CSCI 360
Data Structures in Assembly Language

Notes and Examples

Spring, 2019
Table of Contents

Introduction
4

Chapter 1 - Job Control Language (JCL)
5

Assist JCL
5

 JCL for Listing the Input Data Set
8

Chapter 2 - Documentation Standards
9

Routine (Main Box) Documentation
9

Source Code Documentation
13

Macro Documentation Standards
15

Chapter 3 - Structured Pseudocode
17

Chapter 4 - Debugging Tips
18

Chapter 2 of Text
18

Chapter 3 of Text
19

Chapter 4 of Text
20

Chapter 5 of Text
20

Chapter 6 of Text
22

Chapter 8 of Text
22

Chapter 9 of Text
22

Chapter 5-Some Common S0Cx Abends
23

Chapter 6 - Decimal Conversion
24

XDECI
24

XDECO
25

Chapter 7 - The Load Address Instruction
26

Chapter 8 - Memory Dumps
29

Dump Contents
29

Dump Assignment 1
31

Dump Assignment 2
33

Chapter 9 - External Routines & Linkage
35

External Subroutines
35

Standard Linkage Convention
36

Save Area Format
38

Register Conventions
39

Entry Linkage
40

Exit Linkage Method 1
41

Calling External Subroutines
43

Parameter Lists and Passing Parameters
45

Chapter 10 - DSECTs
47

Chapter 11 - Macro Instructions & Conditional Assembly
50

Macro Definition
51

Format of a Macro Definition
52

MNOTE and MEXIT
55

Linear Table Search
56

Binary Search
56

Hashing
57

Hash Search
58

Appendix B - Sort Algorithms
60

Bubble Sort
60

Selection Sort
61

Insertion Sort
62

INSERTION SORT WITH A BUCKET
63

Appendix C - Merge Algorithms
64

Appendix D – Accessing the Marist Mainframe
66

Introduction

The intent of this book is to supplement the class readings and lecture notes for CSCI 360: Data Structures in Assembly Language. It should be used in conjunction with the text Assembler Language with ASSIST and ASSIST/I; it is by no means intended to replace the text. See the ESA/390 Principles of Operation manual for further help on the machine instructions, and the High Level Assembler Language Reference for more information on the assembly language.

Chapter 1 - Job Control Language (JCL)

Once we have an assembler program coded, all we need to do is add JCL and we can run it. Our finished program appears below. See the JCL section for help on JCL. See the Documentation Standards section for more help on documentation standards. Use the Assist JCL unless otherwise told.

Assist JCL

(for Marist)

//jobnamex JOB ,'banner name',MSGCLASS=H

//STEP1 EXEC PGM=ASSIST

//STEPLIB DD DSN=KC02293.ASSIST.LOADLIB,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

MAIN CSECT

 USING MAIN,15

*assembler source code

*

 BR 14 Exit from the program

 END MAIN

/*

//FT05F001 DD *

input data goes here

//FT06F001 DD SYSOUT=*

//

 SUBSTITUTIONS:

 jobname =
KCnnnnnx, where KCnnnnnx is your assigned Marist logonid and x is a single letter or number.

 banner name =
will print on your job banner. 1-20 characters.

If your program requires input data from a disk file, then the JCL after the assembler source code should change as follows: You can leave the jobparm statement in if you want.

 //KC01234B JOB ,'JOE A. STUDENT',MSGCLASS=H

/*JOBPARM NOLOG,ROOM=1234

//STEP1 EXEC PGM=ASSIST

//STEPLIB DD DSN=KC02293.ASSIST.LOADLIB,DISP=SHR

//SYSPRINT DD SYSOUT=*

//FT05F001 DD DSN=name-of-file,DISP=SHR

//SYSIN DD *

 TITLE 'A SIMPLE PROGRAM '

 **

 * *

 * Documentation goes here *

 * *

 **

 MAIN CSECT

 USING MAIN,15

 END MAIN

 /*

 //FT06F001 DD SYSOUT=*

 //

 SUBSTITUTIONS:

 name-of-file =
When a program requires data from an input disk file. The instructor will give you the name of the file.

 NOTE:
When coding JCL, you must code everything exactly as shown, except for the substitution items; otherwise, you will receive JCL errors.

 Also note that on the line of JCL that defines the file to be used, FT05F001 contains zeroes and not any letters O.

JCL for Listing the Input Data Set

All assignments will be available via web browser, and will have a link to a web copy of any input data set. In case there is no such link, you can use the following JCL to submit a batch job to obtain the input data listing. The following example will print the listing of the input data for an assignment. For each subsequent assignment, just modify the SYSUT1 statement to reflect the name of the input data set given to you on the assignment sheet.

//KC0xxxxE JOB ,'JOE A.STUDENT'

//PRINT EXEC PGM=IEBPTPCH

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=name-of-file,DISP=SHR

//SYSUT2 DD SYSOUT=*

//SYSIN DD *

 PRINT MAXFLDS=1

 RECORD FIELD=(80)

/*

//

 SUBSTITUTIONS:

 name-of-file =
When a program requires data from an input file. The instructor will give you the name of the file.

Chapter 2 - Documentation Standards

Routine (Main Box) Documentation

Each routine, whether internal or external, should contain a star box that looks like the following:

 * NAME: *

 * *

 * FUNCTION: *

 * *

 * INPUT: *

 * *

 * OUTPUT: *

 * *

 * ENTRY CONDS: *

 * *

 *REGISTER USAGE: *

 * *

 * EXIT CONDS: *

 * *

 * PSEUDOCODE: *

 * *

 * *

 * NOTES: *

 * *

 NAME:
This should be the name of the routine, usually the first label in the routine, that the caller references (e.g., a CSECT label for external routines).

 FUNCTION:
This should be a one or more line description of what the routine is supposed to do.

 INPUT:
This is a description of the physical data that is read by this routine. A routine only has input if it contains an XREAD command. The content of a table is NOT input, it is storage. If there are no inputs, you must say 'NONE'.

 OUTPUT:
This is a description of any information sent to the printer, such as reports. A routine only has output if it contains an XDUMP or XPRNT command. If there are no outputs, you must say 'NONE'.

 ENTRY CONDS:
This stands for Entry Conditions. This should describe the parameters passed to the subroutine. If there no parameters passed, then you must type in 'NONE'. Examples of valid entry conditions follow later in this section.

 EXIT CONDS:
This stands for Exit Conditions. This should represent what registers the routine will purposely change before returning back to the calling routine (for external routines only register 15 and 0 can be used) . If there are no register exit conditions, you must type in 'NONE'. Examples of valid entry conditions follow later on in this section.

 Examples of Entry and Exit Conditions for internal subroutines:

 ENTRY CONDS:R3 -- Contains the address of beginning of table

R4 -- Contains the address of the card

 EXIT CONDS:
R5 -- Contains the address of the end of table

 The above may be abbreviated for space as follows.

 ENTRY CONDS:R3 -- @(BEGINNING OF TABLE)

R4 -- @(CARD)

 EXIT CONDS:R5 -- @(END OF TABLE)

 Examples using a parameter list:

 ENTRY CONDS:
R1 –- @(PARMLIST)

0(R1) -- @(BEGINNING OF TABLE)

4(R1) -- @(CARD)

8(R1) -- @FULLWORD[@(LOGICAL END OF TABLE)]

 EXIT CONDS:
 R15 -- CONTAINS RETURN CODE

0 -- MEANS SUCCESSFUL

4 -- MEANS UNSUCCESSFUL

 REGISTER USAGE:
Register usage should describe what registers are being used consistently in the following section of code. An example follows:

R6 -- USED FOR THE $TABLE DSECT USING

R7 -- CONTAINS THE ADDRESS OF THE END OF THE TABLE

R15 -- USED AS A BASE REGISTER

PSEUDOCODE:
This should show all the pseudocode that you used to write this routine. In addition, each major step in the pseudocode should have a step number off to the left, and a matching documentation statement in the assembler source code. This is to provide a sort of index into the source code from the pseudocode. Pseudocode should be independent of the assembler language. Don't use assembler words (register) or instructions (XDECI, XDECO, etc.) The algorithm should be just as easy to implement in COBOL, FORTRAN, BASIC or any other programming language. See, also the section titled A Complete Program for an example of pseudocode.

Don't follow the examples in the book for writing the pseudocode.

Would anyone reading the following pseudocode be able to tell that an assembler programmer wrote it?

