
Notebook Archaeology: Inferring Provenance
from Computational Notebooks

David Koop

Northern Illinois University, DeKalb, IL, USA
dakoop@niu.edu

Abstract. Computational notebooks allow users to persist code, results,
and explanations together, making them important artifacts in under-
standing research. However, these notebooks often do not record the full
provenance of results because steps can be repeated, reordered, or re-
moved. This can lead to inconsistencies between what the authors found
and recorded, and what others see when they attempt to examine those
results. However, these notebooks do offer some clues that help us infer
and understand what may have happened. This paper presents tech-
niques to unearth patterns and develop hypotheses about how the origi-
nal results were obtained. The work uses statistics from a large corpora
of notebooks to build the probable provenance of a notebook’s state. Re-
sults show these techniques can help others understand notebooks that
may have been archived without proper preservation.

Keywords: notebook · provenance · archaeology

1 Introduction

As computational notebooks replace paper scratchpads, there are similarities
to the type of work involved in understanding and utilizing these notes. While
some notetakers carefully order and prepare their notes, others archive very raw
notes with arrows indicating reordering, strikethroughs indicating deletions, and
extra pages inserted to provide added details. These may be rewritten, but this
takes time which may not be invested due to a low likelihood that the notes
will be consulted. Computational notebooks exhibit similar patterns with some
that are well-polished and designed for others to read and reuse, while others are
scratchwork that may never be revisited. However, when one needs to reexamine
past results (especially older results or those from others), these raw notes can
present a challenge.

One of the more difficult situations is when a notebook contains results from
multiple sessions, work from different time periods or from different contributors.
Akin to having pages from multiple investigations combined together, under-
standing often requires not only ordering but also separating the pieces accord-
ing to the different sessions. Unfortunately, there often is not a recorded history
of exactly when each action was taken. Sometimes, notebooks have dated entries
or pages with ordered numbering, but uncollated notebook pages crammed in

2 D. Koop

a folder are not uncommon. While the format of today’s computational note-
books is different, similar challenges remain. Computational notebooks can be
shared for collaboration, analyses may be split in different notebooks, and some
results may be outdated. The order of additions, changes, and executions, is
hinted at by cell execution counts, but using these counts to surmise events is
not straightforward.

Our goal of understanding the past is different from successfully executing the
notebook. This goal is also important for those wishing to reuse the notebook,
but we are curious about the provenance of the notebook–all the steps taken
in manipulating the notebook, including the executions of individual cells. In
many cases, a top-down execution strategy allows the notebook to successfully
execute, but it can conflict with the actual execution order indicated by cell’s
execution counts. In addition, a successful run may still lead to different results;
the results saved in a notebook may not match those generated even when the
execution is successful [20, 27].

This paper uses collections of notebooks along with notebook session histo-
ries to build an understanding of common patterns in notebook use. From this
information, we construct an algorithm that fills in gaps of its execution prove-
nance using the breadcrumbs a notebook provides. For example, the common
practice, reinforced by the interface, of executing cells in consecutive order helps
us fill in gaps in the provenance indicated by the saved notebook cell positions
and execution counts. Our inferred provenance is necessarily more uniform that
the actual provenance because some operations cannot be derived from only
saved notebooks; we cannot determine if a cell was moved to a different loca-
tion. In addition, where cells have changed or been deleted, we must project the
provenance onto the current state of the notebook.

To infer provenance, we use a corpus of notebooks and a separate collection
of histories of executed code from notebooks. In addition to looking to model
user interactions with notebooks, we find some interesting results showing users
commonly revisit and reexecute notebooks across multiple sessions and some
differences between how users structure their code. To evaluate potential prove-
nance inference algorithms, we use static code analysis to highlight dependencies
that are or are not satisfied in the constructed provenance. The many difficulties
we found suggests notebooks would benefit from improved provenance tracking.
At the same time, the ability to produce plausible provenance from the lim-
ited information can be useful in better understanding the millions of already
published notebooks.

2 Related Work

A computational notebook is a sequence of code and text blocks called cells.
Generally, a user executes individual code cells one at a time, going back to edit
and re-execute cells as desired. This is in contrast to scripts where all code is
executed at once. In addition, new cells may be later inserted between existing,
already-computed cells, so it possible that the semantics of a variable change.
There exist a variety of different computational notebook environments [9, 28,

Notebook Archaeology 3

24, 1, 2, 16, 17], all of which use text and code cells with computational results
shown inline. Generally, these environments serve to mimic paper notebooks that
document a scientist’s work and include text, computations, and visualizations.
Notebooks persist input code, output results, and explanatory text, providing
a single record of an analysis and any discoveries. This contrasts with other
computing where source code, outputs, and explanation are stored in separate
documents.

Despite this encapsulation of research artifacts, the reproducibility of note-
book results has drawn considerable concern. Recent studies on the reproducibil-
ity of notebooks provide evidence that current practices fall short; even for those
notebooks where dependencies are specified and cell order is unambiguous, hid-
den dependencies and out-of-order execution can hinder reproducibility [20, 27].
Work has also been done to help diagnose non-reproducible notebooks and recon-
struct execution schemes by examining the dependencies between code cells [27].
Other solutions seek to modify the execution semantics of notebooks in order to
improve reproducibility in the future. Nodebook [15] and Datalore [5] enforce in-
order execution semantics on notebooks, and reactivepy restricts cells to single
definitions to allow reactive execution [21]. Dataflow notebooks make dependen-
cies between cells clearer, allowing the system to reactively update dependent
cells as well as determine when cells are stale or up-to-date [13]. NBSafety uses
static analysis techniques to highlight cells that may be stale, helping users see
the effects of code changes without modifying the normal interaction or exe-
cution in notebooks [14]. Other research has shown that around 1 in 13 cells
are duplicated in notebooks [12]. While provenance may also aid in reproducing
results, our goal is different–to infer history from saved notebooks.

