VSE
Programmer’s Guide
Release 5

Publication No. SC26-4941-04

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Electronic mail—Use this Internet ID:

 – Internet: comments@us.ibm.com

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the
information is presented. To request additional publications, or to comment on other IBM
information or the function of IBM products, please give your comments to your IBM
representative or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

High Level Assembler for MVS & VM & VSE
Programmer’s Guide
Release 5

Publication No. SC26-4941-04

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? � Yes � No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-4941-04 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
J87/D325
555 Bailey Avenue
SAN JOSE, CA 95141-9989

Fold and Tape Please do not staple Fold and Tape

SC26-4941-04

IBM

Program Number: 5696-234

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

High Level Assembler Publications

SC26-4941 HLASM Programmer's Guide.
GC26-4943 HLASM General Information.
GC26-4944 HLASM Licensed Program Specifications.
SC26-4940 HLASM Language Reference.
SC26-3494 HLASM Installation and Customization Guide.

High Level Assembler Toolkit Feature Publications

GC26-8709 HLASM Toolkit Feature Interactive Debug Facility User's Guide.
GC26-8710 HLASM Toolkit Feature User's Guide.
GC26-8711 HLASM Toolkit Feature Installation and Customization Guide.
GC26-8712 HLASM Toolkit Feature Debug Reference Summary.

SC26-4941-�4

S
pine inform

ation:

IB
M

H
L

A
SM

P
rogram

m
er’s G

uide
R

elease 5

	Contents
	About this Manual
	Who Should Use this Manual
	Programming Interface Information
	Organization of this Manual
	IBM High Level Assembler for MVS & VM & VSE Publications
	Publications
	Softcopy Publications
	The High Level Assembler web site
	Using LookAt to look up Message Explanations

	Related Publications
	Syntax Notation

	Summary of Changes
	Part 1. Understanding and Using the Assembler
	Chapter 1. Introduction
	Requirements
	System Requirements
	Machine Requirements
	Storage Requirements

	Compatibility
	Assembler Language Support
	Migration Considerations

	Chapter 2. Using the Assembler Listing
	High Level Assembler Option Summary
	External Symbol Dictionary (ESD)
	Source and Object
	Relocation Dictionary (RLD)
	Ordinary Symbol and Literal Cross Reference
	Unreferenced Symbols Defined in CSECTs
	Macro and Copy Code Source Summary
	Macro and Copy Code Cross Reference
	Effects of LIBMAC and PCONTROL(MCALL) Options

	DSECT Cross Reference
	USING Map
	General Purpose Register Cross Reference
	Diagnostic Cross Reference and Assembler Summary

	Chapter 3. Controlling Your Assembly with Options
	The Sources of Assembler Options
	 Precedence of Assembler Options
	Fixed Installation Default Options
	*PROCESS OVERRIDE Statement Options
	ASMAOPT Options
	Invocation Options
	*Process Statement Options
	Default Options
	Invoking the Assembler Dynamically
	Coding Rules

	Assembler Options
	ADATA
	ALIGN
	ASA (MVS and CMS)
	BATCH
	CODEPAGE
	COMPAT
	DBCS
	DECK
	DISK (CMS)
	DXREF
	ERASE (CMS)
	ESD
	EXIT
	FLAG
	FOLD
	GOFF (MVS and CMS)
	INFO
	LANGUAGE
	LIBMAC
	LINECOUNT
	LIST
	MACHINE
	MXREF
	OBJECT
	OPTABLE
	PCONTROL
	PESTOP
	PRINT (CMS)
	PROFILE
	RA2
	RENT
	RLD
	RXREF
	SECTALGN
	SEG (CMS)
	SIZE
	SUPRWARN
	SYSPARM
	TERM
	TEST
	THREAD
	TRANSLATE
	TYPECHECK
	USING
	XOBJECT (MVS and CMS)
	XREF

	Chapter 4. Providing User Exits
	Exit Types
	Specifying User Exits
	Loading User Exits
	Calling User Exits
	Exit Parameter List
	Request Info Pointer
	Parameter List Version
	Exit Type
	Request Type
	Options
	EXITCTLn
	Return Code
	Reason Code
	Buffer Length
	Error Buffer Length
	Error Severity
	User-Defined Field
	Common User Field

	Buffer Pointer
	Error Buffer Pointer
	Exit-Specific Information Pointer
	DCB Pointer

	Static Assembler Information Pointer
	HLASM VRM
	PTF Level
	System ID
	Numeric Version

	Error Handling
	Exit-Specific Information Block
	Member Name
	Member Type
	Data Set Name
	Volume Serial
	Relative Record Number
	Absolute Record Number
	Linecount
	Current Page Number

