Natural Language Processing in Python
Spring 2011

CSCI 490-E21/680-M5 Mon. 6:30-9:15 PM PM 253

Instructor: Dr. Reva Freedman
Email: freedman@cs.niu.edu
Phone: (815) 753–6944 (during office hours only)
Office hours: Mon. 3-5 PM. Most Mondays also 5-6 PM.
 Additional office hours to be scheduled via Skype, probably Thu. (reva.freedman)
Course web site: http://faculty.cs.niu.edu/~freedman/csnl/

Course goals: 1) To gain an appreciation of the wide variety of natural language applications in computer science today, the difficulties involved in building such applications, and useful software and algorithms for doing so. 2) To learn the basics of Python and useful Python libraries for any application.

Communication with the professor: I would be happy to talk to you in person about any topic relating to this course or to artificial intelligence or computer science in general. I try to respond to email within one business day, but there are exceptions. As a practical note, I rarely pick up messages from my office voice mail. I try to maintain a course web site and a Blackboard site. Files and information may also be distributed via email, so make sure you have room in your NIU account. If you would like an additional account, make sure I have your preferred email address.

Special needs: If you have individual circumstances such as a disability, religious holiday, etc., please feel free to contact me at any time for suitable accommodations. Please note that circumstances that apply to all students are generally not special circumstances.

Textbook and software: Much of the software for this course will come from the Natural Language Toolkit at http://nltk.org. Other readings will come from the web or from handouts.

Class attendance: Attendance is required and will be part of your grade.

Class participation: Please ask if you don’t understand, if I make a mistake, or if you just have a question. Questions about details, big ideas, concepts, algorithms, examples, related ideas, and applications are all welcome.

Assignments: There will be several types of homework, including experiments with existing software, larger programs and projects, and pencil-and-paper simulation of algorithms.

Assignment deadlines: All assignments must be turned in by the deadline for full credit. There will be a penalty for turning in programs up to 24 hours late. No homework will be accepted more than 24 hours late.

Assignment rules: All assignments must follow the rules given for the assignment.

Programming rules: All programs must run on turing unless otherwise specified. You can develop them where you wish, but make sure you test them on turing before you submit them.
Exams: There will be two exams and a final presentation. The first exam will be during the first hour of class on Mon. Mar. 7. The second exam will be during the first hour of class on Mon. Apr. 18. The final presentation will take place during the final exam slot, Mon. May 9 from 6-7:50 PM. Attendance during the final exam slot is required just as for a final exam.

You are expected to take the exams on the assigned time and date. Missing an exam is an extremely serious matter: makeup exams will only be given if *all* of the following requirements are satisfied: (a) an unavoidable reason (e.g., car accident), (b) advance notification, (c) written documentation, (d) permission of instructor, (e) for final exam, permission of department.

Please notify me if you meet the university’s criterion for rescheduling a final exam, namely that you have three finals on the same day and this course is the highest-numbered of the three.

Academic honesty: You are expected to do your own work and give credit where credit is due. Cheating includes both copying work from other students or letting other students copy your work. All cheating will result in the filing of an academic misconduct form and will affect your course grade, with the possibility of failing the course. Note that a second academic misconduct offense may result in your expulsion from the university.

Project: Graduate students are required to do a project and present it in class. Undergraduates are not required to do a project. Everyone is required to do a 10-minute presentation on May 9. Undergraduate presentations will be based on one of your assignments.

Grading: Each homework will be assigned a point count according to difficulty and the amount of time required. All assignments are required.

Grades will be calculated as follows: Graduate students: 40% homework, 10% project, 20% first exam, 20% second exam, 10% attendance. Undergraduates: 45% homework, 5% presentation, 20% first exam, 20% second exam, 10% attendance.

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>A</td>
</tr>
<tr>
<td>80%</td>
<td>B</td>
</tr>
<tr>
<td>70%</td>
<td>C</td>
</tr>
<tr>
<td>60%</td>
<td>D</td>
</tr>
<tr>
<td>below 60%</td>
<td>F</td>
</tr>
</tbody>
</table>