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Abstract. Change-based provenance captures how an entity is con-
structed; it can be used not only as a record of the steps taken but also
as a guide during the development of derivative or new analyses. This
provenance is captured as a version tree which stores a set of related en-
tities and the exact changes made in deriving one from another. Version
trees are generally viewed as monotonic–new nodes may be added but
none are modified or deleted. However, there are a number of operations
(e.g., upgrades) where this constraint leads to inefficient and unintuitive
new versions. To address this, we propose a version tree without mono-
tonicity where nodes may be modified and new actions inserted. We also
propose to track the provenance of these tree changes to ensure that past
version trees are not lost. This provenance is change-based; it links ver-
sions of version trees by the actions which transform the trees. Thus, we
continue to track every change that impacts the evolution of an entity,
but the actions are split between direct edits and changes to the version
tree that affect multiple entity definitions. We show how this provenance
leads to more intuitive and efficient operations on workflows and how
this hybrid provenance may be understood.
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1 Introduction

As the number of documents, source trees, and images continues to grow, it
is important to understand when and how individual items are related to each
other. If a digital entity has changed over time, there are different versions of it,
and the relationships between these versions help organize the information they
contain. Version graphs encode derivation histories of the entities and may also
relate different objects that were derived from a similar source. Usually, these
graphs are used to archive past versions, often encoded for efficient storage.
However, past versions may also be re-examined and integrated with current
and future versions. In most cases, one new version is generated when an entity
is modified or merged with another version. For example, in versioned source
code, a commit defines a single new version with the updates to the files.

A version graph most basically defines when one version is derived from
another, but this information need not contain how the versions are related.
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Fig. 1: It is often necessary to update or upgrade collections of related documents
or workflows. Even though these changes can be automated, each version must be
modified often with the same changes (left, new nodes and edges outlined in red). If
we can instead edit the version tree, we can update past changes to reflect the updates
(right, modified edges highlighted in red).

Change-based schemes, however, store the changes that transform one version
to another. With this richer history, we can not only understand the difference
but also directly edit the change to update the derivative version. When that edit
impacts a version that itself has many derivative versions, all of those versions
are also affected. Such edits can correct past errors, update an old approach, or
introduce additional functionality to multiple versions. For example, in a source
code version tree, we might replace an algorithm added early in development
with a more efficient version. Instead of applying these changes to each branch,
we modify the tree itself so branches inherit the update.

While this rewriting of history brings the potential for efficient and intuitive
edits over a collection of versions, it also presents the problem of how to preserve
the old collection. This is particularly problematic when the past versions are
tied to other provenance information. For example, a collection of workflows may
need to be upgraded, but if the provenance of past runs is associated with the
old versions, we do not want to lose the definitions of them. To address this prob-
lem, we suggest versioning version trees by storing the evolution provenance of
the version tree. Figure 1 shows how this can declutter workflow upgrades. Any
version can be obtained by first materializing the version tree and then materi-
alizing the version in that tree. To simplify navigation, we propose links between
a version in one version tree and its “derivative”version in another version tree.
Because simple additions to a current version tree can be interleaved with trans-
formations of version trees, the provenance of any single version becomes more
involved.



We introduce meta version trees (MVTs), define intuitive operations enabled
by the new trees, test their efficiency using synthetic version trees, and discuss
the implications in understanding the provenance of entities created and modified
in this framework.

2 Preliminaries

2.1 Versioning Background

Keeping track of different versions of documents, code, and workflows is com-
monplace, but the strategies for doing so have evolved over time. With a central
authority for changes, it is possible to fully order the versions according to the
time they were submitted. However, distributed version control systems allow
changes to be evolve independently from a central repository. Branching allows
users to develop new features in a branch, and then merge these changes back
into a “master” branch. Version graphs track versions of evolving objects and
any merges [5]; merging operations require the history to be represented as a
directed acyclic graph. Because we will be leveraging change-based versioning
where explicit user changes specify the derivation of a version, we focus on ver-
sion trees which do not contain merges.