There has also been study of problems with the current modes of use in note-
books [4], and there has been work to improve usability. In particular, techniques
help users better understand navigation of the existing notebook structure, some-
thing which can aid in inferring provenance. For messy notebooks, techniques
have been developed to fold blocks of cells [22] or help users gather only those
cells germane to a particular artifact [7]. It can also be important for users to
understand how their actions affect the evolution of a notebook, and interfaces
that present such information augment users’ memories [10, 11]. In real-time col-
laboration settings where users are working on a shared notebook, users tend to
require some level of coordination, and understanding other users’ contributions
is often complicated by the non-linear structure of notebook work [26].

There are a number of solutions for tracking provenance in scripts [19], and
some specific features and work to address provenance in notebooks. IPython
tracks the history of all code that was run in a session in a user-level SQLite
database [18]. This history is available in a notebook to document the provenance
of executed code, but it is not stored with the notebook. Jupyter [9] also creates
checkpoints that keep snapshots of a notebook through time, although these
are generally overwritten. Other opportunities to improve the provenance of
notebooks includes storing the provenance directly with notebook results [25].

4 D. Koop

import pandas as pd

df = pd.read_csv('penguins_lter.csv')

df.columns

df['body_mass_g'].max()

[1]:

[4]:

[5]:

[4]:

[6]: df.groupby('island')['body_mass_g'].median()

1

2

3

4

5 6

1

2 4

3 5

gap

jump

Session 1 Session 2

(a) Notebook

1. import pandas as pd

2. df = pd.read_csv('penguins_size.csv')

3. df.columns

4. df['body_mass_g'].max()

5. df.groupby('island')['body_mass'].median()

6. df.groupby('island')['body_mass_g'].median()

(b) Session 1 History

1. import pandas as pd

2. df = pd.read_csv('penguins_size.csv')

3. df.columns

4. df = pd.read_csv('penguins_lter.csv')

5. df.columns

(c) Session 2 History

Fig. 1: The notebook records the final state, after edits to cells, while the session
histories record the code at each cell execution.

In many settings including with workflows, there has been work to infer
provenance, whether that be to improve its granularity [3] or its precision [6].
ProvenanceCurious infers data provenance from annotated scripts, using the ab-
stract syntax tree to build the provenance graph [8]. Our work deals with less
well-defined data in that we seek to infer likely provenance given limited infor-
mation, knowing much can be missing, about the final notebook state including
cell positions and execution counts.

3 Definitions

A computational notebook is a sequence of code and text blocks called cells (see
Fig. 1a). A code cell contains any number of lines of executable code, while
a markdown cell contains text that is often explanatory and rendered from
markdown syntax. Our work will focus on Jupyter notebooks [9] written in
IPython [18], but many of the concepts and ideas will translate to other sys-
tems. In Jupyter, cells are ordered by position which indicates their location in
the notebook; we can associate a numeric index to track this (one at the top,
increasing down the page). There are a number of ways a user can modify a note-
book; a user may add a new cell, delete cells, move cells to new position, edit a
cell, or execute cells. Any operations involving multiple cells can be decomposed
into operations on a single cell. Other more complex operations like copy-and-
paste can similarly be decomposed into delete/add/edit operation chains. Note
that many of these operations modify the structure of a notebook in a way that
can cause headaches in inferring past provenance.

Notebook Archaeology 5

Jupyter uses a web-based front-end to facilitate editing and execution, but
the actual computation is done by a back-end kernel. Different kernels exist for
various programming languages, but we will concentrate on Python, the most
commonly used with Jupyter. When Jupyter creates a new connection between
the notebook and the kernel, a new session begins. Sessions are closely linked
to the kernel, tracking the code that is run and the outputs that are generated.
Each session has a global counter that is used to tag code, cells, and outputs,
upon a cell execution. The notebook records this number for the executed cell
as its execution count, and the session history separately records the code and
count in a database (see Fig. 1) This counter is reset to one each time a new
session begins, meaning the same execution count can appear for different cells
in the same notebook. In addition, a cell’s execution count is overwritten any
time it is executed, and can be deleted completely if the notebook’s outputs are
cleared. The execution count hints at a global execution order : provided each
session is assigned a monotonically increasing identifier, the session identifier
plus the execution count provides a global timestamp for all cells in a notebook.
Unfortunately, session identifiers are not recorded, leading to ambiguity of the
existing execution counts.

Then, an execution count k is missing when no cell has such an execution
count and there exists a cell with execution count ` > k. A gap (also known as
a skip [20]) is a consecutive sequence of missing counts, and thus has a length
(see Fig. 1a). When two cells have been executed in order, the signed difference
between the positions of the first and second cells is the jump (see Fig. 1a). No
meaningful jump occurs when this value is 1, signifying the cells were executed
in a top-down manner without the user refocusing on a different cell. Putting
these together, we define a gap-jump when we have both a gap and a jump. More
precisely, given two cells with positions i and j and execution counts k and `,
respectively, such that there is no cell in the notebook with an execution count
m, k < m < `, the gap-jump measure is a tuple (` − k, j − i). In a top-down
execution, ` = k + 1 and j = i + 1, leading to a gap-jump measure of (1,1).
A gap-jump of (2,1) often arises when a user executes the same cell twice, for
example, after fixing a typo. A gap-jump of (1,2) might indicate a user skipping
the execution of a cell in a later session. Note that these quantities represent
differences so similar gap-jumps can occur in different times and locations for
different notebooks.