 * PSEUDOCODE

 * <1> INITIALIZE THE ACCUMULATORS

 * <2> GET THE FIRST RECORD

 * <3> DO WHILE (NOT EOF)

 * DUMP THE CARD

 * <4> IF (NUMBER POSITIVE)

 * ADD NUMBER TO POSITIVE ACCUMULATOR

 * ELSE

 * ADD NUMBER TO NEGATIVE ACCUMULATOR

 * ENDIF

 * <5> GET NEXT CARD

 * ENDDO

 * <6> PRINT THE TOTAL

 Another example:

 * PSEUDOCODE II

 * <STEP 1> INITIALIZE THE ACCUMULATORS

 * <STEP 2> READ THE FIRST RECORD

 * <STEP 3> DO WHILE (NOT END OF FILE)

 * DUMP THE RECORD READ

 * <STEP 4> IF (NUMBER POSITIVE)

 * ADD NUMBER TO POSITIVE ACCUMULATOR

 * ELSE

 * ADD NUMBER TO NEGATIVE ACCUMULATOR

 * ENDIF

 * <STEP 5> READ NEXT RECORD

 * ENDDO

 * <STEP 6> PRINT THE TOTAL

 NOTES:
This should specify any special programming techniques that this routine uses that someone looking at your program should know about. If there are no special notes, you may omit this line. In addition to the above documentation box, your program should implement the following standards:

Source Code Documentation

NOTE:
You MUST follow all documentation standards beginning with the very first programming assignment!

Line Documentation

· You must provide Line Documentation on 80% or more of executable instructions or execution of your program will be suppressed.

· Documentation should usually start in column 36 and should be kept aligned.

 Example

 LA 3,TABLE Load R3 with @ of table - Bad!

 LA 3,TABLE Get table beginning @ - Good

 AR 3,4 Add R4 to R3 - Bad doc!

 AR 3,4 Add amount to total - Good

 XDECI 6,CARD Put converted number in - Good

 ST 6,TABLE the table

 MVI PLINE,C' ' Clear the - Good

 MVC PLINE+1(132),PLINE print line

· Documenting storage:

 CARD DS CL8O Input area

 PLINE DC C12'THE SUM IS:' (Don't have to document).

 SUM DS CL12 Storage area for the total.

 NAME DS CL20 Storage area for name.

Spacing Source Code

 TITLE 'write a suitable title for that page'

Type TITLE in columns 10-14.

This will advance the source code to a new page and print a specified title.

This will also print the specified title on all the following pages until next TITLE statement is encountered.

Use at least one TITLE per program. Should have one for each CSECT, subroutine, macro, DSECT etc.

 Note:
To print an apostrophe or ampersand, code two of them in the header. Don't use a TITLE and an EJECT one right after the other or you will end up with a blank page.

 ex.
TITLE 'STORAGE FOR THE MAIN ROUTINE'

EJECT

 ex.
TITLE 'MODULE - MAIN' Appears on all pages until another TITLE statement appears

SPACE n - To leave specified number of blank lines in source listing.

Use space to break large pieces of source code into small, readable sections. If n is omitted then, default is 1.

SPACE ,
Gives one blank line

SPACE 3
Gives three blank lines

 Code SPACE in source code like this:

 AR 3,4 Add R4 to R3

 AR 3,4 Add amount to total

 SPACE 2

 XDECI 6,CARD Put number in

 ST 6,TABLE the table

 Your printout will look like this:

 AR 3,4 Add R4 to R3

 AR 3,4 Add amount to total

 XDECI 6,CARD Put number in

 ST 6,TABLE the table

 EJECT ---
EJECTs are used for advancing the source code to a new page (for example, starting a routine on a new page).

EJECTS are also used to indicate major breaks in logic and to increase readability of the program.

Example
(Skips to the top of the next page):

 BR 14

 EJECT

 LTORG

Puts the LTORG at the top of the next page

 REMEMBER!
Don't use a TITLE and an EJECT one right after the other or you will end up with a blank page!!!

Macro Documentation Standards

The following minimal documentation should be placed in all macro definitions.

1. Describe the function of the macro; what it does for the user. Do NOT describe how the macro works. To the user, the macro is just an instruction and the user only wants to know how to use it.

2. Describe the symbolic parameters including coding specifications.

Documentation example:

 .***

 .* NAME: CHANGE *

 .* *

 .* FUNCTION: TO CONVERT THE VALUE IN ® INTO ITS *

 .* DECIMAL EQUIVALENT AND TO EDIT THE VALUE *

 .* INTO THE 12 BYTE OUTPUT AREA DESIGNATED BY *

 .* THE &PRNTFLD ADDRESS. *

 .* *

 .* PROTOTYPE STATEMENT: *

 .* &LABEL ZDECO ®,&PRNTFL *

 .* *

 .* SYMBOLIC PARAMETERS: *

 .* &LABEL AN OPTIONAL LABEL FOR THE FIRST STATEMENT *

 .* GENERATED *

 .* ® REQUIRED OPERAND IN THE FORM OF A REGISTER *

 .* NUMBER CONTAINING THE BINARY VALUE TO BE *

 .* CONVERTED TO A PRINTABLE FORMAT. *

 .* &PRNTFLD A REQUIRED OPERAND IN THE FORM OF ANY VALID*

 .* RX-TYPE ADDRESS INTO WHICH THE DECIMAL *

 .* EQUIVALENT OF THE BINARY VALUE IS TO BE *

 .* EDITED. *

 .* *

 .* ERROR CONDITIONS: *

 .* IF EITHER ® OR &PRNTFLD IS MISSING, AN MNOTE AND *

 .* MEXIT ARE ISSUED. *

 .* *

 .* NOTES: *

 .* THE CONTENTS OF CALLERS REGISTERS 1 AND 2, AND THE *

 .* CONDITION CODE, ARE SAVED AND RESTORED UPON EXIT FROM*

 .* THE MACRO. *

 .***

 NAME:
This should be the name of the macro.

 FUNCTION:
This should be a one or more line description of what the macro is supposed to be used for.

 PROTOTYPE:
This should show what parameters this macro accepts and the order the parameters should be specified to call the macro.

SYMBOLIC PARMS:
This is a description of all symbolic parameters, what they mean, any defaults they may have, and if they are optional. If there are no parameters, then 'NONE' must be specified.

 ERROR CONDS:
This should be a listing of any MNOTE messages that may be generated by this macro, as well as under what conditions they will be generated. If there are no error conditions, you must say 'NONE'.

 NOTES:
This should specify any special programming techniques that this macro uses that someone looking at your program should know about.

Internal Macro Documentation:

There are two kinds of documentation which should appear within a macro definition: documentation which will appear as generated assembler source, and documentation which describes the operation of the macro instruction itself, particularly conditional assembly.

The first, assembler source documentation, should be written exactly as is done in a standard assembler language program.

The second, macro language documentation, should appear as both comment blocks (using the .* form of macro comment) and as line doc on conditional assembly statements.

Remember, there is never “too much” documentation.

Chapter 3 - Structured Pseudocode

Structured programming provides the programmer logical constructs from which to build efficient programs. It facilitates simplified logic, easier debugging, and better maintenance. Structured programming is best demonstrated through the use of pseudocode. Pseudocode is an English like language that allows the description of logic to be written, free from the syntax of a formal computer language. Therefore, a particular set of pseudocode becomes portable. That is, it may be shared with different programmers, each of which may work with a different language, and it will be readily understood. Actual computer programming simply becomes the translation of pseudocode into a computer language. The following are four basic control constructs that we will use in pseudocode to give our programs good structure:

 * sequence (straight-line)

 * if-else

 * if-elseif-else

 * do-while

 In addition, these four constructs may be layered within themselves. For example, a do-while construct may contain an if-else construct, which definitely will contain a sequence construct. To better demonstrate the use of structured pseudocode, both computer code examples and examples relating to something from everyday life will be given. Remember, pseudocode is a description of logic, therefore it can define any process.

Chapter 4 - Debugging Tips

Chapter 2 of Text

1. Spelling mistakes.

a. NUM for NUMB.

2. Omit USING statement. Will cause a lot of addressability errors.

a. Failure to assign and load enough base registers for a long program.

b. Using the base register for another purpose in the program thereby destroying the base reference.

3. Violating rules for declarative.

a. DS with a nominal value, which is viewed as documentation.

b. DC without a nominal value.

c. Wrong length on a DC --- DC CL3'DATE'.

d. Wrong nominal value coded --- DC CL5'0' gives '0bbbb' rather than '00000'.

4. Select the correct instruction.

 LR 7,4 LOAD CONTENTS OF R4 INTO R7.

 L 7,4 LOAD CONTENTS OF BYTES 4, 5, 6, 7 INTO R7.

 LA 7,4 LOADS THE 4 INTO R7.

Errors may not occur if you use the wrong instruction, but your output will be incorrect.

5. Binary division requires that the even register be initialized with the sign bit of the odd register.

6. Binary calculations may generate unexpectedly large values that exceed the capacity of one register.

7. Use XDUMPs to verify register contents and storage.

8. When using EQU be sure you code in what you want.

 R12 EQU 13

Whenever you say R12 the compiler will interpret it as a 13.