A version tree is a tree where each node represents a version of a particular
entity (S) and an edge from one version to another indicates that the child
version was derived from the parent version. Recall that a tree T = (V,E) is a
directed acyclic graph where each node v ∈ V has at most one edge ending at
v. In a version tree, each node v has an associated version Sv. If, for a given v,
there exists u such that (u, v) ∈ E, then Su is the parent version of Sv and Sv is
a child version of Su. Note that in general, there is no specific restriction on how
two versions must relate to each other. A version tree may represent a human-
curated understanding of derivations or enforce specific derivation requirements
that permits automated construction.

2.2 Change-based Version Trees

A version tree indicates relationships between versions, but these relationships
can be further defined as transformations from one version to another. These
functions define the changes and may be inferred or prescribed. For example,
version control software like svn [17] computes differences between the current
and previous version of a file, inferring the lines added and deleted. Thus, a
search-and-replace of a single word would be recorded by most version control
software as a sequence of line modifications. VisTrails, on the other hand, stores
the exact actions it makes when a user changes a workflow [8]. For example,
when a module is added to a workflow, the exact detail is recorded. Such pre-
scriptive changes allow greater understanding of the process involved in creating
a workflow.

Formally, a change-based version tree T = (V,E, S0) is a version tree where
S0 is a default version, and for each edge (u, v) ∈ E, there exists an associated
function f such that f(Su) = Sv. In other words, f tells us how Sv can be
derived from Su. Associating the function with the edge instead of the node will



provide more intuitive operations in manipulating change-based version trees.
The root of the change-based tree often corresponds to an empty state, e.g., an
empty repository or an empty workflow. In a general version tree, we might need
to store the associated version for each node, but a change-based version tree
requires storing only the edge functions and the default state S0. Let P (0, v)
denote the edges e1, . . . , en along the path from the root to version v. Then,
given a change-based version tree T = (V,E, S0) and a node v,

Sv = fn ◦ · · · ◦ f1(S0)

where each fi is the function associated with the edge ei ∈ P (v). Although we
do not need to store any versions Sv except the default version, we will need to
be able to materialize any version via the above construction.

In many cases, we may also have inverse functions that allow us to transform
from a version to its parent version. Specifically, the inverse action f−1 associ-
ated with an edge (u, v) satisfies f−1(Sv) = Su. This allows greater flexibility in
materializing versions as we can move between states in both directions. Note
that we may have some actions where inverses exist and others where they do not
in the same change-based version tree. If there exists an inverse for every edge,
we say the change-based version tree is invertible. Given an invertible change-
based version tree T = (V,E, S0) and two nodes u and v with common parent
p,

Sv = fn ◦ · · · ◦ f1 ◦ g−11 ◦ · · · ◦ g−1m (Su)

where each fi is the function associated with the edge ei ∈ P (p, v) and g−1j is
the inverse associated with the edge ej ∈ P (p, u). The construction corresponds
to applying inverses up to a common parent p and then applying forward actions
down to v.

We can also compress edges in a change-based version tree by composing
their functions. Specifically, suppose v has a single parent u and a single child
w. We can compress edges (u, v) and (v, w) with associated actions f and g,
respectively, into a single edge (u,w) with the associated function g ◦ f . The
node v can then be eliminated from the change-based version T .

This allows us, given a set of nodes {vi}, to construct a skeleton of a change-
based version tree T , skel(T, {vi}). The skeleton consists of all nodes {vi}, the
root, and the compressed edges between them. Often selected nodes include those
that have been annotated or are at a branch point (have more than one child
node).

2.3 Identifiers and Labeling

Unique identifiers make it possible to refer to a particular version, and labels
provide users with the ability to annotate versions with memorable titles. For
histories with centralized control, integers can be used to identify versions, but
when versions may be distributed, we need to assign identifiers that are univer-
sally unique. Git uses hashes of content and commits to identify versions [9],
but universally unique identifiers (UUIDs) can also be generated randomly with
minimal probability of overlap.