3.1 Provenance

The provenance of a notebook is the sequence of all cell actions–the ordered
steps that led to the notebook’s state. While there is more state information
that is stored with the notebook (which cells are collapsed, whether output
exists, other cell metadata), we will ignore those because they do not affect
the order or execution of cells. In general, this provenance information is not
stored in the notebook, meaning for the majority of notebooks that do not use
some versioning scheme as an extension to Jupyter, we do not know what this
provenance is. The remainder of this paper seeks to present information that is

6 D. Koop

useful in analyzing notebooks and solutions that use this data to infer potential
provenance.

The execution provenance of a notebook is the chronological record of code
cell executions, that is each cell (including its code and position) that was ex-
ecuted. Note that markdown cells and unexecuted code cells are omitted from
this provenance. This history matches what IPython records in its history.sqlite
database, but is not stored with the notebook in most cases. Specifically, when a
cell is executed twice but was edited in between executions, the execution prove-
nance records the cell code for each execution. Because the notebook only stores
the most recent edit to each cell, this full provenance is impossible to infer. In-
stead, we will will focus on the projected execution provenance which substitutes
the “closest” cell to stand-in for the state of the cell executed in the past. For a
cell that was edited, the closest cell remains that same cell, regardless of where
it was moved to. For a cell that was deleted, the closest cell could be any, either
one that fits well into the sequence or simply the cell that was executed after it.
Recall that only executed cells figure into this provenance. With the projected
provenance, we can re-execute the notebook in a manner that approximates the
original execution. With no reexecutions or deletes, the projected provenance is
the same as the original execution provenance. Given a saved, executed note-
book, our goal is to infer this projected execution provenance.

4 Data and Statistics

Because we are inferring the provenance, we need to make decisions about how
a notebook was likely executed based only on its final state. To do this, we
will lean on a corpus of notebooks as well as one of session history collected
from the GitHub online repository. With a diverse set of notebooks, we can gain
an understanding of the distribution of various notebook features like gaps and
jumps, and the session histories provide more detail on how cells are modified
and re-executed. This will allow us to derive some general patterns related to
notebook use, reuse, and editing. These will be used to inform an algorithm that
seeks to infer the projected provenance.

4.1 Notebooks

A number of studies have harvested notebooks from GitHub for research [20,
23], and these notebooks have shown significant diversity ranging from polished,
explanatory documents to single-use scratchwork; ranging from a handful of cells
to hundreds; and ranging from programming cheat sheets to in-depth machine
learning experiments. We have employed similar strategies to existing work,
obtaining new notebooks by querying GitHub for the distinguishing .ipynb file
extension. From a corpus of millions of notebooks collected through February
2021, we randomly sampled 100,000 notebooks. To focus on IPython, and in
particular notebooks that use Python 3, we filtered notebooks based on that
metadata. Checking that notebooks that could be meaningfully loaded, we were
left with 65,119 notebooks, and of these, 58,276 have at least one executed cell.

Notebook Archaeology 7

Gaps & Jumps The easy case for inferring provenance is when we have no gaps
or jumps in a notebook. In this case, the cells have been executed in positional
order–that is from the top to the bottom of the notebook. There were 17,587
notebooks (30.18%) that fell into this category, something achieved by running
all cells consecutively in a notebook. In the remaining notebooks, we may have
some that involve multiple sessions. We know we have a notebook that has been
used in multiple sessions when the same execution count appears twice; this is
sufficient but not necessary. For those notebooks assumed to be single-session,
we can count the number of gaps and jumps, and gap-jumps. The standard
execution of two cells in top-down order, a gap of 1 and jump of 1 is by far the
most common, occurring almost 80% of the time. Another 10% have larger gaps
but no jump, likely indicating repeated execution of the second cell. About 3%
of those pairs with a larger gap have actual jumps.

Sessions An important issue in understanding how the execution counts relate
to the provenance of a notebook lies in how many sessions a notebook has been
used in. Recall that the execution count restarts at one in each new session so
we cannot estimate how many cells may have been executed in total without
first knowing how many sessions there were. We can conservatively estimate this
number by finding the maximum number of repeats of an execution count in a
notebook. Based on this cardinality, most (87.56%) of the notebooks have only
a single detectable session, 10.06% have at least two sessions, and 1.66% have
at least three. We can also compute a lower bound for the number of cells that
must have been executed by summing the maximum execution count for each
number of repeats. For example, consider a notebook with execution counts
[1, 6, 4, 5, 2, 4, 6, 1, 2, 3, 4]. Because we have three 4s, and two 6s, the notebook
had at least 4 + 6 + 6 = 16 executed cells; the last 6 is added because it is
the maximum execution count among those counts that appear at least once.
Calculating this lower bound for all notebooks, there is one notebook where at
least 10,916 cells were executed, but the median is 27. Note that this is usually
more than the number of cells in the notebook. To that end, we can examine
the ratio of executed cells in the notebook versus our lower bound of those
executed. Using the example data, this ratio is 11/16 0.69. Interestingly, the
interquartile range of this ratio is wide, from 0.15 to 0.89, indicating different
modes of interaction in notebooks. Low ratios indicate many reruns of cells while
higher ratios may indicate single executions or a session where the notebook was
reexecuted.

