Advanced Data Management (CSCI 680/490)

Data Citation

Dr. David Koop
What is Data?

Marie Curie’s notebook

http://www.census.gov/population/cen2000/map02.gif

http://ncl.ucar.edu

http://onlineqda.hud.ac.uk/

http://Intro_QDA/

Examples_of_Qualitative_Data.php

Marie Curie’s notebook

http://aip.org

http://hudsonalpha.org

Date: 1/20/75 Place: Sakalchatun
Zafar
He will grow old in his present house; new house is for sons + 5 sons. Not sure they want to live in village. He will only build another if they want him to. He came from Germany and did the plastering. He arranged the carpentry in Kayseri. Çok para gitti. (much money went) Hes a tractor.

Date: July 1980 Place: Sakalchatun
Zafar:
Household now Zafar and wife; Nazli Unal; and wife and youngest son, still a boy. They run two打败; one with a driver from Suleymanli. Goes in and out once a day. He gets 8,000 a month. Zafar then told, keskin demli, (not sharp - not profitable) I said he did very well on 8,000 TL with only two journeys a day. Nazli Unal has bought a Durak (capital stop) from Beledevic and works all day in Kayseri.

http://onlineqda.hud.ac.uk/Intro_QDA/Examples_of_Qualitative_Data.php

[C. Borgman]
What is data?

- "Data are representations of observations, objects, or other entities used as evidence of phenomena for the purposes of research or scholarship." [C. L. Borgman]

- Data can be digital but can also be physical (e.g. sculptures)
- Semantics are important (e.g. temperature to engineer and biologist)
- Grey Data: surveys, student records—think about **privacy**
Sharing Data

• Required/encouraged by universities, funding agencies, publishers
• "Publications are arguments made by authors, and data are the evidence used to support the arguments." [C. L. Borgman]

• Questions:
 - How is data maintained? Who is responsible?
 - What is the process for curating data?
 - How long should data be kept?
 - How should data collection and curation be acknowledged?
Data Curation Lifecycle

The DCC Curation Lifecycle Model

- **CONCEPTUALISE**
- **CREATE OR RECEIVE**
- **TRANSFORM**
- **CURATE**
- **PRECAUTIONS PLANNING**
- **DESCRIPTION**
- **REPRESENTATION INFORMATION**
- **COMMUNITY WATCH & PARTICIPATION**
- **PREPARE**
- **STORE**
- **REAPPRaise & SELECT**
- **ACCESS, USE & REUSE**
- **MIGRATE**
- **DISPOSE**

Data (Digital Objects or Databases)

Full Lifecycle Actions
- **Ingest**
- **Preservation Action**
- **Preserve**
- **Transform**
- **Ingest**
- **Access, Use & Reuse**

Sequential Actions
- **Create or Receive**
- **Curate**
- **Preservation Planning**
- **Description**
- **Representation Information**
- **Community Watch & Participation**

Occasional Actions
- **Dispose**
- **Reappraise**
- **Migrate**

Data, any information in binary digital form, is at the centre of the Curation Lifecycle. This includes:

- **Simple Digital Objects** are discrete digital items; such as textual files, images or sound files, along with their related identifiers and metadata.
- **Complex Digital Objects** are discrete digital objects made by combining a number of other digital objects, such as websites. Structured collections of records or data stored in a computer system.
Sequential Actions in Data Curation

- **Conceptualize**: Plan creation of data—capture method and storage options.
- **Create or Receive**: Create/receive data and make sure metadata exists.
- **Appraise and Select**: Evaluate data and select for long-term curation and preservation.
- **Ingest**: Transfer data to an archive, repository, data centre or other custodian.
- **Preservation Action**: Data cleaning, validation (ensure that data remains authentic, reliable and usable).
- **Store**: Store the data in a secure manner adhering to relevant standards.
- **Access, Use and Reuse**: Make sure is accessible to users and reusers.
- **Transform**: Create new data from the original (migrate formats, subsets, etc.).
FAIR Principles

- **Findable**: Metadata and data should be easy to find for both humans and computers
- **Accessible**: Users need to know how data can be accessed, possibly including authentication and authorization
- **Interoperable**: Can be integrated with other data, and can interoperate with applications or workflows for analysis, storage, and processing
- **Reusable**: Optimize the reuse of data. Metadata and data should be well-described so they can be replicated and/or combined in different settings
Findable: DataCite Workflow