In addition to an identifier, each node of a version tree may also be labeled.
We will assume that a single label may be associated with each node, but clearly,
associating a set of attributes is also possible. Note that labels may change over
time; for example, a user who creates an updated version of a workflow may wish
to move the label to the new version in the same way as one would overwrite a
file with updated information. Formally, all version trees may have an associated
labeling function L : V → Σ∗.

2.4 Provenance

Provenance captures how a particular result was achieved—the steps involved in
the derivation of that result. Version trees naturally integrate with this goal as
they capture dependencies between the different versions. Change-based version
trees go further, presenting descriptions of the actions that transform one version
to another. Change-based provenance further limits this to a monotonic change-
based version tree. In change-based provenance, a user may add new actions to
the tree but not edit or reorganize existing actions.

The distinction between change-based provenance [8] and change-based ver-
sion trees is intentional because the latter offers more latitude in reorganizing or
editing. Specifically, change-based provenance seeks to capture the exact changes
that occurred and maintain the monotonicity of the tree. Each change is recorded
and cannot be relocated or mutated. A change-based version tree requires a
function to exist for each edge but does not enforce any restraints how this was
derived or inferred. However, in many cases, one can obtain provenance about
how an entity was constructed directly from the change-based version tree.

3 Manipulating Change-Based Version Trees

Instead of viewing version trees as a historical, immutable record, we propose
operations that allow users to manipulate and update the trees. In the same way
that a user might keep versions of code files or workflows, we argue that versions
of version trees provide powerful new ways to manipulate collections of entities.
Our goal is to allow users to modify the version tree itself. Some operations, like
labeling and pruning are agnostic to the versioned entities, but others, like those
where changes are being modified, require some understanding of the domain.
In either case, an operation takes one version tree and produces another.

At the lowest level, we propose three pairs of primitive operations:

1. AddNode, DelNode: Add/delete a node
2. AddEdge, DelEdge: Add/delete an edge
3. AddLabel, DelLabel: Add/delete a label to/from a specific node

These operations provide the ability to construct any tree T ′ from any other tree
T as in the worst case, we can delete everything from T and add everything from
T ′. In addition, each primitive operation has a clear inverse which means any
change to the tree is invertible. While each action produces another tree, some
may produce a degenerate tree where a subtree is not connected to the root.



Using these primitive operations, we can generate higher-level operations that
transform the version tree. Two operations that act without any understanding
of the versioned entities are relabeling and pruning. Relabeling involves moving
a label ` from a version u to a version v. This can be accomplished by the pair of
actions DelLabel(u) and AddLabel(v, `). Pruning v is a deletion of all nodes
and edges in the subtree rooted at v. Again, we can rewrite this in terms of
DelNode and DelEdge operations.

Other operations that act on the changes in a change-based version tree re-
quire some information about the underlying entities being manipulated. These
include operations that rewrite past changes or reorganize versions. The remap
operation takes pairs of changes (f, g) and replaces any instance of f on an edge
in the version tree with g. For example, in a version tree of sets, we may wish to
replace any occurrences of an element n with n′. Once a matching edge is identi-
fied, remap requires a DelEdge(u, v) operation followed by a AddEdge(u, v, g).
Since version trees reflect the chronological order of user-initiated changes, re-
organizing versions by similarity can aid in producing more compact and more
intuitive trees [10]. This reorganization involves moving nodes and rewriting
edges.

4 Framework

4.1 Versioning Version Trees

While allowing users to modify version trees grants some intuitive and efficient
operations, we lose the original state of the version tree upon modification. Since
a new version of the version tree has been created, the same versioning procedures
can also be used to manage versions of version trees. Furthermore, since we have
identified a set of primitive, invertible operations that change version trees, we
can create an invertible change-based version tree to store versions of version
trees. While one may question whether a tree is necessary here, the overhead in
keeping a tree versus a list is minimal, and thus it seems reasonable to keep all
versions of the version trees.