Static Code Dependencies In addition to the cell positions and execution
counts, we have the code of each cell. While this work does not seek to execute the
cells, we can employ static code analysis to inform our understanding of relation-
ships between cells, similar to techniques used by Osiris [27] and NBSafety [14].
Because it is a dynamic language, it more difficult to statically analyze Python
code, but we can make some progress in investigating dependencies between
cells. Specifically, the language makes it possible to differentiate between defi-
nitions and references of a particular identifier (or name). We care about those

8 D. Koop

 []: import pandas as pd

 []: df = pd.read_csv('penguins_size.csv')

 []: df = pd.read_csv('penguins_lter.csv')

 []: df['Island']

(a) Dependencies

 [1]: df.groupby('island')['body_mass_g'].median().plot(kind='bar')

 [2]: import pandas as pd

 [3]: df = pd.read_csv('penguins_size.csv')

 [4]: df.groupby('island')['body_mass_g'].median()

(b) Ordering Issues

Fig. 2: In (a), the last cell is dependent on an earlier cell that defines df. Because there
are two such cells, the dependency is ambiguous. In (b), suppose the cells are executed
in positional order. Then, the first cell has unbound symbols (df) that are later defined,
meaning the cell is out of order.

definitions that are made in one cell and then referenced in a different cell be-
cause this indicates a dependency between cells that can be used as a partial
ordering. It is not foolproof as there are many potential ways to influence the
global namespace, but this should cover most common cases. This also allows us
to determine when cell references are potentially ambiguous–that is when two
different cells assign to or define a particular name. When a third cell references
this name, it is possible that reference is to either of the cells.

Function implementations, which do not access particular names until ex-
ecuted present challenges because a name in a global namespace need not be
defined when the function is defined but must exist when the function is run.
Because of this, it is possible that another cell defines the global after the func-
tion, but this is still valid because the function is not executed until after that
definition.

We define four types of symbol dependencies which also lead to potential re-
lationships between cells. Specifically, any code cell that has a referenced symbol
that was not first defined in that cell has a likely dependency on another cell.
In this case, we call the symbol and cell dependent. When that referenced sym-
bol is defined/assigned in more than one cell, the symbol or cell is ambiguously
dependent (see Fig. 2a). These two definitions are unrelated to the order cells
were executed in. The dependency, ambiguous or otherwise, exists regardless of
any specified execution order. We found that most notebooks (94.76%) had at
least one dependency, although more than half (53.58%) had zero ambiguous
dependencies. Among those with ambiguous dependencies, the average ratio of
ambiguously dependent cells to total cells was about a quarter (25.49%). Again,
this shows different variable definition patterns, hinting that some users may be
keenly aware of issues with defining a variable more than once.

The second pair of definitions are related to execution order, meaning we
can use these to evaluate inferred execution provenance. Given an ordering of
cells, when a cell references a symbol that has not been defined/assigned in a
cell earlier in the ordering, we have a unbound symbol. (We specifically exclude
builtin symbols in these calculations.) This may mean the symbol is later defined,
or it may mean the symbol is never defined. There also may be cases where the
symbol would be added to the namespace by a wildcard import or some other

Notebook Archaeology 9

1 6 11 16 21 26 31 36 41 47
sessions until repeated

101

102

103
co

un
t

(a) Sessions Until Repeat

1 6 11 16 21 26 31 36 41 46
sessions with similar content

100

101

102

103

co
un

t

(b) Number of Repeated Sessions

Fig. 3: In the session history, we find evidence that users revisit notebooks. Usually,
this is soon after the previous session (a), and many notebooks are revisited many
times (b).

code. The subset of those symbols that are later defined are the classified as out-
of-order (see Fig. 2b). The number of out-of-order cells will serve as a metric to
evaluating how well our provenance inference technique works.

4.2 History

Inspired by Macke et al.’s use of IPython session history as a proxy for user
behavior [14], we take a similar approach to understand execution patterns.
Note that this assumes that the mode of interaction is via notebook, but it is
possible this history is recorded from console-based IPython interactions as well.
We will assume the code represents input from cells. Because the session history
contains all executed code, we have a more complete record of executed cells,
and can better see how often and when cells are re-executed. The patterns from
these histories will help us determine when to infer repeated executions in our
provenance reconstruction.

We downloaded all history.sqlite files from GitHub, and found 570 unique files
with 86,711 sessions, many of which were empty. We were were able to extract
code from 43,529 sessions. We eliminated sessions with 10 or fewer lines (27,328)
and those with 100 or more (2,058), the latter due to the number of possible
checks required. In the 14,143 sessions, we found 977,728 “cells”. (IPython calls
these lines despite many being composed of multiple lines, but cells of notebooks
become lines in the history database.)

Because we were not concerned about the actual execution of the cells, errors
or outdated code are fine. Our goal is to find all repeated executions. To do so, we
test all combinations of cells in the same session for similarity. Following Macke
et al., we classify two strings as similar if the Levenshtein distance between
them, normalized by dividing by the maximum length of the two strings, is less
than 0.2, that is roughly 80% of the code is the same [14]. Running this repeat
detection across all sessions, we found 222,202 likely repeated cells. Note that
this does not mean that all of these cells were (modified and) re-executed as
there may also be duplicate cells [12].