1. Take a dataset

2. Describe it
 - Title
 - Authors
 - Year
 - Description
 - And others…

3. Assign a DOI
 - 10.1234/exampledata
 - 10.5438/n138-z3mk

Proxy Prefix Suffix
Accessible: DOI to Landing Page with Metadata

Citation

PID resolution

Landing Page

web service

Data

metadata mark-up

Document citing the data

Repository housing the data

Data store

[M. Fenner et al., 2019]
Interoperable: Standard vocabularies

Recommended Records

<table>
<thead>
<tr>
<th>Registry</th>
<th>Name</th>
<th>Abbreviation</th>
<th>Type</th>
<th>Subject</th>
<th>Domain</th>
<th>Taxonomy</th>
<th>Related Database</th>
<th>Related Standard</th>
<th>Related Policy</th>
<th>In Collection/Recommendation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABA Adult Mouse Brain</td>
<td>ABA</td>
<td>ABA</td>
<td>Standard</td>
<td>MRI</td>
<td>Brain Imaging</td>
<td>None</td>
<td>NeuroMorpho.Org</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Access to Biological Collection Data

<table>
<thead>
<tr>
<th>Registry</th>
<th>Name</th>
<th>Abbreviation</th>
<th>Type</th>
<th>Subject</th>
<th>Domain</th>
<th>Taxonomy</th>
<th>Related Database</th>
<th>Related Standard</th>
<th>Related Policy</th>
<th>In Collection/Recommendation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCDEFG</td>
<td>Access to Biological Collection Data</td>
<td>ABCDEFG</td>
<td>Standard</td>
<td>DNA</td>
<td>None</td>
<td>None</td>
<td>GenCASe Data Portal</td>
<td>XML</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Access to Biological Collection Data DNA extension

<table>
<thead>
<tr>
<th>Registry</th>
<th>Name</th>
<th>Abbreviation</th>
<th>Type</th>
<th>Subject</th>
<th>Domain</th>
<th>Taxonomy</th>
<th>Related Database</th>
<th>Related Standard</th>
<th>Related Policy</th>
<th>In Collection/Recommendation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCDEFG</td>
<td>Access to Biological Collection Data DNA extension</td>
<td>ABCDEFG</td>
<td>Standard</td>
<td>DNA</td>
<td>None</td>
<td>None</td>
<td>GenBank</td>
<td>MOD-CD</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

ACE format

<table>
<thead>
<tr>
<th>Registry</th>
<th>Name</th>
<th>Abbreviation</th>
<th>Type</th>
<th>Subject</th>
<th>Domain</th>
<th>Taxonomy</th>
<th>Related Database</th>
<th>Related Standard</th>
<th>Related Policy</th>
<th>In Collection/Recommendation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE format</td>
<td>ACE format</td>
<td>ACE format</td>
<td>Standard</td>
<td>DNA</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

AdLab meta ontology

<table>
<thead>
<tr>
<th>Registry</th>
<th>Name</th>
<th>Abbreviation</th>
<th>Type</th>
<th>Subject</th>
<th>Domain</th>
<th>Taxonomy</th>
<th>Related Database</th>
<th>Related Standard</th>
<th>Related Policy</th>
<th>In Collection/Recommendation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdLab meta ontology</td>
<td>AdLab META ontology</td>
<td>AdLab META ontology</td>
<td>Standard</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

AdLab ontology

<table>
<thead>
<tr>
<th>Registry</th>
<th>Name</th>
<th>Abbreviation</th>
<th>Type</th>
<th>Subject</th>
<th>Domain</th>
<th>Taxonomy</th>
<th>Related Database</th>
<th>Related Standard</th>
<th>Related Policy</th>
<th>In Collection/Recommendation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdLab ontology</td>
<td>AdLab</td>
<td>AdLab</td>
<td>Standard</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Atom drug reaction markup language

<table>
<thead>
<tr>
<th>Registry</th>
<th>Name</th>
<th>Abbreviation</th>
<th>Type</th>
<th>Subject</th>
<th>Domain</th>
<th>Taxonomy</th>
<th>Related Database</th>
<th>Related Standard</th>
<th>Related Policy</th>
<th>In Collection/Recommendation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atom drug reaction markup language</td>
<td>EU-ADR ML</td>
<td>EU-ADR ML</td>
<td>Standard</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
Reusable: Licensing

- Citation of a dataset is expected as a scholarly norm, not by law
- CC0:
 - "I hereby waive all copyright and related or neighboring rights together with all associated claims and causes of action with respect to this work to the extent possible under the law"
- CC BY: license, not a waiver as CC0
 - "You must give appropriate credit, provide a link to the license, and indicate if changes were made."
- Data Use Agreements (DUA): Used when data are restricted due to proprietary or privacy concerns.
Reusable: Data Citation & Metrics