9. Remember the rules of using literals and the LTORG statement.

10. When using apostrophes, ampersands, or quotes you are required to use two of them next to each other in a literal in order to represent just one of them.

 C'T&&D''S' ---> E350C47DE2

Chapter 3 of Text

1. Incorrect use of the mnemonic branching, reversing operand 1 and 2, using BNH rather than BNL.

2. The increment value for stepping through the table may be wrong.

3. The beginning or end of table address may be wrong.

4. If beginning or end of table addresses are wrong, you may never find the end of table and get into an infinite loop. You will probably end up with a protection exception as you go through memory.

5. Work in steps. Build table, dump and verify. Sort table, Dump and verify. Print table, dump and verify.

Chapter 4 of Text

NOTE:
If an instruction is not completely understood and may be causing an error, check the assembler manual to insure for it's correct use.

1. Coding a length on MVI or CLI or on the second operand of MVC or CLC.

2. Be sure that input definition agrees with actual input record. Any differences may cause garbage results.

3. Omitting explicit length on an MVC statement with relative addressing:

 MVC PRINT+95,=C'DATE'

The computer will move 133 bytes starting from the first byte of DATE.

4. Using Literal ("=") with a CLI or MVI.

Chapter 5 of Text

Assembly errors:

1. Coding packed DCs (type P) with values other than digits 0-9.

2. Coding hex data - pads and truncates on the left.

DC XL3'FF' generates '0000FF' rather than 'FFFFFF'

Logic errors:

1. Packing a field that contains a blank will give an invalid sign (X'04') and an attempt to do arithmetic with this field will cause a data exception. Most likely cause is an invalid input record.

2. Another cause of a data exception is using a field not initialized by DC or defined as Character or Hex.

3. Watch out for using MVC and CLC on packed data (incorrect execution) and ZAP or CP on character data (Data exception).

4. Watch for improper relative addressing.

5. Missing explicit lengths can cause unexpected results.

6. Double check MVC/ED operations.

a. There must be an odd number of digit selectors.

b. Print area field must be the same as the edit field.

7. Watch for too short a field in MP. Data exception.

8. Make sure field is big enough on DP. Decimal divide.

9. Make sure you don't divide by zero. Decimal divide.

10. As well as technical misuse of instructions,

a. Wrong compares

b. Wrong branches

c. Wrong calculations

11. Operand two of CVD or CVB must be a double word.

12. Analyze the programming problem well before you begin to code.

Chapter 6 of Text

1. Preventive programming is your best defense.

2. Be careful about register use (very common mistake although simple, it could take a while before it is noticed). Write down what you are using the registers for in each routine.

3. If you have problems with external linkage, double check that the standard linkage was entered correctly. It is easy to reverse registers.

4. As soon as you get the parameters in a subroutine, dump the registers so you can verify that you have the right parameters.

5. Make sure registers used with DSECTs contain the right values.

6. Remember to DROP all base registers when you're done with the DSECTs.

Chapter 8 of Text

1. Registers 1 and 2 are implicitly altered by the TRT instruction.

2. When using a LH instruction the two leftmost bytes will be changed to the sign bit.

Chapter 9 of Text

1. A macro loop is different from an assembler loop.

2. REMEMBER: do not mix assembler statements with macro processing statements. For example

 AIF ('' NE '').FOUND

 .FOUND DS 0H <---- WRONG

 .FOUND ANOP <---- OK

3. Do not use R with the register number or use literals in a macro, because you do not always know if the programmer who is going to use this macro is using EQUREGS or LTORGs in his program.

Chapter 5-Some Common S0Cx Abends

· S0C1 - Invalid operation code.

· You get this error when an attempt is made to execute an invalid operation code.

· Probable causes:

· a missing branch instruction at the end of the routine.

· code overwritten; compare the typed instruction at the abending address with the contents of storage in the dump at the abending address.

· S0C4 - Protection Exception.

· Attempt is made to refer to a storage not allocated to your program.

· Probable causes:

· Invalid value in the base or index register due to any prior instruction.

· S0C6 - Specification Exception.

· With RX instructions: Address of the storage referred to is not on a full word boundary;

Invalid value in the base or index register.

· With MP/DP: Invalid length specified for the receiving field.

· S0C7 - Data Exception.

· Attempting decimal arithmetic with a field containing an invalid packed number.

· S0C9 - Fixed point divide exception.

· The quotient does not fit in the odd register of the even/odd pair.

· Attempt to divide by zero.

· This error occurs mostly because the even register does not contain the extension of the sign bit.

· S0CB - Decimal Divide Exception.

· Attempt to divide by zero.

· The quotient after DP does not fit in the specified area.

Chapter 6 - Decimal Conversion

To facilitate numeric input/output, ASSIST accepts the commands XDECI (eXtended DECimal Input), and XDECO (eXtended DECimal Output). XDECI can be used to scan input cards for signed or unsigned decimal numbers and convert them to binary form in a general purpose register, also providing a scan pointer in register 1 to the end of the decimal number. XDECO converts the contents of a given register to an edited, printable, decimal character string.

Both instructions follow the RX instruction format, as shown:

XDECI R1,D2(X2,B2)

XDECO R1,D2(X2,B2)

where R1 is any general purpose register, and D2(X2,B2) is an RX-type address, such as LABEL 0(4,5) LABEL+3(2)

XDECI

XDECI is generally used to scan a data card read by XREAD. The sequence of actions performed by XDECI is as follows:

1. Beginning at the location given by D2(X2,B2), memory is scanned for the first character which is not a blank.

2. If the first character found is anything but a decimal digit or plus or minus sign, register 1 is set to the address of that character, and the condition code is set to 3 (overflow) to show that no decimal number could be converted. The contents of R1 are not changed, and nothing more is done.

3. From one to nine decimal digits are scanned, and the number converted to binary and placed in R1, with the appropriate sign. The condition code is set to 0 (0), 1 (-), or 2 (+), depending on the value just placed in R1.

4. Register 1 is set to the address of the first non-digit after the string of decimal digits. Thus R1 should not usually be 1. This permits the user to scan across a card image for any number of decimal values. The values should be separated by blanks, since otherwise the scanner could hang up on a string like -123*, unless the user checks for this himself. I.e., XDECI will skip leading blanks and signs but will not itself skip over any other characters.

5. During step 3, if ten or more decimal digits are found, register 1 is set to the address of the first character found which is not a decimal digit, the condition code is set to 3, and R1 is left unchanged. A plus or minus sign alone causes a similar action, with R1 set to the address of the character following the sign character.

6. In summary, the condition code is set to

0 - if converted number was 0

1 - if converted number was < 0

2 - if converted number was > 0

3 - if an invalid character is found, or the number was too long (or short)

And R1 will point to the blank after the last digit of the number.

NOTE:
XDECI is not at all linked to XREAD. You can convert any number from character to binary by providing proper address. It is mostly used with XREAD because the data is generally specified in character format and needs to be converted (numbers only) to binary format for calculations.

NOTE:
Never use R1 as the receiving field on XDECI instruction. To be extra careful, expecially at the beginning of the semester, DO NOT use R1 for anything else if XDECI is being used in the program.

XDECO

XDECO converts the value in R1 to printable decimal, with leading zeroes removed, and a minus sign prefixed if needed. The resulting character string is placed right-justified in a 12-byte field beginning at address. It can then easily be printed using an XPRNT instruction. The XDECO instruction modifies NO registers.

D2(X2,B2) - must be a 12 byte field where you want to store the converted number (Normally on the print line).

Chapter 7 - The Load Address Instruction

The Load Address (LA) instruction is in the RX format:

label LA R1,D2(X2,B2)

· Execution of this instruction causes the address given by D2(X2,B2) to be calculated and placed in R1.

· An address is only three bytes (24 bits) long, so the leftmost byte of R1 is set to 00.

· You must also remember all the other rules governing the address calculation:

· R0 is not considered in address calculation

· The address is only three bytes (fourth byte, the leftmost byte, is X'00').

 For example, if
R5 contains 12345678

and
R6 contains 34567890

then the second operand of

 LA 3,30(6,5)

will be calculated as an address in the following way:

 12345678

 +34567890

 + 1E

 008ACF26
(Note that the resulting high-order byte is zero!)

So, after execution R3 will contain 008ACF26. Likewise,

 LA 3,0(0,5)

will put 00345678 + 0 + 0 or 00345678 in R3.

The Difference Between LA and L

As mentioned above LA puts the address itself in the receiving register whereas L (load) picks up the four bytes at the specified memory address and put those bytes in the receiving register.

 LOC OBJECT CODE

 0000E0 00000014 WORD DC F'20'

Thus, LA 3,WORD will put the address of location WORD in R3, so R3 will contain 000000E0 after this instruction has been executed.