10 D. Koop

Importantly, this allows us to estimate the probability of a (1,0) gap-jump,
that is a change in execution count of 1 (no real gap), and a jump of 0, staying
in the same place. Recall that we have no measure of this from the notebooks
because there could be no data about jumps of 0 as the re-execution would over-
write the previous cell’s execution count. The next cell matches the previous
cell in approximately 10% of all repeats (102,580 of 1,024,508). This is out of
447,244 cells analyzed (for 23% of all executions); the number of repeats ex-
ceeds the number of cells because we count all pairs of repeats. We will use this
probability of repeating cells to guide decisions about how to fill in the missing
gaps.

We can also look for repeats across sessions; this shows how often a notebook
was revisited in a later session. To accomplish this, we first de-duplicate the
individual sessions, leaving only one copy of each group of repeats. Then, we
compare earlier sessions with later ones. If the later session repeats at least 50%
of the cells from the earlier session (repeats measured via the same Levenshtein
distance criteria), we classify it as a revisit of of the notebook. If, at any time
after comparing ten lines from the first session, we have less than 10% overlap,
we quit checking for overlaps. We only searched for repeats within 50 sessions
due to computational time, but found 5,163 sessions repeated, some multiple
times. The results show that most repeats occur quickly, often within the first
10 sessions (see Fig. 3a). In addition, many sessions are repeated multiple times
with a significant number of notebooks being revisited over 20 times (see Fig. 3b).

5 Algorithm

Our goal is to infer projected execution provenance, the order in which we should
execute the notebook’s current cells to best emulate all of the past executions
of notebook cells. Again, we will use the position and execution counts to guide
decisions, but also the patterns and frequencies that were gathered from the
GitHub notebooks and session data. Because multiple sessions introduce added
complexity, we will be begin by examining the single-session case, and then
discuss how this can be extended for the multi-session case.

Worst Case Note that even with the best algorithm, it is possible to have wildly
different actual provenance than that inferred by this model. For example, each
cell could be executed repeatedly in a separate session, allowing any possible
execution count that has no relationship to the other cells in the notebook.
They may also be moved to reorder their positions. Given the history data, this
is likely an extremely rare occurrence, but it is possible, as with an archaeological
dig, that the most likely explanation given all evidence is not correct. Someone
trying to deliberately obfuscate the provenance of a notebook can very likely
succeed.

5.1 Base Algorithm

The base algorithm strictly follows the order implied by the execution counts.
We don’t know what happens with any gaps so we can fill them in with repeated

Notebook Archaeology 11

1 3 5 7 9 11 13 15 17 19
size

10 3

10 2

10 1

lo
g(

co
un

t/t
ot

al
)

notebook consec. cell gap - 1
session consecutive repeats

Fig. 4: Comparing the gap (≥ 2) between two adjoining cells in notebooks to the
number of repeats of the same code in session history. A gap of n can be caused by
n− 1 repeats of the second cell.

executions of the cell at the end of the gap. While this seems reasonable, and we
will see a nice extension to the multi-session case, the results (see Section 6) show
this to be a somewhat poor strategy, as many symbol definition-reference pairs
are out of order. The reason lies with the probability of repeated execution being
lower than that of the standard (1,1) gap-jump. For example, if Fig. 1 showed
execution counts [1,6,7,4,5], it is most plausible that the user executed all five
cells in order and then went back to execute the second and third cell again.
The base algorithm would instead jump from the first cell to the second-to-last,
likely missing declarations or computations.

Extension to Multiple Sessions This base algorithm does, however, provide a
nice path to determine how to segment a multi-session notebook. Recall that
we can obtain a lower-bound on the number of sessions by finding the count
of the mode (the maximum number of repeats for an execution count). Given
this, we can start from an alignment of all the sessions at this mode, and use a
greedy approach to find the best next step in each session. Specifically, given the
next possible step, we look up the relative frequencies of the induced gap-jump,
picking the highest one. The step can be in either direction (to the next lower
or higher execution count) as the process is the same. Continuing this process
allows us to assign each cell to a session, at the same time building the projected
provenance. Note that the order of the sessions is difficult to ascertain because
there is nothing in this algorithm that considers when executed cells may have
been reexecuted–this is only implicitly captured in the gap-jump data.

5.2 Informed Algorithm

In the single session case where we assume the entire notebook state was gener-
ated in one session, any gaps mean that we have executed a cell twice or executed

12 D. Koop

a now-deleted cell. Since re-executing a cell often does not change state, we will
assume that all gaps are re-executions, rather than deleted cells. (Any code that
modifies a variable based on its current value may be problematic here; it may
be possible to flag such cells.) Then, the problem is finding the best path through
cells that have execution counts higher than the the specified number. Here, we
can leverage the distribution of jumps, but we must also consider the endpoint
of the gap, the cell we must end at. In addition, the user may have jumped to
the final cell and re-executed it as many times as necessary.

From the data from the session history database, we know that both consec-
utive cell executions and immediate re-executions appear frequently. In addition,
if we see two cells that adjoin in position, and the cells are also consecutive by
execution count, the gap between those cells may often be caused by multiple
executions of the second cell. This may come about because of trial-and-error in
getting the code correctly by fixing typos, modifying parameters, etc. Figure 4
shows that the distribution of these gaps is similar to the distribution of ses-
sions where the same line is executed multiple times in succession. The single
repeats in sessions make up a greater proportion of repeats than (2,1) gap-jumps
in notebooks, but then decline faster, meaning long length-m repeats are less
common than (m − 1 � 2, 1) gap-jumps. This may be explained by the idea
that the gaps can also be caused by jumping to other parts of the notebook that
are later re-executed or removed, and it may also be more likely that cells tried
once or twice are later deleted.