[H. Cousijn et al., 2019]
Assignment 4

• Work on Data Integration and Data Fusion
• Integrate artist datasets from different institutions (The Met, The Tate, Smithsonian, Carnegie Museum of Art)
 - Integrate information about names, places, nationality, etc.
• Record Matching:
 - Which artists are the same?
 - Which nationalities are the same? (British/English)
• Data Fusion:
 - Year of birth/death differences
 - Nationality differences
Studying Data Availability

• Who mandates data sharing, and what is the impact?
 - Government
 - Funding agencies
 - Institutions
 - Journals

• How does the age of a publication/data item affect availability?
 - If not curated, how to locate?
 - What factors influence this?
Since this is a logistic model, we can readily calculate the effect that the different policy types have on the likelihood that the data will be available. We explore these odds for each type of policy below, using "no policy" as the baseline.

Having a "recommend archiving" policy made it 3.6 times more likely that the data were online compared to having no policy. However, the 95% CI overlapped with 1 (0.96–13.6); hence, this increase in the odds is not significant. Overall, recommending data archiving is only marginally more effective than having no policy at all.

The data were 17 times more likely to be available online for journals that had adopted a mandatory data archiving policy but did not require a data accessibility statement in the manuscript. This odds ratio was significantly larger (95% CI: 3.7–79.6).

For "mandate archiving" journals where a data accessibility statement is required in the manuscript, the odds of finding the data online were 974 times higher compared to having no policy. The 95% CI on these odds is very wide (97.9–9698.8), but nonetheless shows that the combination of a mandatory policy and an accessibility statement is much more effective than any other policy type.

REQUESTING DATA DIRECTLY FROM AUTHORS
A number of the "recommend archiving" policies state that the data should also be freely available from the authors by request (see the Journal Policies file at doi: 10.5061/dryad.6bs31); hence, we wanted to evaluate whether obtaining data directly from authors is an effective approach. Part of the dataset collection for our reproducibility study (5) involved e-mailing authors of papers from two of the "recommend archiving" journals (BMC Evolutionary Biology and PLoS One) and requesting their structure input files. Here, we examine how often these requests led to us obtaining the data. We did not e-mail the authors of articles where the data were already available online. A detailed description of our data request process appears on Dryad (doi: 10.5061/dryad.6bs31), but we essentially contacted corresponding and senior authors of each article up to 3 times over a 3-wk period, and recorded if and when the data were received.

We obtained data directly from the authors for 7 of the 12 eligible articles in BMC Evolutionary Biology, and 27 datasets from 45 articles from PLoS One (Table 1). All seven of the BMC Evolutionary Biology datasets arrived between 8 and 14 d after our initial request. Ten of the PLoS One datasets came within 1 wk, 13 came between 8 and 14 d, and 4 arrived between 15 and 21 d. Unlike the online data, which could generally be obtained within a few minutes, the requested datasets took a mean of 7.7 d to arrive, with one author responding that the dataset had been lost in the year since publication. More than one e-mail had to be sent to the corresponding and/or senior author for 53% of papers, and the authors of 29% of the papers did not respond to any of our requests. No data were received 21 d after our initial request. We also note that requesting data via e-mail did upset some authors, particularly when they were reminded of the journal's data archiving policy or when multiple e-mails were sent.

Our average return of 59% in an average of 7.7 d is markedly better than has been reported in similar studies: Wicherts et al. (8) received only 26% of requested datasets after 6 mo of effort with authors of 141 psychology articles, and Savage and Vickers (9) received only 1 of 10 eligible papers with data available online.
We found a strong effect of article age on the availability of data from these 516 studies. The decline in data availability could arise because the authors of older papers were less likely to respond, but this was not supported by the data. Instead, researchers were equally likely to respond (Figure 1B) and to indicate the status of their data (Figure 1C) across the entire range of article ages.

The major cause of the reduced data availability for older papers was the rapid increase in the proportion of data sets reported as either lost or on inaccessible storage media. For papers where authors reported the status of their data, the odds of the data being extant decreased by 17% per year (Figure 1D). There was a continuum of author responses between the data being reported lost and being stored on inaccessible media, and they seemed to vary with the amount of time and effort involved in retrieving the data. Responses included authors being sure that the data were lost (e.g., on a stolen computer) or thinking that they might be stored in some distant location (e.g., their parent’s attic) to authors having some degree of certainty that the data are on a Zip or floppy disk in their possession but no longer having the appropriate hardware to access it. In the latter two cases, the authors would have to devote hours or days to retrieving the data. Our reason for needing the data (a reproducibility study) was not especially compelling for authors, and we may have received more of these inaccessible data sets if we had offered authorship on the subsequent paper or said that the data were needed for an important medical or conservation project.