On the other hand, L 3,WORD will get the contents of the four bytes of memory beginning at location WORD and put them in R3, so R3 will contain 00000014 after this instruction has been executed.

What would be in R2 after the following two instructions have been executed???

 LA 2,WORD

 L 2,0(,2) R2 = ____________

All RX instructions are encoded as OORXBDDD, so we have three hex digits (DDD) available for displacement. This means that the maximum displacement is X’FFF’, which is 4095 decimal (the maximum possible displacement which can be coded on any instruction).

Another common mistake with LA is the idea that the address of a register can be loaded into another register. Thus,

 LA 3,5
<--- The misconception is that the address of R5 will be loaded into R3. But, there is no address for a register. Furthermore, just because we have "R" in front of "5" it does not become a register. In this case LA R3,5 will produce the same result as LA R3,R5.

Common Uses of Load Address

1. To get the memory address of a field.

2. To set a register to any integer value between 0 and 4095

LA 5,10 - will put 0000000A in R5 because there are no base and/or index registers; thus the displacement will be 10.

The same thing could also be done by L 5,=F'10' but this takes 8 bytes (4 for literal and 4 for instruction) and thus is less efficient (even though clearer).

3. To increment a register by any integer value between 0 and 4095

LA 5,20(,5) will increment R5 by 20. The same thing could be done by using the instruction A 5,=F'20' which would be clearer but not as efficient.

WARNING:
Remember that address calculation drops the leftmost byte, so if the value in the register is negative or a big positive number then you must NOT use LA for incrementing the contents of a register.

Assume that R3 contains 12345678

What will be in R3 after the following instruction has been executed?

LA 3,8(,3) R3 = __________________

Chapter 8 - Memory Dumps

Dump Contents

If your program ABENDs (ABnormally ENDs), ASSIST generally will provide you with a memory dump which can help you isolate the reason for the ABEND. The only instances in which you will not get a dump are those in which your job exceeds the time limit (no time remains to generate the dump), or the job generates more than the number of lines allowed (2000 is the default maximum number.)

The information available to you in a dump includes:

· The contents of the PSW. See your yellow card and/or page 498 of your text for a description of a BC mode PSW. You should learn to be able to extract from the PSW any of the information which it contains.

· The completion code. See your yellow card for a listing of program interruption codes - also, appendix D of your text gives a good explanation of the more commonly encountered completion codes, along with various programmer errors which can cause those types of interrupt.

· A trace of the last few instructions executed.

· A trace of the last few branch instructions executed.

· Contents of the 16 general purpose registers at the time of the ABEND. Since you are not going to be using the floating point registers, you can ignore them.

· The contents of user storage (the portion of main storage used by your program and its save areas) is dumped in hexadecimal. Each line contains 32 bytes of storage. In the left-hand margin you will find the address of the first of these 32 bytes (LOC.) On the right-hand margin you will find (between two *s) a translation into character form, where alphabetic and numeric characters and blanks are identified whenever a byte contains the character's encoded form a period is printed to represent any other byte values.

When your program ABENDs, you should be able to answer questions such as:

1. What was the reason for the ABEND (interruption code)?

2. What does that interruption code mean?

3. What was the last instruction executed?

4. Did the registers contain the "right" values?

5. Were the contents of user storage correct?

Dump Assignment 1

Type in and run the following program:

DUMP1 CSECT

 USING DUMP1,15 ESTABLISH A BASE REGISTER

 L 1,ONE LOAD THE FIRST NUMBER INTO R1

 L 2,TWO LOAD THE SECOND INTO R2

 AR 1,2 ADD THE TWO NUMBERS

 ST 1,THREE STORE THE RESULT

 XDUMP THREE,4 DUMP THE RESULT

 BCR B'1111',14 RETURN TO CALLER

*

ONE DC F'64' FIRST NUMBER

TWO DC F'32' SECOND NUMBER

EOFFLAG DC C'0' A FLAG SAVE AREA

THREE DS CL4' ' SUM OF THE TWO NUMBERS

 END DUMP1

After running the above program you should be able to answer the following questions:

1. What is the address of the next instruction which will be executed?

2. What is the address of the instruction that caused the abend?

3. What type of error occurred?

4. What actually causes this error?

5. Correct the error by rewriting the section of code that caused it.

6. What is the contents of register 1 in decimal?

7. What does the value in reg 1 represent at the time of ABEND?

8. Why is the LOC address of the storage area with the label ONE on it 000018 when the branch statement before it whose LOC address is 000014 only takes up 2 bytes?

9. What are the contents of the two bytes of user storage starting at address 000016? What do they represent?

10. What are the contents of the byte saved at address 00001B? Does this byte represent the first byte of a full word?

11. Which of the following are synonyms for the same length? [There may be more than one group of synonyms.]

a. 6 hex digits
d.
32 bytes
g.
fullword
 j.
64 bits

b. 4 bytes
e.
32 bits
h.
byte

k.
halfword

c. 8 hex digits
f.
doubleword
i.
foot

l.
meter

12. If the dump program error were corrected, what value would the storage area at label THREE contain?

13. What two instructions have you worked with which cause data conversion to take place?

14. What is the decimal equivalent of hex 0002BA14?

Dump Assignment 2

Type in and run the following program:

 DUMP2 CSECT

 USING DUMP2,15

 LA 2,TABLE

 SR 3,3

 XREAD DATA,80

 LOOP1 BM ENDLOOP1

 XDECI 4,DATA

 ST 4,0(2,3)

 LA 3,4(,3)

 XREAD DATA,80

 B LOOP1

 ENDLOOP1 SR 3,3

 LA 7,TABLE

 LA 5,TABEND

 LOOP2 CR 2,5

 BE ENDLOOP2

 L 6,0(,2)

 ST 6,0(,7)

 L 7,4(,7)

 LA 2,4(,2)

 B LOOP2

 ENDLOOP2 BR 14

 LTORG

 DATA DS CL80

 TABLE DC 30F'-1'

 TABEND DS 0X

 END DUMP2

 0

 1 2

 50

 32 24 19 62

 123 456 789

 987 654 321

Using the results from the program, answer the following questions:

1. What was the interruption code?

2. What instruction caused the program to abend? Why?

3. What was the condition code at the time of the ABEND?

4. How many table entries were built? How did you figure this?

5. What is the return address to the calling routine? Where did you find this? Does your answer really make any sense?

6. What are the contents of register 7?

7. Was any object code changed by this program? If so, for which instructions?

8. Explain why the program ABENDed.

Chapter 9 - External Routines & Linkage

External Subroutines

Until now we have been using internal subroutines; that is, subroutines which are actually part of the program that invokes them. It is much more useful to have subroutines which can be used by any program. These routines are called external subroutines because they can be created and maintained separately from the routines that invoke them.

Two important factors make the use of external subroutines possible:

1. Subroutine source decks can be assembled separately and the object module can be stored into an object module library (a collection of object modules which reside on a storage device like a disk).

2. The loader accepts as input not only an object module, but also an object module library. From these, the loader can construct an executable program that uses any required subroutines from the object module library.

When we use subroutines that were written separately, there are certain things we need to know about that module:

1. What parameters does it expect?

2. What does it return to you?

3. Are any registers altered by the routine? (If any were altered, this would affect the way you write your routine, as you would have to avoid using the altered register)

4. What register is used to return from the routine? (In other words, into which register do you want to put the return address)

5. How are the parameters passed?

NOTE:
Use these notes (rather than the text) as your reference for this subject.

Standard Linkage Convention

The standard linkage convention answers many of the problems mentioned above. In this convention, both the calling routine and the called routine have responsibilities.

Responsibilities of the Calling Routine

1. Establish an 18 word register save area, and put its address into register 13.

2. Set up a parameter address list of input parameters to the routine to be called. The address of this list is put into register 1.

3. Put into register 14 the address of the location in the calling program to which control is to be transferred on returning from the called routine.

4. Obtain the address of the routine to be called, and put that address into register 15.

5. Transfer control to the called routine by branching to the address in register 15.

Responsibilities of the Called Routine

1. On Entry

a. Store the contents of R14,R15,R0,R1-R12 in the calling routine's save area.

b. Establish addressability.

c. Establish an 18 word register save area of its own, and link it to the calling routine's save area by:

i. Putting the address of the calling routine's save area in it's own save area.

ii. Store the address of its save area in the calling routine's register save area.

d. Put the address of its own save area into R13.

2. Perform Function — Obtain the input parameters from the calling program (R1 is pointing to these), perform its function, and store any results to be returned to the calling program.

3. Return

a. Obtain the address of the calling routine's save area from its own save area and put it into R13.

b. Restore the contents of R14,R15,R0,R1-R12 from the calling routine's save area.

c. Return control to the calling program by branching to the address in R14.