Our goal is to come up with likely execution provenance to fill in the gaps.
From the notebook data, we know that a (1,1) gap-jump is most likely. In ad-
dition, the frequency of jumps of 1–that the next cell in execution count is also
the next cell positionally, is about 9 out of 10 (89.56%). Thus, we expect mostly
top-down order (and without other information are best to assume this), but this
must mesh with the notebook. A negative jump—executing a cell earlier in the
notebook, requires a negative jump at some point in the execution provenance
(since we are ignoring moves). We can maximize the number of consecutive ex-
ecutions as cell numbering permits, but need to make at least one jump. Thus,
our best strategy may be to move forward as much as possible with a single
jump. Since this may still not cover the entire gap, we can repeat the final cell
until reaching the desired execution count.

More formally, we wish to determine the projected execution provenance for
the gap defined by cells ci and cj which have positions i and j and count(cj)−
count(ci) > 1. We will attempt to use all cells that come after ci or before cj
and have execution counts greater than cj ’s. Formally, we want cells {ck} with
count(ck) > count(cj) and either k < j or k > i. If the size of candidates, {ck},
is greater than the size of the gap, we use those positionally before cj first and
then those after ci (the jump happens earlier). If there are too few candidates, we
choose to repeat cj as many times as necessary, drawing on the session history
data showing repeats to be a common occurrence. In between those executions,
we will need to jump if the cells are positionally out-of-order, j < i, or if the
gap is smaller than the jump, j − i > count(cj)− count(ci). See Algorithm 1 for

Notebook Archaeology 13

Algorithm 1 Informed Provenance Algorithm

function FillProvenance(C)
order← [] . initialize result
C ← {Cell(pos = 0, count = 0)} ∪ C . add dummy cell
sortByPosition(C) . ci is at position i
for ci, cj ∈ paired(sortedByCount(C)) do

gap← count(cj)− count(ci)
if gap = 1 then

order.append(cj)
else

n = mins≥0{s | ∀k ∈ [s, j] count(ck) ≥ count(cj)}
m = maxt≤|C|{t | ∀` ∈ [i, t] count(c`) ≥ count(cj)}
if j > i then

posGap← min(j − i− 1, gap− 1)
else

posGap← gap− 1

numBefore← min(posGap, j − n)
numAfter← min(posGap− numBefore,m− i)
numRepeats← posGap− numBefore− numAfter
for k ∈ i + 1, i + numAfter do

order.append(ck)

for k ∈ j − numBefore, j − 1 do
order.append(ck)

for ` ∈ 1,numRepeats + 1 do . always do once so cj is added
order.append(cj)

return order

details, and Fig. 5 for an example showing how a gap in the provenance is filled
by the algorithm.

Extension to Multiple Sessions The extension to the multiple session case brings
the possibility of having a cell with a lower execution count being run in a pre-
vious session at a higher execution count. We can attack this by first assigning
each cell to a session, but then we have to find a way to order the sessions so
that we know which cells will eventually be re-run (and their execution count
overwritten). One option here is to assume that later sessions will be more con-
tiguous. Assuming this can be solved, the algorithm continues as in the single
session case, allowing gaps to be filled by inferring executions of not only cells
whose execution counts are greater but also cells in later sessions. A second op-
tion is to thread this with the cell-session assignments, as in the base algorithm.
Here, we will rank assignments of cells to sessions based on the provenance they
induce. For example, in Fig. 1, assigning the third and fourth cells to the same
session forces less frequent jumps than assigning the second and third to the
same session instead (as was the case).

14 D. Koop

variables i m n j

pos · · · 3 4 5 6 7 8 9 10 11 · · ·
count · · · 13 22 23 24 7 8 21 19 20 · · ·

inferred · · · 13 14 15 16 7 8 17 18 20 · · ·
22 23 24 21 19

Fig. 5: Filling in the gap between c3 and c10. These cells are the third and tenth
in the notebook and have execution counts of 13 and 19, respectively. This means
gap = 19 − 13 = 6, and we need to decide which five cells were executed during steps
14 through 18. The algorithm assigns counts to cells with execution counts higher than
19 following c3 (numAfter = 3) and preceding c10 (numBefore = 1), and then assigns
c10 to repeat once (numRepeats = 1). The inferred execution order shows that some
cells (e.g. c4) are executed more than once.

6 Evaluation

We used the code dependency measures defined in Section 4 to evaluate how well
our provenance captures a realistic execution history without attempting to run
the code. Other work has attempted to reexecute entire notebooks, classifying
them as reproducible when the execution succeeds and the results match. This
work is subject to a number of variables including data availability, library and
package dependencies, and execution order [20, 27]. Our work focuses on execu-
tion order in a way that is agnostic to the results of the code. We lean on the
static code analysis to find those identifiers that are defined out of order in order
to test our approach. Again, this analysis looks at the names that appear across
cells. Any name that is referenced before it is introduced would be out of order.

We choose to compare three different techniques using the code dependency
metrics. First, we take the top-down approach–simply execute all executed cells
in positional order. Second, we examine the base approach that goes not by po-
sition but by the stored execution counts. Finally, we compare with the informed
algorithm that attempts to fill in gaps with other cell executions.