	SOURCE Exit Processing
	OPEN
	CLOSE
	READ
	PROCESS

	LIBRARY Exit Processing
	OPEN
	CLOSE
	READ
	PROCESS MACRO or PROCESS COPY
	FIND MACRO or FIND COPY
	END OF MEMBER

	LISTING Exit Processing
	OPEN
	CLOSE
	WRITE
	PROCESS

	OBJECT (MVS and CMS) and PUNCH Exit Processing
	OPEN
	CLOSE
	WRITE
	PROCESS

	ADATA Exit Processing
	OPEN
	CLOSE
	WRITE
	PROCESS

	TERM Exit Processing
	OPEN
	CLOSE
	WRITE
	PROCESS

	Sample User Exits
	User Exit Coding Example

	Chapter 5. Providing External Functions
	External Function Processing
	Linkage Conventions
	External Function Parameter List
	Request Information List
	Parameter List Version
	Function Type
	Number of Parameters
	Return Code
	Flag Byte
	Reserved
	Msg Length
	Msg Severity
	Return Value (SETAF)
	Parm Value n (SETAF)
	Return String Length (SETCF)
	Parm String n Length (SETCF)

	Pointer to User Work Area
	Pointer to Static Assembler Information
	Pointer to Msg Buffer
	Pointer to Return String (SETCF)
	Pointer to Parm String n (SETCF)

	Chapter 6. Diagnosing Assembly Errors
	Assembly Error Diagnostic Messages
	MNOTE Statements
	Suppression of Error Messages and MNOTE Statements
	Reference Information for Statements in Error
	Abnormal Assembly Termination
	MHELP—Macro Trace Facility

	Part 2. Developing Assembler Programs on MVS
	Chapter 7. Assembling Your Program on MVS
	Input to the Assembler
	Output from the Assembler
	Invoking the Assembler on MVS
	Invoking the Assembler on TSO
	Invoking the Assembler Dynamically
	Batch Assembling
	Input and Output Data Sets
	Specifying the Source Data Set: SYSIN
	Specifying the Option File: ASMAOPT
	Specifying Macro and Copy Code Libraries: SYSLIB
	Specifying the Listing Data Set: SYSPRINT
	Directing Assembler Messages to Your Terminal: SYSTERM
	Specifying Object Code Data Sets: SYSLIN and SYSPUNCH
	Specifying the Associated Data Data Set: SYSADATA

	Return Codes

	Chapter 8. Linking and Running Your Program on MVS
	The Program Management Binder
	The Loader
	Creating a Load Module
	Creating a Load Module on MVS
	Creating a Load Module on TSO

	Input to the Binder
	Data Sets for Binder Processing
	Additional Object Modules as Input

	Output from the Binder
	Binder Processing Options
	Specifying Binder Options Through JCL
	Specifying Binder Options Using the TSO LINK Command
	AMODE and RMODE Attributes
	Overriding the Defaults
	Detecting Binder Errors

	Running Your Assembled Program
	Running Your Assembled Program in Batch
	Running Your Assembled Program on TSO

	Chapter 9. MVS System Services and Programming Considerations
	Adding Definitions to a Macro Library
	Using Cataloged Procedures
	Cataloged Procedure for Assembly (ASMAC)
	Cataloged Procedure for Assembly and Link (ASMACL)
	Cataloged Procedure for Assembly, Link, and Run (ASMACLG)
	Cataloged Procedure for Assembly and Run (ASMACG)
	Overriding Statements in Cataloged Procedures
	EXEC Statements
	DD Statements

	Examples of Cataloged Procedures

	Operating System Programming Conventions
	Saving and Restoring General Register Contents
	Ending Program Execution
	Accessing Execution Parameters
	Object Program Linkage

	Modifying Program Modules

	Part 3. Developing Assembler Programs on CMS
	Chapter 10. Assembling Your Program on CMS
	Input to the Assembler
	Output from the Assembler
	Accessing the Assembler
	Invoking the Assembler on CMS
	Batch Assembling
	Controlling Your Assembly
	Input and Output Files
	Specifying the Source File: SYSIN
	Specifying the Option File: ASMAOPT
	Specifying Macro and Copy Code Libraries: SYSLIB
	Specifying the Listing File: SYSPRINT
	Directing Assembler Messages to Your Terminal: SYSTERM
	Specifying Object Code Files: SYSLIN and SYSPUNCH
	Specifying the Associated Data File: SYSADATA

	Return Codes
	Diagnostic Messages Written by CMS

	Chapter 11. Running Your Program on CMS
	Using the CMS LOAD and START Commands
	Using the CMS GENMOD Command
	Using the CMS LKED and OSRUN Commands
	Using the CMS Batch Facility

	Chapter 12. CMS System Services and Programming Considerations
	Using Macros
	Assembler Macros Supported by CMS
	Adding Definitions to a Macro Library

	Operating System Programming Conventions
	Saving and Restoring General Register Contents
	Ending Program Execution
	Passing Parameters to Your Assembler Language Program