Save Area Format

 FULLWORD DISP CONTENTS

 NUMBER (base 10)

	 1
	 0
	 UNUSED

	 2
	 4
	 BACKWARD POINTER (R13)

	 3
	 8
	 FORWARD POINTER (R13)

	 4
	 12
	 R14

	 5
	 16
	 R15

	 6
	 20
	 R0

	 7
	 24
	 R1

	 8
	 28
	 R2

	 9
	 32
	 R3

	 10
	 36
	 R4

	 11
	 40
	 R5

	 12
	 44
	 R6

	 13
	 48
	 R7

	 14
	 52
	 R8

	 15
	 56
	 R9

	 16
	 60
	 R10

	 17
	 64
	 R11

	 18
	 68
	 R12

Backward pointer - points at the save area of the calling routine

Forward pointer - points at the save area of the subroutine called

Register Conventions

The OS Subroutine Linkage convention also includes some register conventions. These are:

Register 0 -
On returning to the calling program, R0 may contain the output from a subroutine whose entire output is a single numeric value (not common - usually done only in FORTRAN programs).

Register 1 -
On entry to the called program, R1 contains the address of a parameter address list. This list contains the address of the input parameters to be used by the called routine and/or the addresses of locations into which the called program is to store its output.

Register 13 -
R13 contains the address of the save area of the current routine.

1. On entering the called routine R13 contains the address of the calling routine's save area.

2. The called routine puts the address of its own save area in R13 while it performs its function.

3. On return from the called routine the address of the calling routine's save area is restored in R13.

Register 14 -
On entry to the called routine R14 contains the address of the instruction in the calling routine to which control will be transferred on return from the called routine.

Register 15 -
On entry to the called routine R15 contains the address of the entry point in the called program. Upon exit from a subroutine R15 may also be used to pass a return code back to the calling routine indicating the success or failure of the subroutine.

Coding Conventions

On entry, a called routine may satisfy its responsibilities by using the following sequence of code. It is normal practice to set up R12 as the base register.

You should memorize the following sections of code, so that you need not spend a great deal of time thinking about them each time you use them. In addition you should understand them, since other installations may use slight variations on them, and since you will need to interpret (not just regurgitate) them on exams and quizzes.

Entry Linkage

Upon entry to any routine (including the main routine) the following code should appear. Standard linkages are also described in your text in chapter 6.

 1 rtnname CSECT

 2 STM 14,12,12(13)

 3 LR 12,15

 4 USING rtnname,12

 5 LA 14,savearea * note

 6 ST 13,4(,14)

 7 ST 14,8(,13)

 8 LR 13,14

NOTE: savearea will be defined in the storage area as 18 fullwords.

1. Each routine must have a unique name and a CSECT statement.

2. The called routine must first store all registers in the save area reserved by the calling routine. Remember that the calling routine set up the save area and pointed R13 to it before invoking this routine.

3. R15 will not be used as a base register since it has other usages. Instead, R12 will be used as the base register. This statement puts the address of the routine in R12. (remember that R15 already has the address of the routine)

4. This statement will establish addressability for the routine, so that the labels can be converted to explicit addresses.

5. Puts the address of the 18 fullword savearea into R14. Remember, we cannot put the savearea address into R13 just yet, because we have not saved its' contents.

6. This statement fills in the backward pointer.

7. This statement fills in the forward pointer.

8. The location of the current routine's save area is now put into R13, so that any other subroutines may be called (if necessary). Remember that when a routine is called, R13 must contain the address of the calling routine's save area.

Exit Linkage Method 1

To exit a routine (return to the calling routine), the following code should be used:

 1 L 13,4(,13)

 2 LM 14,12,12(13)

 3 BR 14

1. This regains the location of the calling routine's save area, restoring R13 to the value it had when the correct routine was entered. Remember that R13 points to the current routine's save area, and the second word of that save area points to the caller's save area. So that backward pointer (4 off of R13) can be accessed to restore R13.

2. This restores all of the other registers from the save area. It is the reverse of statement #2 in the entry code previously discussed. (If R15 is used to pass back a return code - indicating the success or failure of the routine - it should not be restored. In such a case, two statements will be required here, one to load R14 and one to load R0-R12).

3. Finally R14, containing the location of the next instruction to execute upon return to the calling routine, is used to return to the calling routine.

Exit Linkage Method 2 (Uncommon)

For use when passing a return code (through register 15) and a value (through register 0).

 1 L 13,4(,13)

 2 L 14,12(,13)

 3 LM 1,12,24(13)

 4 BR 14

Exit Linkage Method 3

For use when passing a return code (through register 15).

 1 L 13,4(,13)

 2 L 14,12(,13)

 3 LM 0,12,20(13)

 4 BR 14

Exit Linkage Method 4 (Uncommon)

For use when passing a value (through register 0).

 1 L 13,4(,13)

 2 LM 14,15,12(13)

 3 LM 1,12,24(13)

 4 BR 14

NOTE:
The Operating System (MVS) itself follows standard linkage conventions when it passes control to a user main program (which is viewed as an external subroutine as far as the operating system is concerned).

Calling External Subroutines

In order to call a subroutine, we need to know its address in our program. The problem is, when you code and assemble your program, you don't know where the subroutine is.

We can't use type A address data (A-data) because these addresses must be resolved at assembly time and an external subroutine may be maintained separately and may reside in the object module library.

Type V address data (V-data) solves this problem. The value generated at assembly time will appear to be a fullword of zero. Then the address of the subroutine will be filled in by the loader when the executable program is constructed in memory. Also, note that the use of V-data in a DC will not produce the address of the routine during assembly time, as shown below.

000000 SUBADDR DC V(SUBRTN)

------ is generated. But by execution time, this will have been filled in.

 L 15,=V(SUBRTN)

 BALR 14,15

 NOTE: these two lines of code fulfill our standard linkage requirements:

 R15 contains the address of the subroutine

 R14 contains the address to return to (in the calling routine).

Calling External Subroutines - Examples

The following examples illustrate typical sequences of code which can be used to pass control to another routine.

 Sequence 1:

 LA 1,PARMLIST points R1 at parameter address

 * list

 L 15,=V(SUBRTN) put address of entry point of

 * subroutine in R15.

 BALR 14,15 Pass control to routine

 .

 .

 .

 PARMLIST DC A(INPUT) parameter address list

 DC A(RESULT)

 *

 INPUT DC F'10' some input to subroutine

 RESULT DS F subroutine can put results here

 *

 Sequence 2:

 LA 1,=A(INPUT,RESULT)

 * Point R1 at parameter address list

 L 15,SUBADR Put address of entry point of

 * subroutine in R15.

 BALR 14,15 Pass control to routine

 .

 .

 .

 SUBADR DC V(SUBRTN)

 *

 INPUT DC F'10' some input to subroutine

 RESULT DS F subroutine can put results here

 Now we can discuss how pass and retrieve from parameter lists!!

Parameter Lists and Passing Parameters

Parameter Lists

The information sent to the subroutines is referred to as parameters. You have been passing information to the subroutines in registers. For example when calling a routine for building a table you might put a table address in R2, input area address in R3, end of table (next available entry) in R4 etc. (here address of table, address of input area, and address of end of table storage area are the three parameters).

When working with an external subroutine which is maintained separately you cannot assume that the subroutine is using R2 for a table address and R3 for an input address etc. Keeping these things in mind, a standard convention was developed.

Under these conventions all the addresses sent to a subroutine are placed in a separate storage area, called a parameter list. (R1 is made to point at that storage.) When the control is transferred to the subroutine, it knows that all the necessary information is placed in a storage area where R1 is pointing. Thus, it can pick all the necessary information from the parameter list.

You have to remember that when information is sent to a subroutine, the actual storage does not move. You are just informing the subroutine where the necessary things are located in the calling routine by providing addresses.

Your parameter list must be fully documented in the ENTRY CONDITIONS of your subroutine. The parameter list must contain space for not only anything you pass to the subroutine, but ,also, for anything you need to return to the calling routine.

For example a parameter list might look like:

 LA 1,PLIST

 L 15,=V(BUILD)

 BALR 14,15

 ...

PLIST DC A(TABLE,INPUT,@NAV,RESULT) <-- PARAMETER LIST

@NAV DC A(TABLE) Address of next available entry

TABLE DS 90F

RESULT DS F

INPUT DS CL80

Or

 LA 1,=A(TABLE,INPUT,@NAV,RESULT)

Or

 LA 2,TABLE

 LA 3,INPUT

 LA 4,@NAV

 LA 5,RESULT

 STM 2,5,PLIST

 LA 1,PLIST

 ...

PLIST DS 4F

Now let's receive the parameters inside the called subroutine:

BUILD CSECT

 Standard linkage <-- discussed in previous section

 .