There were 1,519,914 cells in the notebooks. The top-down approach has only
2,196 out-of-order cells, compared with 39,386 for the base algorithm, and 26,619
for the advanced algorithm. The top-down median number of out-of-order cells
per notebook was 1 compared with 2 for the other approaches. Perhaps sur-
prisingly, both algorithms do significantly worse as measured by out-of-order
executions than top-down execution. Note, however, that the single-session ad-
vanced algorithm does improve significantly on the base algorithm. Reflecting
on this further, the actual execution is often messier than the top-down order,
and may result in more similar results.

One notebook that has problems with out-of-order cells under the inferred
provenance has definitions (imports) as the first cell but an execution count
of 141, followed by a second cell with count 132, before cells with the count
sequence 2, 3, 4, 5. The algorithm assumes that the second cell was the first
execution (1), leaving the actual first cell until much later. Most likely, this
second cell was inserted later, something that would be difficult to determine
without other information. Around 100 notebooks have fewer out-of-order cells

Notebook Archaeology 15

using our algorithm than the top-down execution. One of these has a cell with a
plot as output that was executed last yet featured as the first cell. Again, the cell
may have been moved, but following the execution counts here provides what is
likely more accurate provenance.

7 Discussion

The data we have gathered helps shine a light on patterns of notebook interac-
tion, allowing us to infer the provenance of a particular notebook. However, there
are several limitations. First, because we cannot determine if a cell was removed
or a cell was added or moved, our inferred provenance necessarily lacks some
of the actions that a user might take. Second, we do not have data that links
session histories with notebooks. The session histories do not record notebook
locations or filenames, and it is unclear how to effectively link the session histo-
ries on GitHub to existing notebooks. The histories are maintained in a separate
area of the filesystem (a “dot” directory in a user’s home directory), and that
is generally not included in the same repository as published notebooks, if any
published notebooks exist.

Improving Evaluation A true recording of the provenance would be beneficial in
better profiling notebooks. This would help better tie data from notebooks and
session histories together, as well. Extensions that version notebooks and their
cells are very useful for this purpose [11], but the vast majority of notebooks lack
this information. Another opportunity may be those who version their notebooks
using conventional tools like git. Even though these will lack the granularity of
a system that tracks all operations on a notebook, they would allow improved
inference of changes in the notebook as adds, moves, and deletions may be more
effectively estimated.

Using All Cells Notebooks contain more than code cells, but we have restricted
most of the discussion of provenance to code. Literate programming emphasizes
a combination of code with text, and this text is included in markdown cells in
Jupyter. While some notebooks have more text than others, for those that do,
we may be able to use information about the position of this text to determine
logical sections of a notebook which may aid is session partitioning. In addition,
the calculations of gaps and jumps ignore markdown cells, but having such cells
in between may affect the probability of a particular repeated execution or jump,
thus improving the algorithm.

Using Code Dependencies Both Osiris and NBSafety look to static code depen-
dencies in order to derive more likely execution sequences and flag stale cells,
respectively. We instead use these code dependencies to evaluate provenance re-
constructed via statistical trends of gaps, jumps, and repeats. We expect that
code dependencies can be used to improve this provenance construction, but if
we optimize for that, we lose our ability to evaluate the proposed algorithm. A
possible solution is to use execution of the notebooks, comparing output values
directly. This is prone to the other issues mentioned earlier, including missing

16 D. Koop

data and dependency issues, but may provide enough results to judge the efficacy
of a hybrid solution.

Determining Sessions Our method to determine sessions looks reasonable in
that it segments the notebook in meaningful pieces most of the time. However,
it induces more issues with out-of-order cells than top-down execution. This is
not totally unexpected, as we expect most users to execute cells in top-down
fashion so cell execution counts that are out of order are actually more likely
to have been reexecuted than simply executed in a random fashion. Thus, when
execution counts are missing, it is actually more likely that the cell was repeated
(or potentially moved) than it was executed in a haphazard fashion.

Localized Predictions Our model for inferring provenance uses global distribu-
tions for guidance, but different users have different approaches to notebook
use [23]. Those with few but lengthy cells that function more like scripts will be
editing and re-editing single cells over and over while those with many shorter
cells will likely be executing cells in sequence more often. In addition, even among
the same users, notebooks used for exploration may be structured differently
than those used for explanation. It may be useful, then, to classify notebooks
or users according to particular styles in order to better infer provenance. We
also expect that in later sessions, many of the cells have fewer immediate re-
executions. Often, the first execution of a cell raises an exception due to a typo,
a missed import, or some flawed logic, leading a user to correct that problem.
Thus, some repeats may be less likely if we know the code was executed in a
previous session. Another opportunity for improving predictions is understand-
ing the content of the cell; cells importing dependencies may be executed and
updated more often and with a greater probability of a jump.

8 Conclusion

We have presented methods to infer provenance from static notebooks based on
knowledge gained from examining the large corpora of notebooks and session
histories. These methods take a step forward in the very difficult problem of
meaningfully understanding how a user interacted with a notebook. A future
direction is to examine how well this computed provenance meshes with the
actual results.

While we present some evidence that provenance can be inferred, the frequent
ambiguities point to a need for improved provenance in notebooks. While it
has been shown that many notebooks have reproducibility issues, this paper
demonstrates that even with further analysis of partially-known steps rooted
in statistical analysis of notebook and session data, there is not enough data to
provide the type of provenance that would enable greater understanding of how a
user arrived at particular conclusions and where they may have changed course.
Since there are millions of notebooks that already exist, this work addresses the
challenges from the past while prompting action for the future.