Formally, a meta version tree (MVT) T = (V,E, S0) is an invertible change-
based version tree where each edge defines a change to a version tree and S0 is an
empty version tree with only a root node. While the definition is straightforward
and parallel to a standard version tree, working with the entities stored by the
MVT of version trees comes with more overhead. Specifically, the creation of
a new version of an entity triggers a new version in the current version tree,
T , which in turn triggers updates to the MVT about the new node and edge
added to T . This is represented by two new nodes and two new edges in the
MVT, one pair for the new node and one pair for the new edge in T . With
edge compression, we can package all of these changes together, but there is
some extra overhead. Operations on the version trees are encoded as changes as
described in the previous section.

Finally, note that with an MVT, identifying a specific version of an entity
requires two identifiers—one to identify the version of the version tree and the
other to identify the version of the entity in that tree. To materialize this entity,
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Fig. 2: Three versions of a version tree. Layered nodes indicate the presence of links
to older versions (layered left) or newer ones (layered right). Green nodes are linked
nodes that change from T1 to T2 or T2 to T3. Note that filtered has links to both
older and newer versions.

we must first materialize the version tree and then use that version tree to
materialize the version of the entity.

4.2 Linking Versions Across Trees

Systems like git and VisTrails have demonstrated that users can understand and
interact with trees, but using similar interfaces for a meta version tree would
likely be confusing. In a parallel interface, when a user wishes to select a specific
object, that user would both choose a version tree and then select a specific
version in that tree. As it is cumbersome to keep track of both of these levels—
especially as both are trees, we propose an interface where users are encouraged
to navigate between trees by identifying a particular version for which they wish
to see a previous version in an older version tree.

To track relationships between versions that appear in different versions of
the version tree, we propose a link that directionally links a version v in one
version tree T1 with a version v′ in another version tree T2. Suppose we have
a meta version tree T , a specific tree T ∈ T , and a specific version v ∈ T .
Then if T ′ is a child version of T and v′ ∈ T ′, we can define a link between
v and v′ to denote that v′ was indirectly derived from v via the set of actions
that transformed T to T ′. In other words, v′ is not the result of changes made
directly in T ′, but it is the result of the changes made to the version tree T in
deriving T ′.

Links allow a user to navigate between versions of version trees by following
them from a node in one version tree to a node in another. In effect, this is a
different dimension of a derivation; instead of parent-child relationships, links
show tree relationships. Figure 2 shows how a user interface may indicate the
presence of linked versions with layered nodes. Upon clicking the lower layers to
indicate a desire to see a version in a past or future version tree, we can show all
transitively linked versions. Selecting one of those versions can then materialize
not only that entity but also its associated version tree.



5 Workflow Applications

To demonstrate the potential of versioned version trees, we present intuitive op-
erations they enable in the context of scientific workflows. In this section, we
define scientific workflows as composed of computational modules and connec-
tions that link an output of one module with an input of another; each module
may also have configurable parameters. Thus, changes to the workflow include
the addition or deletion of modules, connections, or parameters.

5.1 Bulk Edits and Upgrades

Suppose a user made a number of workflows using a particular module, but de-
cided later that a different module would have worked better. Instead of changing
every version that contained the module, a user may instead wish to edit the
action where that module was originally introduced, replacing it with the al-
ternate module. Without meta version trees, replacing each version would at
least require actions that remove the original module and add the new module,
and could also require elements that depend on that module to be deleted and
re-added after the change actions.