	Part 4. Developing Assembler Programs on VSE
	Chapter 13. Assembling Your Program on VSE
	Input to the Assembler
	Output from the Assembler
	Invoking the Assembler in Batch
	Invoking the Assembler on ICCF
	Invoking the Assembler Dynamically
	Batch Assembling
	Controlling Your Assembly
	Input and Output Files
	Specifying the Source File: SYSIPT
	Specifying Macro and Copy Code Libraries: LIBDEF Job Control Statement
	Specifying the Listing File: SYSLST
	Directing Assembler Messages to Your Console Log: SYSLOG
	Specifying Object Code Files: SYSLNK and SYSPCH
	Specifying the Associated Data File: SYSADAT

	Return Codes

	Chapter 14. Link-Editing and Running Your Program on VSE
	The Linkage Editor
	Creating a Phase
	Input to the Linkage Editor
	Inputting Object Modules
	Files for Linkage Editor Processing
	Inputting additional Object Modules
	Linkage Editor Control Statements

	Output from the Linkage Editor
	Running your Assembled Program

	Chapter 15. VSE System Services and Programming Considerations
	Adding Definitions to a Macro Library
	Processing E-Decks
	Operating System Programming Conventions
	Saving and Restoring General Register Contents
	Ending Program Execution
	Accessing Execution Parameters

	Appendixes
	Appendix A. Earlier Assembler Compatibility and Migration
	Comparison of Instruction Set and Assembler Instructions
	Comparison of Macro and Conditional Assembly Statements
	Comparison of Macro and Conditional Assembly
	Comparison of Language Features
	Comparison of Assembler Options
	Comparison of Assembler Listing
	Comparison of Diagnostic Features
	Other Assembler Differences

	Appendix B. Cross-System Portability Considerations
	Using Machine Instructions
	Using System Macros
	Migrating Object Programs

	Appendix C. Object Deck Output
	ESD Record Format
	TXT Record Format
	RLD Record Format
	END Record Format
	SYM Record Format

	Appendix D. Associated Data File Output
	Record Types
	Macro-only Assemblies

	ADATA Record Layouts
	Common Header Section
	Job Identification Record—X'0000'
	ADATA Identification Record—X'0001'
	ADATA Compilation Unit Start/End Record—X'0002'
	Output File Information Record—X'000A'
	Options File Information—X'000B'
	Options Record—X'0010'
	External Symbol Dictionary Record—X'0020'
	Source Analysis Record—X'0030'
	Source Error Record—X'0032'
	DC/DS Record—X'0034'
	DC Extension Record—X'0035'
	DC extension record
	Machine Instruction Record—X'0036'
	Relocation Dictionary Record—X'0040'
	Symbol Record—X'0042'
	Symbol and Literal Cross Reference Record—X'0044'
	Register Cross Reference Record—X'0045'
	Library Record—X'0060'
	Library Member and Macro Cross Reference Record—X'0062'
	User-supplied Information Record—X'0070'
	USING Map Record—X'0080'
	Statistics Record—X'0090'

	Appendix E. Sample Program
	Appendix F. MHELP Sample Macro Trace and Dump
	Appendix G. High Level Assembler Messages
	Message Code Format
	Message Descriptions
	Message Number and Text
	Explanation of Message
	Supplemental Information
	System Action
	Programmer Response
	Severity Code

	Assembly Error Diagnostic Messages
	Message Not Known
	Messages

	Abnormal Assembly Termination Messages
	Messages

	ASMAHL Command Error Messages (CMS)

	Appendix H. User Interface Macros
	Appendix I. Sample ADATA User Exits (MVS and CMS)
	Sample ASMAXADT User Exit to Filter Records
	Function
	Preparing the Exit
	Preparing the Filter Management Table
	Preparing the Filter Modules
	Preparing the Sample Filter Module ASMAXFLU
	Invoking the Exit

	Sample ASMAXADC User Exit to Control Record Output
	Function
	Preparing the Exit
	Invoking the Exit
	Messages

	Sample ASMAXADR User Exit to Reformat Records
	Function
	Preparing the Exit
	Invoking the Exit
	Messages

	Appendix J. Sample LISTING User Exit (MVS and CMS)
	Function
	Preparing the Exit
	Invoking the Exit
	Messages

	Appendix K. Sample SOURCE User Exit (MVS and CMS)
	Function
	Preparing the Exit
	Invoking the Exit

	Appendix L. How to Generate a Translation Table
	Appendix M. How to Generate a Unicode Translation Table
	Appendix N. TYPECHECK Assembler Option
	Extensions to the DC, DS, and EQU Assembler Instructions
	Type Checking Behavior for REGISTER
	Access Register Type Checking
	General Rregister Type Checking
	Control Register Type Checking
	Floating-Point Register Type Checking

	Type Checking Behavior for MAGNITUDE

	Notices
	Trademarks

	Glossary
	Bibliography
	High Level Assembler Publications
	Toolkit Feature Publications
	Related Publications (Architecture)
	Related Publications for MVS
	Related Publications for VM
	Related Publications for VSE

	Index