Acknowledgements This material is based upon work supported by the National
Science Foundation under Grant SBE-2022443.

Notebook Archaeology 17

References

1. Apache Zeppelin. http://zeppelin.apache.org
2. Beaker Notebook. http://beakernotebook.com
3. Bowers, S., McPhillips, T., Ludäscher, B.: Declarative rules for inferring fine-

grained data provenance from scientific workflow execution traces. In: International
Provenance and Annotation Workshop. pp. 82–96. Springer (2012)

4. Chattopadhyay, S., Prasad, I., Henley, A.Z., Sarma, A., Barik, T.: What’s wrong
with computational notebooks? pain points, needs, and design opportunities. In:
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
pp. 1–12 (2020)

5. Datalore, https://datalore.jetbrains.com
6. Dey, S., Belhajjame, K., Koop, D., Song, T., Missier, P., Ludäscher, B.: UP &

DOWN: Improving provenance precision by combining workflow-and trace-level
information. In: 6th USENIX Workshop on the Theory and Practice of Provenance
(TaPP 2014) (2014)

7. Head, A., Hohman, F., Barik, T., Drucker, S.M., DeLine, R.: Managing messes in
computational notebooks. In: Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. p. 270. ACM (2019)

8. Huq, M.R., Apers, P.M., Wombacher, A.: Provenancecurious: a tool to infer data
provenance from scripts. In: Proceedings of the 16th International Conference on
Extending Database Technology. pp. 765–768 (2013)

9. Jupyter, http://jupyter.org
10. Kery, M.B., Myers, B.A.: Interactions for untangling messy history in

a computational notebook. In: 2018 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). pp. 147–155 (Oct 2018).
https://doi.org/10.1109/VLHCC.2018.8506576

11. Kery, M.B., John, B.E., O’Flaherty, P., Horvath, A., Myers, B.A.: Towards effective
foraging by data scientists to find past analysis choices. In: Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. pp. 92:1–92:13. CHI
’19, ACM, New York, NY, USA (2019). https://doi.org/10.1145/3290605.3300322,
http://doi.acm.org/10.1145/3290605.3300322

12. Koenzen, A.P., Ernst, N.A., Storey, M.A.D.: Code duplication and reuse in jupyter
notebooks. In: 2020 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). pp. 1–9. IEEE (2020)

13. Koop, D., Patel, J.: Dataflow notebooks: Encoding and tracking dependencies of
cells. In: 9th Workshop on the Theory and Practice of Provenance (TaPP 2017)
(2017)

14. Macke, S., Gong, H., Lee, D.J.L., Head, A., Xin, D., Parameswaran, A.: Fine-
grained lineage for safer notebook interactions. Proc. VLDB Endow. 14(6) (2021)

15. Nodebook, https://github.com/stitchfix/nodebook
16. North, S., Scheidegger, C., Urbanek, S., Woodhull, G.: Collaborative visual analysis

with rcloud. In: Visual Analytics Science and Technology (VAST), 2015 IEEE
Conference on. pp. 25–32. IEEE (2015)

17. Observable, https://observablehq.com
18. Pérez, F., Granger, B.E.: Ipython: a system for interactive scientific computing.

Computing in science & engineering 9(3), 21–29 (2007)
19. Pimentel, J.F., Freire, J., Murta, L., Braganholo, V.: A survey on collecting, man-

aging, and analyzing provenance from scripts. ACM Computing Surveys (CSUR)
52(3), 1–38 (2019)

18 D. Koop

20. Pimentel, J.F., Murta, L., Braganholo, V., Freire, J.: A large-scale study about
quality and reproducibility of jupyter notebooks. In: Proceedings of the 16th In-
ternational Conference on Mining Software Repositories. pp. 507–517. IEEE Press
(2019)

21. reactivepy, https://github.com/jupytercalpoly/reactivepy
22. Rule, A., Drosos, I., Tabard, A., Hollan, J.D.: Aiding collaborative reuse of com-

putational notebooks with annotated cell folding. Proceedings of the ACM on
Human-Computer Interaction 2(CSCW), 150 (2018)

23. Rule, A., Tabard, A., Hollan, J.D.: Exploration and explanation in
computational notebooks. In: Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. pp. 32:1–32:12. CHI ’18,
ACM, New York, NY, USA (2018). https://doi.org/10.1145/3173574.3173606,
http://doi.acm.org/10.1145/3173574.3173606

24. Sage Developers: SageMath, the Sage Mathematics Software System (2017),
http://www.sagemath.org

25. Samuel, S., König-Ries, B.: Provbook: Provenance-based semantic enrichment of
interactive notebooks for reproducibility. In: International Semantic Web Confer-
ence (P&D/Industry/BlueSky) (2018)

26. Wang, A.Y., Mittal, A., Brooks, C., Oney, S.: How data scientists use computa-
tional notebooks for real-time collaboration. Proceedings of the ACM on Human-
Computer Interaction 3(CSCW), 39 (2019)

27. Wang, J., Tzu-Yang, K., Li, L., Zeller, A.: Assessing and restoring reproducibil-
ity of jupyter notebooks. In: 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE). pp. 138–149. IEEE (2020)

28. Wolfram Research, Inc.: Mathematica. https://www.wolfram.com/mathematica/