The odds that we were able to find an apparently working e-mail address (either in the paper or by searching online) for any of the contacted authors did decrease by about 7% per year. This decrease was partly driven by a dearth of e-mail addresses in articles published before 2000 (0.38 per paper on average for 1991–1999) compared with those

Table 1. Breakdown of Data Availability by Year of Publication

<table>
<thead>
<tr>
<th>Year</th>
<th>No Working E-Mail</th>
<th>No Response to E-Mail</th>
<th>Response Did Not Give Status of Data</th>
<th>Data Lost</th>
<th>Data Exist, Unwilling to Share</th>
<th>Data Received</th>
<th>Data Extant (Unwilling to Share + Received)</th>
<th>Number of Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>9 (35%)</td>
<td>9 (35%)</td>
<td>2 (8%)</td>
<td>4 (15%)</td>
<td>1 (4%)</td>
<td>1 (4%)</td>
<td>2 (8%)</td>
<td>26</td>
</tr>
<tr>
<td>1993</td>
<td>14 (39%)</td>
<td>11 (31%)</td>
<td>3 (8%)</td>
<td>7 (19%)</td>
<td>0 (0%)</td>
<td>1 (3%)</td>
<td>1 (3%)</td>
<td>36</td>
</tr>
<tr>
<td>1995</td>
<td>11 (31%)</td>
<td>9 (26%)</td>
<td>0 (0%)</td>
<td>7 (20%)</td>
<td>2 (6%)</td>
<td>6 (17%)</td>
<td>8 (23%)</td>
<td>35</td>
</tr>
<tr>
<td>1997</td>
<td>11 (37%)</td>
<td>9 (30%)</td>
<td>1 (3%)</td>
<td>2 (7%)</td>
<td>3 (10%)</td>
<td>4 (13%)</td>
<td>7 (23%)</td>
<td>30</td>
</tr>
<tr>
<td>1999</td>
<td>19 (48%)</td>
<td>13 (32%)</td>
<td>1 (2%)</td>
<td>1 (2%)</td>
<td>0 (0%)</td>
<td>6 (15%)</td>
<td>6 (15%)</td>
<td>40</td>
</tr>
<tr>
<td>2001</td>
<td>13 (30%)</td>
<td>15 (35%)</td>
<td>3 (7%)</td>
<td>4 (9%)</td>
<td>0 (0%)</td>
<td>8 (19%)</td>
<td>8 (19%)</td>
<td>43</td>
</tr>
<tr>
<td>2003</td>
<td>9 (20%)</td>
<td>20 (43%)</td>
<td>4 (9%)</td>
<td>2 (4%)</td>
<td>0 (0%)</td>
<td>11 (24%)</td>
<td>11 (24%)</td>
<td>46</td>
</tr>
<tr>
<td>2005</td>
<td>11 (24%)</td>
<td>14 (31%)</td>
<td>6 (13%)</td>
<td>1 (2%)</td>
<td>0 (0%)</td>
<td>13 (29%)</td>
<td>13 (29%)</td>
<td>45</td>
</tr>
<tr>
<td>2007</td>
<td>12 (18%)</td>
<td>31 (47%)</td>
<td>2 (3%)</td>
<td>4 (6%)</td>
<td>1 (2%)</td>
<td>16 (24%)</td>
<td>17 (26%)</td>
<td>66</td>
</tr>
<tr>
<td>2009</td>
<td>9 (13%)</td>
<td>34 (49%)</td>
<td>3 (4%)</td>
<td>5 (7%)</td>
<td>6 (9%)</td>
<td>12 (17%)</td>
<td>18 (26%)</td>
<td>69</td>
</tr>
<tr>
<td>2011</td>
<td>13 (16%)</td>
<td>29 (36%)</td>
<td>8 (10%)</td>
<td>0 (0%)</td>
<td>7 (9%)</td>
<td>23 (29%)</td>
<td>30 (38%)</td>
<td>80</td>
</tr>
<tr>
<td>Totals</td>
<td>131 (25%)</td>
<td>194 (38%)</td>
<td>33 (6%)</td>
<td>37 (7%)</td>
<td>20 (4%)</td>
<td>101 (19%)</td>
<td>121 (23%)</td>
<td>516</td>
</tr>
</tbody>
</table>

Data are displayed as n (%); the percentages are calculated by rows.