As software and libraries are updated, it may be necessary for workflows
to also be updated to match them [11]. For example, if a library changes the
interface for a particular call, we may also need to update the corresponding
module. Furthermore, even if the module’s interface does not change, it is im-
portant that the execution provenance capture exactly the version used. It is
common, then, for an older workflow to need an upgrade to reflect the current
interfaces. Without MVTs, upgrading an entire version tree can lead to a num-
ber of new branches that can drastically alter the appearance of the tree as
shown in Figure 1 (left). When collaborators are working with different pack-
age versions (perhaps because they have different operating systems), this can
be especially distracting. With MVTs, the upgrades can be encoded as updates
to the changes, effectively replacing any action that added an old version of a
module with a new action that adds the new version of the module as shown in
Figure 1 (right).

5.2 Parameter Exploration

Parameter exploration is often viewed as a transient state whereby a number
of versions are explored but only a select few are preserved, added to the ver-
sion tree, and examined further. Otherwise, the many versions would clutter the
version tree. We can store the parameter ranges explored as annotation on the
version being explored, but the version tree is only updated when a selected
workflow of interest is persisted. Not only is the provenance of unselected work-
flows lost, but storing information about the exploration in an annotation does
not match how a user might manually carry out the same operations.

We propose representing parameter exploration in an MVT by creating an
intermediate version tree to uniformly encode all parameter combinations tested
and then pruning that version tree to eliminate all non-selected versions. In other
words, from a node v of version tree T , we create a version tree T ′ with nodes



v0, . . . , vn as children of v but also each with links to v in T . If a user decides
to use vi for future work, it is persisted as a new version in the resulting version
tree T ∗ but unselected versions are pruned.

5.3 Reorganization

Reorganizing a version tree by moving nodes and rewriting edges may allow a
clearer understanding of relationships between workflows and/or a more efficient
encoding. The minimization of version trees allows operations that cancel each
other out to be removed, leading to a smaller version tree. Refactoring is an
operation where nodes are relocated in order to represent the versions with
fewer actions [10]. In the original implementation, the reorganized tree was not
linked with the starting tree, and this made it difficult to determine which nodes
had been moved or edges minimized. Using the actions in MVTs, we can not
only link corresponding versions but we can highlight those that changed.

6 Provenance

As how an entity is created or derived is a question about the provenance of
that entity, it is important to understand how meta version trees impact an
understanding of that entity’s evolution. We may either make a very literal
interpretation of the origin of an entity or look to project this literal provenance
into a form that may be more understandable.

The literal provenance of an entity derived from a version tree of version trees
is exactly the steps in materializing that entity. Specifically, this is a sequence
of actions describing the construction and transformation of the version tree
the entity lives in, following the sequence of actions from the path through
the version tree that actually construct the entity. While this provenance is
correct, and following the steps will create the entity, its use is limited. Literal
provenance is a chronological log of all activity in the version tree followed by
the materialization of a specific version.

If we wish to dispense with a provenance view that involves multi-layered
construction, we must project the operations down to the entity-level. Workflow
evolution provenance is the sequence of operations involved in constructing a
workflow [8]. While those operations live in a version tree, the provenance for
any specific workflow involves only the changes related to that workflow. This
is in contrast to literal provenance which keeps track of operations that may be
unrelated to the entity in question. If we ignore the other versions of the version
tree, we can generate updated provenance that is exactly the changes from the
path through that tree. However, such a derivation is not accurate when the
version tree has been transformed. Suppose a remap operation that mapped
change A to Z occurred between T and T ′. If the version v in T was created via
a sequence BCAE, v′ is created via BCZED. However, the change from A to Z
was made after E and D. Thus, we want the sequences to look like BCAEA−1Z.

We define projected provenance as the entity-level provenance that seeks to
translate the effects of any tree operations into the entity-level while maintain-
ing the correct order. For tree operations like remap, this equates to a inverse-
forward sequence as shown in the previous example. In general, we can examine



Fig. 3: Results for running remap operations over synthetically generated version trees
capturing set manipulation. Generally, remap operations do better on trees with larger
alphabets and higher branching probabilities.

the version before the version tree operation and after and infer the necessary
entity-level operations. Note that such provenance introduces actions that did
not actually occur. However, it may still be faithful in communicating the evo-
lution of that entity.