 .

 LM 2,5,0(1) Get all the parameters at the

* beginning of the program

*

* Now: R2 contains address of TABLE

* R3 contains address of the INPUT area

* R4 contains address of storage where BUILD

* will put the address of the next available entry

* R5 contains the address of the result area

 .

 .

 .

Now the build routine is done, and you need to send back a value (let's say in R7) to the calling routine. Simply, store the value into the zero off of R5 (assuming that R5 still has the address of the area where the result must be stored.)

 ST 7,0(,5) R5-> @ of RESULT area

NOTE:
Remember that you can have as many parameters in a parameter list as you want (depending on your needs). Furthermore, it is possible to use just one parameter list when information sent to many subroutines is the same. This is left to the programmer's judgment.

Chapter 10 - DSECTs

Syntax:
label DSECT

General Discussion

Just like a CSECT, a dummy section or DSECT defines the format of an area in storage. Unlike a CSECT, it generates no object code. (No storage is defined.) The end of a DSECT is delimited by another DSECT, CSECT or END statement. A DSECT has no value except as the base address of a USING instruction. Of course, a CSECT or any other label can be a USING base, but a DSECT will save some storage. (See the USING Tutorial elsewhere in this book.)

Suppose TABLE consists of 40 entries and each entry contains student name and student social security number.

TABLE DS 40CL29

Now let us assume that R3 points at the beginning of the table. In order to refer to the name, we would use something like 0(,3)and to refer to dept, 20(,3). It would be preferable to refer to each field by a name (implicit address) rather than by a base and displacement (explicit address); it would make the program easier to understand.

The USING instruction makes it possible to refer to each field by a meaningful name.

Note:
It is good beginning practice to start DSECT labels with a few common characters. It is not a requirement but it helps in identifying a DSECT label from a regular label.

So for the above table the DSECT could be defined as

 000000
TABLNTRY DSECT , The name of the DSECT

 000000
TABLNAME DS CL20 The location counter always

 000014
TABLSSN DS CL9 starts at 0 for each DSECT

 00001D TABLNEXT EQU * Start of next entry

The DSECT defines the format of one table entry. Again, it does not reserve any storage.

In our program, we still have to define the table itself:

TABLE DS 20CL29

To make use of the DSECT:

 LA 3,TABLE GET ADDR OF TABLE AS USUAL

 USING TABLNTRY,3

The USING statement connects the register and the set of labels in the DSECT. It tells the computer that R3 contains the address of an area whose contents are described by the DSECT. In other words, it tells the computer to place the labels, defined by the specified DSECT, at the address contained in R3. It will not change the contents of R3, it is programmer's responsibility to make sure that register contains proper address. After the USING statement, the DSECT labels can be freely used instead of using explicit addresses.

 MVC TABLNAME,CARDNAME

 MVC TABLSSN,CARDSSN

instead of

 MVC 0(20,3),CARDNAME

 MVC 20(9,3),CARDSSN

When we are done processing the current entry, simply set R3 to the address of the next one:

 LA 3,TABLNEXT

Now the labels in the DSECT refer to the second entry in the table.

Be careful where R3 points. Make sure it always points into the table. Strange results can occur if the expected value is not in the register. Also, be sure you initialize the register before you use it.

When you are finished with the DSECT, DROP the registers.

 DROP R1, R2, ...Rn.

If you neglect to DROP the registers, you may get very unusual problems later in your program.

For example, if you have

 MAIN CSECT

 BUILD CSECT

 USING TABLNTRY,9

 REPORT CSECT

 USING TABLNTRY,4

You want the labels in BUILD to be assembled with R9 and the labels in REPORT with R4. If you don't DROP R9 after BUILD, this won't happen. In CSCI 464, you will learn all the rules that are used to decide which base register to use, if there are two possible regs. Suffice to say for now, the assembler picks the higher number register, which is R9. If R9 had been dropped, this wouldn't be the case.

In REPORT, when your program is run, R4 contains the address of the table. Who knows what R9 contains. Addresses are resolved using the contents of R9. What exactly happens is dependent on the contents of R9.

Advantages

1) Readability of your program is improved

2) Easier to alter your program

If there is a change in the format of your storage, simply change the DSECT. There's no need to change a bunch of displacements.

 LA 3,TABLE

 LA 4,INPUT

 USING TABLNTRY,3

 USING INPUT,4

 XREAD INPUT,80

DO1 BM ENDDO1

 MVC TABLNAME,CARDNAME

 MVC TABLSSN,CARDSSN

 LA 3,TABLNEXT

 XREAD INPUT,80

 B DO1

ENDDO1 DS 0H

Encoding DSECT Labels

 MVC TABLSSN,CARDSSN -> D2 08 3 014 4 014

! !

! !---> Displacement in

! DSECT

!------> Base specified by you

 LA 5,TABLSSN -> 41 50 3014

Chapter 11 - Macro Instructions & Conditional Assembly

The IBM Macro Language

· Extension of basic assembler language.

· Means of generating (at assembly time) a commonly used set of instructions as many times as needed.

· The necessary statements are included in the macro. So when the macro is called (coded), it will produce the necessary statement / statements. It can be called any number of times for generating the code. For example, a macro for generating standard linkage can be written and later it can be called in all the routines, thus saving a lot of typing.

· Code only the macro name when the statements are to be generated.

· Also it must be clear that macros do NOT save any space, they just save typing and thus typing errors.

· Macros are processed prior to assembly, so a macro loop is different than a loop in assembler code.

· A macro is a separate entities from the programmers code. All macros should be coded in the beginning before the first CSECT.

· When the macro is invoked, the instructions are generated as if you had typed them in the routine itself.

· All the macro generated code has a '+' in the first column.

Advantages:

1. Simplify the coding of programs

1. Reduce number of coding errors

The Difference Between Macros and Subroutines

Subroutines:

1. Branch out of main logic into a separate logic.

2. Performed identically each time it is executed.

3. Subroutines are invoked during execution time.

Macros:

1. Generates assembler code instructions where it is coded.

4. Depending on how it is coded, different or identical instructions may be generated.

5. Macros are invoked during assembly time.

Macro Definition

All code in a macro lies between MACRO and MEND statements.

 MACRO

 MACNAME <--- Prototype statement (macro name and

 parameter declarations) is used to invoke the macro.

 MEND

Macros can be defined within a program (called a source macro definition) or may be defined in a library of macros (where it is a library macro definition). Macros usually start off as source macros in a single program. They may be later placed in a macro library so that other assembler programs may have access to them. EQUREGS is an example of this.

In ASSIST, all source macro definitions must appear before the first CSECT/DSECT. You may not use EJECT, TITLE, SPACE statements in a macro to space the macro code because the macro code is processed pre-assembly. So if you have any of these statements in a macro then the affect of these statements will be seen when the macro is invoked and not within the macro itself. Remember the macro statements are processed before the program is assembled.

Format of a Macro Definition

MACRO
- The header statement must be first statement

anyname
- Prototype statement

- Body of the Macro

 contains Assembler code and also macro processing statements.

MEND
- Trailer statement (provides exit)

- It must be the last statement

- It may have a sequence symbol in column 1

- You cannot have more than one MEND statement within a macro

Prototype Statement

· The name field is required for defining and invoking a macro.

· It must be right after the header statement (MACRO).

 Format:

 label or symbol 0-many parameters

 blank

 !

 !___ if used must have variable symbol e.g. &LABEL

Parameters can be positional or keyword parameters

 MACRO <-- Header statement

&LABEL EXMPL1 &A,&B,&C <-- Name field

 This is what could be typed inside the program.

CALL1 EXMPL1 VAL1,VAL2,VAL3

By this invoking statement,

· &A will be replaced by VAL1

· &B will be replaced by VAL2

· &C will be replaced by VAL3

throughout the macro expansion.

In the above example position of the parameter is important. When the macro is invoked the first value coded is assigned to the first parameter, second value to second parameter and so on so forth. So you must be very careful while coding the values, a mismatch will give you unexpected results. Otherwise, use KEYWORD parameters. If a combination of positional and keyword parameters are used, all the positional parameters must be coded before coding the keyword parameters.

 For example, if the prototype statement is coded as follows:

&LABEL EXMPL2 &D,&E,&A=,&B=,&C=20

 and it is invoked by a routine as follows:

CALL2 EXMPL2 VAL3,VAL4,B=VAL1,A=(R5,R7),C=,

D will get VAL3, E will get VAL4, B will get VAL1, A will get (R5,R7) and C will get null value.

In this example position of A, B, and C is not important because parameter name is also coded along with the value. D is the first positional parameter and E is the second positional parameter. So when the values are assigned D will get VAL3 and E will get VAL4.