Please cite this article in press as: Vines et al., The Availability of Research Data Declines Rapidly with Article Age, Current Biology (2014), http://dx.doi.org/10.1016/j.cub.2013.11.014
We found a strong effect of article age on the availability of data from these 516 studies. The decline in data availability could arise because the authors of older papers were less likely to respond, but this was not supported by the data. Researchers were equally likely to respond (Figure 1B) and to indicate the status of their data (Figure 1C) across the entire range of article ages. The major cause of the reduced data availability for older papers was the rapid increase in the proportion of data sets reported as either lost or on inaccessible storage media. For papers where authors reported the status of their data, the odds of the data being extant decreased by 17% per year (Figure 1D). There was a continuum of author responses between the data being reported lost and being stored on inaccessible media, and they seemed to vary with the amount of time and effort involved in retrieving the data. Responses included authors being sure that the data were lost (e.g., on a stolen computer) or thinking that they might be stored in some distant location (e.g., their parent's attic) to authors having some degree of certainty that the data are on a Zip or floppy disk in their possession but no longer having the appropriate hardware to access it. In the latter two cases, the authors would have to devote hours or days to retrieving the data. Our reason for needing the data (a reproducibility study) was not especially compelling for authors, and we may have received more of these inaccessible data sets if we had offered authorship on the subsequent paper or said that the data were needed for an important medical or conservation project.

The odds that we were able to find an apparently working e-mail address (either in the paper or by searching online) for any of the contacted authors did decrease by about 7% per year. This decrease was partly driven by a dearth of e-mail addresses in articles published before 2000 (0.38 per paper on average for 1991–1999) compared with those...
We found a strong effect of article age on the availability of data from these 516 studies. The decline in data availability could arise because the authors of older papers were less likely to respond, but this was not supported by the data. Instead, researchers were equally likely to respond (Figure 1B) and to indicate the status of their data (Figure 1C) across the entire range of article ages.

The major cause of the reduced data availability for older papers was the rapid increase in the proportion of data sets reported as either lost or on inaccessible storage media. For papers where authors reported the status of their data, the odds of the data being extant decreased by 17% per year (Figure 1D). There was a continuum of author responses between the data being reported lost and being stored on inaccessible media, and they seemed to vary with the amount of time and effort involved in retrieving the data. Responses included authors being sure that the data were lost (e.g., on a stolen computer) or thinking that they might be stored in some distant location (e.g., their parent's attic) to authors having some degree of certainty that the data are on a Zip or floppy disk in their possession but no longer having the appropriate hardware to access it. In the latter two cases, the authors would have to devote hours or days to retrieving the data. Our reason for needing the data (a reproducibility study) was not especially compelling for authors, and we may have received more of these inaccessible data sets if we had offered authorship on the subsequent paper or said that the data were needed for an important medical or conservation project.

The odds that we were able to find an apparently working e-mail address (either in the paper or by searching online) for any of the contacted authors did decrease by about 7% per year. This decrease was partly driven by a dearth of e-mail addresses in articles published before 2000 (0.38 per paper on average for 1991–1999) compared with those published thereafter.

The following table shows the breakdown of data availability by year of publication:

Table 1. Breakdown of Data Availability by Year of Publication

<table>
<thead>
<tr>
<th>Year</th>
<th>No Working E-Mail</th>
<th>No Response to E-Mail</th>
<th>Response Did Not Give Status of Data</th>
<th>Data Lost</th>
<th>Data Exist, Unwilling to Share</th>
<th>Data Received</th>
<th>Data Extant (Unwilling to Share + Received)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>9 (35%)</td>
<td>9 (35%)</td>
<td>2 (8%)</td>
<td>4 (15%)</td>
<td>1 (4%)</td>
<td>1 (4%)</td>
<td>2 (8%)</td>
</tr>
<tr>
<td>1993</td>
<td>14 (39%)</td>
<td>11 (31%)</td>
<td>3 (8%)</td>
<td>7 (19%)</td>
<td>0 (0%)</td>
<td>1 (3%)</td>
<td>1 (3%)</td>
</tr>
<tr>
<td>1995</td>
<td>11 (31%)</td>
<td>9 (26%)</td>
<td>0 (0%)</td>
<td>7 (20%)</td>
<td>2 (6%)</td>
<td>6 (17%)</td>
<td>8 (23%)</td>
</tr>
<tr>
<td>1997</td>
<td>11 (37%)</td>
<td>9 (30%)</td>
<td>1 (3%)</td>
<td>2 (7%)</td>
<td>3 (10%)</td>
<td>4 (13%)</td>
<td>7 (23%)</td>
</tr>
<tr>
<td>1999</td>
<td>19 (48%)</td>
<td>13 (32%)</td>
<td>1 (2%)</td>
<td>1 (2%)</td>
<td>0 (0%)</td>
<td>6 (15%)</td>
<td>6 (15%)</td>
</tr>
<tr>
<td>2001</td>
<td>13 (30%)</td>
<td>15 (35%)</td>
<td>3 (7%)</td>
<td>4 (9%)</td>
<td>0 (0%)</td>
<td>8 (19%)</td>
<td>8 (19%)</td>
</tr>
<tr>
<td>2003</td>
<td>9 (20%)</td>
<td>20 (43%)</td>
<td>4 (9%)</td>
<td>2 (4%)</td>
<td>0 (0%)</td>
<td>11 (24%)</td>
<td>11 (24%)</td>
</tr>
<tr>
<td>2005</td>
<td>11 (24%)</td>
<td>14 (31%)</td>
<td>6 (13%)</td>
<td>1 (2%)</td>
<td>0 (0%)</td>
<td>13 (29%)</td>
<td>13 (29%)</td>
</tr>
<tr>
<td>2007</td>
<td>12 (18%)</td>
<td>31 (47%)</td>
<td>2 (3%)</td>
<td>4 (6%)</td>
<td>1 (2%)</td>
<td>16 (24%)</td>
<td>17 (26%)</td>
</tr>
<tr>
<td>2009</td>
<td>9 (13%)</td>
<td>34 (49%)</td>
<td>3 (4%)</td>
<td>5 (7%)</td>
<td>6 (9%)</td>
<td>12 (17%)</td>
<td>18 (26%)</td>
</tr>
<tr>
<td>2011</td>
<td>13 (16%)</td>
<td>29 (36%)</td>
<td>8 (10%)</td>
<td>0 (0%)</td>
<td>7 (9%)</td>
<td>23 (29%)</td>
<td>30 (38%)</td>
</tr>
<tr>
<td>Totals</td>
<td>131 (25%)</td>
<td>194 (38%)</td>
<td>33 (6%)</td>
<td>37 (7%)</td>
<td>20 (4%)</td>
<td>101 (19%)</td>
<td>121 (23%)</td>
</tr>
</tbody>
</table>

Data are displayed as n (%); the percentages are calculated by rows.

[Figure 1: The Effect of Article Age on Four Obstacles to Receiving Data from the Authors]

(A) Predicted probability that the paper had at least one apparently working e-mail.
(B) Predicted probability of receiving a response, given that at least one e-mail was apparently working.
(C) Predicted probability of receiving a response giving the status of the data, given that we received a response.
(D) Predicted probability that the data were extant (either ''shared'' or ''exist but unwilling to share'') given that we received a useful response.

In all panels, the line indicates the predicted probability from the logistic regression, the gray area shows the 95% CI of this estimate, and the red dots indicate the actual proportions from the data.

[Please cite this article in press as: Vines et al., The Availability of Research Data Declines Rapidly with Article Age, Current Biology (2014), http://dx.doi.org/10.1016/j.cub.2013.11.014]
We found a strong effect of article age on the availability of data from these 516 studies. The decline in data availability could arise because the authors of older papers were less likely to respond, but this was not supported by the data. Instead, researchers were equally likely to respond (Figure 1B) and to indicate the status of their data (Figure 1C) across the entire range of article ages.

The major cause of the reduced data availability for older papers was the rapid increase in the proportion of data sets reported as either lost or on inaccessible storage media. For papers where authors reported the status of their data, the odds of the data being extant decreased by 17% per year (Figure 1D). There was a continuum of author responses between the data being reported lost and being stored on inaccessible media, and they seemed to vary with the amount of time and effort involved in retrieving the data. Responses included authors being sure that the data were lost (e.g., on a stolen computer) or thinking that they might be stored in some distant location (e.g., their parent's attic) to authors having some degree of certainty that the data are on a Zip or floppy disk in their possession but no longer having the appropriate hardware to access it. In the latter two cases, the authors would have to devote hours or days to retrieving the data. Our reason for needing the data (a reproducibility study) was not especially compelling for authors, and we may have received more of these inaccessible data sets if we had offered authorship on the subsequent paper or said that the data were needed for an important medical or conservation project.