7 Evaluation

In addition to providing intuitive operations over collections of versioned entities,
meta version trees enable more efficient storage because they do not duplicate the
same work in many branches. To evaluate this, we used synthetically-generated
version trees and applied remap operations, comparing the resulting trees with
those where the remap was applied to individual versions independently.

We used sets of integers from a bounded range as the domain with two change
actions: add value and delete value. The version trees were randomly generated;
each edge was an add or delete value of a randomly selected integer from the
range (if the integer was in the set, delete value was inserted, otherwise add
value was inserted). Based on a branching probability, the new edge was either
appended to the current branch or the start of a new branch from an existing
node. Then, a remap which changed a few of the values used in the actions was
applied to the tree T . The same remap was also accomplished individually on
nodes appearing in the skeleton of T . Tags were generated at a probability of
0.02; the skeleton includes tagged nodes.

We ran tests that combined different branching probabilities (0.01, 0.025,
0.05, 0.1, 0.2, 0.4), alphabet sizes (10,25,50,100,250,500), tree sizes (100,250,500,1000),
and number of remapped values (1,2,4,8). For each test, the number of new MVT
nodes created by the remap operation was compared with the number of MVT
nodes created individually. Each of the 576 tests was run 200 times, and the av-
erage ratio between the new MVT nodes in the two approaches was computed.

In most cases, remap operations use fewer actions than conventional version
updates (see Figure 3). Interestingly, there are scenarios where the remap fares
worse. Specifically, when the alphabet for the set is small, the same integers



are being added and deleted over and over so many need to be changed in the
remap operation but the replacement at the end of a long branch needs only
happen once. For larger alphabets (when items aren’t being constantly added
and removed), the remap operations needs fewer actions since the operations
update multiple branches at once.

8 Related Work

Version graphs have been used in a number of contexts, including source code
management (e.g., git [9] and darcs [6]), web content versioning [15], and web
services [12]. Conradi and Westfechtel’s survey on versioning for software con-
figuration management provides both background and an overview of differ-
ent approaches for versioning including the distinction between state-based and
change-based [5]. Version control system provenance from git can also be repre-
sented in the PROV standard [7].

In the context of data management, versioning has focused on data lineage [3,
4] and changes over time [14]. Recently, the DataHub project has been work-
ing to support collaborative data analysis with a view to versioning evolving
datasets [2]. Because of the cost of storing both versions and changes, the project
seeks to examine the tradeoff between storing versions and materializing them
using change information. Ba et al. describe methods for incorporating uncer-
tainty into version control [1].

The problem of determining impacts and conflicts of operations on versions
that are themselves graphs, like workflows, is complicated by the subgraph iso-
morphism problem. Previous work focused on reorganizing versions by using the
given changes [10]. Metrics based on maximal common subgraphs may also be
used to compare workflow graphs [13]. Taentzner et al. have investigated ver-
sioning graphs and resolving conflicts in software modeling [18]. darcs uses patch
theory to reorder and merge different changes [6].

9 Conclusion

We present meta version trees to allow more intuitive and efficient operations
on collections of versions. Instead of editing multiple versions individually, users
may edit the change and create a new version of the version tree. Future work
includes examining applications beyond workflows and considering the process of
applying analogies to multiple versions. Specifically, we envision allowing a user
to edit a single entity and then propagate those changes to multiple versions.
While this could be done using workflow analogies [16], it should be possible to
encode the analogy as an edit to the version tree instead.

Another important consideration is potential conflicts introduced by an edited
operation. For example, when an action adding a specific value is removed from
the version tree, descendant actions that delete that value are invalid. One could
check for such conflicts before allowing the operation to proceed, or it might be
possible to separate those versions that are affected and put them in a subtree
unaffected by the tree modification.
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