NOTE:
The rules are a little different if you are using a combination of keyword and positional parameters in a prototype statement than when you are using actual High Level Assembler (not ASSIST). Talk to your instructor if you want to know the differences.

If there is nothing after the '=', that means a null value is assigned to that parameter. For positional parameters, a null value is assigned to a parameter by coding nothing for the parameter value in the calling statement.

Continuation:
When a macro is invoked during assembly, if the prototype statement exceeds one line then break it at a comma, put some character (usually a 'x') in column 72 and start on next line in column 16.

Body of Macro:
Body of macro consists of the following:

1. Assembler instructions which are generated when the macro is expanded.

· Conditional assembly instructions used for generating different code depending on different requirements. These statements are not generated when macro is expanded.

· Macro inner instructions

· macro processing instructions, not generated with macro expansion.

· MNOTE instruction for generating error/warning messages

· MEXIT instruction for terminating the macro processing in middle.

· Comments

.* - not generated when macro expands

* - generated with macro expansion

MNOTE and MEXIT

Frequently, it is necessary to generate messages during macro processing. Some times messages are just informative and at other times they could be error messages and must be considered as assembly time errors.

· MNOTE can be used to generate messages along with an optional severity code.

· Severity code determines whether the generated message is an error or just informative.

· Message with severity code of 4 or higher is considered to be an error message.

 MNOTE 4,'message' ==> 4,message

 MNOTE 'message' ==> message

 MNOTE 12,'message' ==> message

· MEXIT provides exit point from inside the macro body.

· MEXIT must be used whenever macro processing has to be stopped in the middle.

· All the following examples will incorporate the use of MNOTE & MEXIT.

Conditional Assembly

· Provides a way to alter the sequence in which source program statements are processed by the assembler.

· Can branch within the macro to generate different code depending on different requirements and requests.

· Conditional assembly statements are not generated when macro expands.

· Labels used in conditional assembly instructions are referred to as Sequence Symbols.

Appendix A - Search Algorithms

Linear Table Search

Notes: This algorithm assumes that routine has received the table beginning and ending addresses.

One line of pseudocode may be several lines of assembler code.

 READ A SEARCH REQUEST

 DO WHILE (NOT END OF FILE)

 SET A POINTER TO THE BEGINNING OF TABLE

 DO WHILE (NOT END OF TABLE AND ENTRY NOT FOUND)

 INCREMENT TABLE POINTER

 ENDDO

 IF (ENTRY IS FOUND)

 PROCESS THE FOUND ENTRY

 PRINT THE NECESSARY DETAIL LINE

 ELSE

 PRINT "KEY NOT FOUND MESSAGE"

 ENDIF

 READ NEXT REQUEST RECORD

 ENDDO

Binary Search

BINSRCH(SRCHKEY,TAB@,EOT,RET)

FOUND_FLAG = 'N' - HI TOP SUBSCRIPT

DO WHILE (HI GE LO AND FOUND_FLAG = 'N') - LO LOW SUBSCRIPT

 MID = (HI + LO) / 2 <--- ONLY USE INTEGER

 IF (ENTRY FOUND)

 FOUND_FLAG = 'Y'

 ELSE

 IF (SRCHKEY > MIDDLE KEY)

 LO = MID + 1

 ELSE

 HI = MID - 1

 ENDIF

 ENDIF

ENDDO

IF FOUND_FLAG = 'N'

 PRINT ERROR MESSAGE

ELSE

 PRINT SUCCESS MESSAGE

ENDIF

Hashing

In your linear search assignment, you filled the table sequentially and when a record was to be processed, you searched the whole table until the requested entry was found. That process can be referred to as linear search. For large tables, linear search would be a waste of time. So instead of using linear search, random search is used. Hashing is one of many ways to incorporate a random search.

The basic idea of hashing is to take a key and convert it through some fixed process to a number in the range from 0 to n-1, where n is the maximum number of slots in the table. The resulting number can then be used to determine which entry in a table should be used to store the data item associated with the key. When a record needs to be retrieved, the same function must be used to calculate the slot number and find the requested record directly.

Trouble occurs, however, when two keys hash to the same table entry. This situation is called COLLISION. Since only one key-data pair may be stored in an entry of the table, it is necessary to find another location for the second (or subsequent) key-data pairs hashing to a particular entry.

Linear Probe:
Collision problems can be solved by linear probe. If collision occurs, a linear search is done to find the next empty slot, where the current entry may be stored.

Wrap Around:
If physical end of table is reached during the linear search, the search continues from the top of the table. A table is not considered full until you come back to the point where youstarted from.

Hash Function:
The function used to calculate the table entry number. Same function must be used whenever referring to entries in that table.

There are many ways of hashing a key to determine the correct table slot into which an entry is to be stored or from which an entry is to be retrieved. The hash function for this program should produce a hash value in the range 0 through 29, which will accommodate a table of exactly 30 slots.

Hash values are similar to subscripts in that they both represent an ordering of entries. For a table with 30 slots, a subscript can range from 1 through 30, compared to the hash value range of 0 through 29.

A hash value multiplied by the length of an entry yields the displacement of that table slot from the beginning of the table, which is also the index for that slot.

Hash Search

HASHSRCH(SRCHKEY,RET)

CALL HASH ROUTINE

CALCULATE TABLE ENTRY ADDRESS (SLOT ADDRESS)

 (HASH VALUE * ENTRY LENGTH + BEGINNING OF TABLE

SAVE DISPLACEMENT

RC = -1 SET THE RC TO NEG. ONE

DO WHILE (RC = -1) DO WHILE RC IS NEG. ONE

 IF (TABLE ENTRY = 0) IF EMPTY SLOT FOUND

 RC = 4 SET THE RC FOR EMPTY SLOT

 RETURN TABLE ADDRESS

 ELSE

 IF (TABLE ENTRY = SRCHKEY) IF MATCHING KEY ARE FOUND

 RC = 0 SET THE RC FOR MATCHING KEYS

 RETURN TABLE ADDRESS

 ELSE

 INCREMENT TABLE POINTER

 IF (EOT) IF END OF TABLE

 WRAP AROUND TO THE BEGINNING

 ENDIF

 IF (TABLE POINTER = SAVE DISP.) IF TABLE IS FULL

 RC = 8 SET RC FOR TABLE FULL

 ENDIF

 ENDIF

 ENDIF

ENDDO

NOTES: RC = 0 - Entry found in the table

 4 - Empty entry found, key not in table

 8 - The table was full

Example:

0 ! 230 !

 ---------------- Hash function: Divide by 10 and

1 ! 328 !

 take the remainder (REM)

 ---------------- DISP = REM * ENTRY-LENGTH + TABLE-ADDR

2 ! 000 !

3 ! 000 ! BUILD SEARCH

 ---------------- 230 325

4 ! 000 ! 425 230

 ---------------- 888 328

5 ! 425 ! 369

 ---------------- 328

6 ! 000 !

7 ! 000 !

8 ! 888 !

9 ! 369 !

Appendix B - Sort Algorithms

Bubble Sort

Description:

A table of records is sorted in ascending order by key.

The keys of the 1st and 2nd records are compared and records exchanged if out of order.

This continues with the 2nd and 3rd, 3rd and 4th, etc., until the largest key is at the end.

The index of the final exchange is saved, as all records past it are in order.

If no exchanges took place, all records are in order and the sort is complete.

This process is repeated for the “sub-table” which ends at the saved index, again and again, with the index decreasing each time, until no exchanges take place, and the sort is complete.

Pseudocode:

I, J are SUBSCRIPTS

END is initially the END OF TABLE SUBSCRIPT

FLAG = 1

DOWHILE (FLAG=1 AND END>1)

I=1

J=2

FLAG=0

DOWHILE (J<=END)

IF (ENTRY(I)>ENTRY(J))

FLAG=1

SWAP ENTRY(I) AND ENTRY(J)

ENDIF

I=I+1

J=J+1

ENDDO

END=END-1

ENDDO

Selection Sort

Description:

A table of records is sorted in ascending order by key.

Beginning at the first entry, the entire table is scanned for the smallest key.

The record with that key is exchanged with the first record in the table.

(Now the first entry in the table contains the record with the smallest key.)

This process is repeated for the “sub-table” which begins at the second entry, then the one beginning at the third entry, etc., until the final sub-table beginning at the next-to-last entry.

Pseudocode:

BEGIN is initially the subscript of the first entry

END is the subscript of the last entry

LOW and I are additional subscripts

DOWHILE (BEGIN<END)

LOW=BEGIN

I=BEGIN+1

DOWHILE (I NOT> END)

IF(ENTRY(LOW) > ENTRY(I))

LOW = I

ENDIF

I=I+1

ENDDO

SWAP ENTRY(BEGIN) WITH ENTRY(LOW)

BEGIN=BEGIN+1

ENDDO

Insertion Sort

Description:

A table of records is sorted in ascending order by key, using a “bridge hand” process.