The odds that we were able to find an apparently working e-mail address (either in the paper or by searching online) for any of the contacted authors did decrease by about 7% per year. This decrease was partly driven by a dearth of e-mail addresses in articles published before 2000 (0.38 per paper on average for 1991–1999) compared with those...
We found a strong effect of article age on the availability of data from these 516 studies. The decline in data availability could arise because the authors of older papers were less likely to respond, but this was not supported by the data. Researchers were equally likely to respond (Figure 1B) and to indicate the status of their data (Figure 1C) across the entire range of article ages. The major cause of the reduced data availability for older papers was the rapid increase in the proportion of data sets reported as either lost or on inaccessible storage media. For papers where authors reported the status of their data, the odds of the data being extant decreased by 17% per year (Figure 1D). There was a continuum of author responses between the data being reported lost and being stored on inaccessible media, and they seemed to vary with the amount of time and effort involved in retrieving the data. Responses included authors being sure that the data were lost (e.g., on a stolen computer) or thinking that they might be stored in some distant location (e.g., their parent's attic) to authors having some degree of certainty that the data are on a Zip or floppy disk in their possession but no longer having the appropriate hardware to access it. In the latter two cases, the authors would have to devote hours or days to retrieving the data. Our reason for needing the data (a reproducibility study) was not especially compelling for authors, and we may have received more of these inaccessible data sets if we had offered authorship on the subsequent paper or said that the data were needed for an important medical or conservation project.

The odds that we were able to find an apparently working e-mail address (either in the paper or by searching online) for any of the contacted authors did decrease by about 7% per year. This decrease was partly driven by a dearth of e-mail addresses in articles published before 2000 (0.38 per paper on average for 1991–1999) compared with those published after 2000.

Table 1. Breakdown of Data Availability by Year of Publication

<table>
<thead>
<tr>
<th>Year</th>
<th>No Working E-Mail</th>
<th>No Response to E-Mail</th>
<th>Response Did Not Give Status of Data</th>
<th>Data Lost</th>
<th>Data Exist, Unwilling to Share</th>
<th>Data Extant (Unwilling to Share + Received)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>9 (35%)</td>
<td>9 (35%)</td>
<td>2 (8%)</td>
<td>1 (4%)</td>
<td>1 (4%)</td>
<td>2 (8%)</td>
</tr>
<tr>
<td>1993</td>
<td>14 (39%)</td>
<td>11 (31%)</td>
<td>3 (8%)</td>
<td>7 (19%)</td>
<td>0 (0%)</td>
<td>1 (3%)</td>
</tr>
<tr>
<td>1995</td>
<td>11 (31%)</td>
<td>9 (26%)</td>
<td>0 (0%)</td>
<td>7 (20%)</td>
<td>2 (6%)</td>
<td>8 (23%)</td>
</tr>
<tr>
<td>1997</td>
<td>11 (37%)</td>
<td>9 (30%)</td>
<td>1 (3%)</td>
<td>2 (7%)</td>
<td>3 (10%)</td>
<td>7 (23%)</td>
</tr>
<tr>
<td>1999</td>
<td>19 (48%)</td>
<td>13 (32%)</td>
<td>1 (2%)</td>
<td>1 (2%)</td>
<td>0 (0%)</td>
<td>6 (15%)</td>
</tr>
<tr>
<td>2001</td>
<td>13 (30%)</td>
<td>15 (35%)</td>
<td>3 (7%)</td>
<td>4 (9%)</td>
<td>0 (0%)</td>
<td>8 (19%)</td>
</tr>
<tr>
<td>2003</td>
<td>9 (20%)</td>
<td>20 (43%)</td>
<td>4 (9%)</td>
<td>2 (4%)</td>
<td>0 (0%)</td>
<td>11 (24%)</td>
</tr>
<tr>
<td>2005</td>
<td>11 (24%)</td>
<td>14 (31%)</td>
<td>6 (13%)</td>
<td>1 (2%)</td>
<td>0 (0%)</td>
<td>13 (29%)</td>
</tr>
<tr>
<td>2007</td>
<td>12 (18%)</td>
<td>31 (47%)</td>
<td>2 (3%)</td>
<td>4 (6%)</td>
<td>1 (2%)</td>
<td>16 (24%)</td>
</tr>
<tr>
<td>2009</td>
<td>9 (13%)</td>
<td>34 (49%)</td>
<td>3 (4%)</td>
<td>5 (7%)</td>
<td>6 (9%)</td>
<td>12 (17%)</td>
</tr>
<tr>
<td>2011</td>
<td>13 (16%)</td>
<td>29 (36%)</td>
<td>8 (10%)</td>
<td>0 (0%)</td>
<td>7 (9%)</td>
<td>23 (29%)</td>
</tr>
<tr>
<td>Totals</td>
<td>131 (25%)</td>
<td>194 (38%)</td>
<td>33 (6%)</td>
<td>37 (7%)</td>
<td>20 (4%)</td>
<td>101 (19%)</td>
</tr>
<tr>
<td></td>
<td>Data are displayed as n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lots of Data is Shared…
Genome Sequence and Structure Data