Assume that 1 < j ≤ N and that records R1, ..., Rj-1 have been rearranged so K1 ≤...≤ Kj-1 .

Compare the new key Kj with Kj-1 , Kj-2 , ... in turn until discovering that Rj should be inserted between records Ri and Ri+1; then we move records Ri+1, ..., Rj-1 up one space and put the new record into position i + 1. (In the algorithm, the comparing and moving operations are interleaved.)

Pseudocode:

LOW, HIGH are subscripts initially set to the first and last entries in the table

J,K are temporary subscripts

J=LOW+1

DOWHILE (J<=HIGH)

K=J

DOWHILE(K>LOW AND ENTRY(K)<ENTRY(K-1))

SWAP ENTRY(K) AND ENTRY(K-1)

K=K-1

ENDDO

J=J+1

ENDDO

INSERTION SORT WITH A BUCKET

LOW, HIGH are subscripts initially set to the first and last entries in the table

J,K are temporary subscripts

TEMP is a temporary bucket to hold an entry in the table

J=LOW+1

DOWHILE (J<=HIGH)

TEMP=ENTRY(J)

K=J

DOWHILE(K>LOW AND ENTRY(K)<ENTRY(K-1))

ENTRY(K)=ENTRY(K-1)

K=K-1

ENDDO

ENTRY(K)=TEMP

J=J+1

ENDDO

Appendix C - Merge Algorithms

Note: These algorithms assume that the arrays to be merged are already sorted on ascending order of the key and the resulting array will also be sorted in ascending order.

You might have to change the algorithms little bit depending on your requirements.

Parameters Expected :
Address of TABLE1

Address of TABLE2

Address of MERGED TABLE

End of TABLE1

End of TABLE2

End of MERGED TABLE

 DO WHILE (NOT END OF EITHER TABLE)

 IF (TAB1(KEY) < TAB2(KEY))

 PUT TAB1 ENTRY INTO MERGED TABLE

 INCREMENT TAB1 POINTER

 ELSE

 IF (TAB1(KEY) > TAB2(KEY))

 PUT TAB2 ENTRY INTO MERGED TABLE

 INCREMENT TAB2 POINTER

 ELSE

 PUT TAB1 OR TAB2 ENTRY IN THE MERGED TABLE

 INCREMENT TAB1 POINTER

 INCREMENT TAB2 POINTER

 ENDIF

 ENDIF

 INCREMENT MERGED TABLE POINTER

 ENDDO

 (Now, at end of at least one table)

 DO WHILE (NOT END OF TAB1)

 PUT TAB1 ENTRY INTO MERGED TABLE

 INCREMENT TAB1 POINTER

 INCREMENT MERGED TABLE POINTER

 ENDDO

 DO WHILE (NOT END OF TAB2)

 PUT TAB2 ENTRY INTO MERGED TABLE

 INCREMENT TAB2 POINTER

 INCREMENT MERGED TABLE POINTER

 ENDDO

 RETURN ENDMERGE POINTER

Another Merge Algorithm

MERGE(TAB1,EOT1,TAB2,EOT2,MERGE,ENDMERGE)

DO WHILE (NOT END OF BOTH)

 IF (END TAB1)

 PUT B INTO MERGE

 INCREMENT TAB2 POINTER

 ELSE

 IF (END TAB2)

 PUT A INTO MERGE

 INCREMENT TAB1 POINTER

 ELSE

 IF (A < B)

 PUT A INTO MERGE

 INCREMENT TAB1 POINTER

 ELSE

 IF (A > B)

 PUT B INTO MERGE

 INCREMENT TAB2 POINTER

 ELSE

 PUT A INTO MERGE

 INCREMENT TAB1 POINTER

 INCREMENT TAB2 POINTER

 ENDIF

 ENDIF

 ENDIF

 ENDIF

 INCREMENT MERGE POINTER

ENDDO

RETURN MERGE POINTER

Appendix D – Accessing the Marist Mainframe

zos.kctr.marist.edu is the address of the Marist mainframe. In the computer science labs you can use TN3270 and port 1023.

PASSWORD for the USERIDs are their USERIDs.
The third position of the USERID is the number ZERO.

When you first logon use the userid as your password and you will be prompted for a new one.

To get on to TSO

logon kcXXXXX

which takes you to the password screen

enter your password.

Wait a few moments and then hit enter a couple of times to get to the main TSO screen

TSO commands are done on a command line that is usually at the bottom of the screen. You enter numbers on the command line. You can proceed through the menus/screens or you can jump to different ones (if you know where you want to go) by using an =.

You can do most things through 2 different screens:

3 Utilities

13 SDSF (Spool Display and Search Facility)

If you write your programs on your local computer you can ftp them to Marist and not worry about Allocating data sets.

This is what is on the utility menu

 1 Library Compress or print data set. Print index listing. Print,

 rename, delete, browse, edit or view members

 2 Data Set Allocate, rename, delete, catalog, uncatalog, or display

 information of an entire data set

 3 Move/Copy Move, or copy members or data sets

 4 Dslist Print or display (to process) list of data set names.

 Print or display VTOC information

 5 Reset Reset statistics for members of ISPF library

 6 Hardcopy Initiate hardcopy output

 7 Transfer Download ISPF Client/Server or Transfer data set

 8 Outlist Display, delete, or print held job output

 9 Commands Create/change an application command table

 11 Format Format definition for formatted data Edit/Browse

 12 SuperC Compare data sets (Standard Dialog)

 13 SuperCE Compare data sets Extended (Extended Dialog)

 14 Search-For Search data sets for strings of data (Standard Dialog)

 15 Search-ForE Search data sets for strings of data Extended (Extended Dialog)

 Option ===>

Type the number down in the Option field which will take you to another screen.

To see what data sets you have, choose option 4 (Dslist which is IBM speak for data set list) once there:

 put your id in the dsname level field and hit enter

to look at contents of a particular file put b on line to left and enter

to edit contents of a particular file put e on line to left and enter

After editing

to submit a job for execution type submit or sub on the command line

then to look at it you need to go to the SDSF screen as noted below

This is what is on the SDSF menu
 ----------------- SDSF PRIMARY OPTION MENU --------------------------

 DA Active users INIT Initiators

 I Input queue PR Printers

 O Output queue PUN Punches

 H Held output queue RDR Readers

 ST Status of jobs LINE Lines

 NODE Nodes

 LOG System log SO Spool offload

 SR System requests SP Spool volumes

 MAS Members in the MAS

 JC Job classes RM Resource monitor

 SE Scheduling environments CK Health checker

 RES WLM resources

 COMMAND INPUT ===>

The first time you use this, type

OWNER your user id

in the command line. This will then show only your jobs when you check ST.

ST, or STATUS, will display the status of all tasks owned by you

To look at the output, SE to the left of the file. To delete output P to the left and follow directions.

If you want to save an output file (to ftp back for debugging) type XDC to the left of the file you want to save. This takes you to a screen that allows you to save it in a file. Use new as the disp the first time, old if you use the same file for output. Record length should be 134 with variable length records.

You can get back to the main screen or any previous screen by F3. To get to a different screen directly (assuming you know which one you want) =screennum.

For example to get to SDSF, =13 on any command line.

To get back to your dslist =3.4 on any command line.

In the labs you should be able to use TN3270 but if you want to do it from your own computer and you are running XP you can download an old version of TN3270 from the computer science web page.

If you have VISTA:

	Download and install a 3270 emulator

	

	In order to access the Marist mainframe you'll need a 3270 terminal emulator. Follow the instructions based on your operating system:

· If you are running Windows, pick up an emulator from Tom Brennan Software here: (http://www.tombrennansoftware.com/download.html).
Download the Vista V1.24 .exe file. (Windows Vista users: use the same link, but download Vista V1.26 instead.)

Double-click on the .exe file and follow the installation instructions.

· If you are using a Mac machine, you can pick up a 3270 emulator here: (http://www.versiontracker.com/dyn/moreinfo/macosx/15091).

· If you are running Linux, install the following package: x3270 -port 623. See this page (http://x3270.bgp.nu/)for more information.

Once installed, the default location to access the 3270 emulator on a Windows machine is: Start-> Programs -> Vista tn3270 -> Vista Standard Session (or Vista TN3270 Standard Session for Windows Vista users).

Open the emulator. The first time you do this, you might get this error: Vista Connection Error 2

If you do, simply click "OK" to proceed. You are now ready to set up your emulator and connect to the mainframe.

	Use this one first:

To Reach ZOSKCTR7 system on port 1023, go to:
zos.kctr.marist.edu

If it does not work, try this one:

To Reach ZOSKCTR7 system on PORT80 go to:
portforward.kctr.marist.edu

	

360 Notes

2 of 70