...but how much isn't shared?

- What isn't shared?
- Who isn't sharing?
- Why not?
- How much does it matter?
- What can be done about it?
Why Share Data? Increased Citations

[D. Koop, CSCI 680/490, Spring 2022]

Note: log scale

Why Share Data? Increased Citations

Number of Citations in 2004-2005

Articles with Data Not Shared (n=44) Articles with Data Shared (n=41)

[H. Piwowar, 2013]
What Factors Impact Sharing?

<table>
<thead>
<tr>
<th>Funder</th>
<th>Journal</th>
<th>Investigator</th>
<th>Institution</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>funded by NIH?</td>
<td>impact factor</td>
<td>years since first paper</td>
<td>sector</td>
<td>humans?</td>
</tr>
<tr>
<td>size of grant</td>
<td>strength of policy</td>
<td># pubs</td>
<td>size</td>
<td>mice?</td>
</tr>
<tr>
<td>sharing plan req’d?</td>
<td>open access?</td>
<td># citations</td>
<td>impact</td>
<td>plants?</td>
</tr>
<tr>
<td>funded by non-NIH?</td>
<td>number of microarray studies published</td>
<td>previously shared?</td>
<td>rank</td>
<td>cancer?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>previously reused?</td>
<td>country</td>
<td>clinical trial?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gender</td>
<td></td>
<td>number of authors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>year</td>
</tr>
</tbody>
</table>

[H. Piwowar, 2013]
Factors

Multivariate nonlinear regressions with interactions

Odds Ratio

0.25 0.50 1.00 2.00 4.00 8.00

- Has journal policy
- Count of R01 & other NIH grants
- Authors prev GEOAE sharing & OA & microarray creation
- NO K funding or P funding
- Journal impact
- Journal policy consequences & long halflife
- Institution high citations & collaboration
- NOT animals or mice
- Institution is government & NOT higher ed
- Last author num prev pubs & first year pub
- Large NIH grant
- Humans & cancer
- NO geo reuse + YES high institution output
- First author num prev pubs & first year pub

[H. Piwowar, 2013]
Why not data sharing? (self-reported)

- Sharing is too much effort
- Want student or jr faculty to publish more
- They themselves want to publish more
- Cost
- Industrial sponsor
- Confidentiality
- Commercial value of results

[Campbell et al., 2002 via Piwowar, 2013]
Nature data availability and data citations

• Policy as of July 2016
• http://www.nature.com/authors/policies/data/data-availability-statements-data-citations.pdf
The Evolution of Data Citation: From Principles to Implementation

M. Altman and M. Crosas
Data Sharing Policies

• *Science*:

 - "all data necessary to understand, assess, and extend the conclusions of the manuscript must be available to any reader of *Science*"

 - "**citations to unpublished data** and personal communications cannot be used to support claims in a published paper"

• Often this is only used as reason to retract work when issues arise

• Need:

 - Recognition of data authorship

 - Robust citation practices and infrastructure
There is increasing recognition that researchers are more inclined to share their data when they get credit (Borgman, 2012, p. 1072). The research community has begun to take wider notice of this. The Emergence of Data Citation Principles

Conversely, recent studies also suggest that researchers receive more credit when they share their data (Piwowar & Vision 2013). Publications that shared data from earlier years yielded an increase in citations of up to 30%. Researchers who choose to openly share their data are significantly more likely to receive additional funding in the future (Piwowar & Harnad 2015). And in the past two years a number of e-Research projects to improve reliability, reproducibility, and data availability have been launched (and helped catalyze) the emergence as a pivotal norm for promoting data accessibility and accountability. Robust data citation practices and infrastructure will be a key part of their success is promoted (Altman et al. 2016).

Publications that shared data from earlier years yielded an increase in citations of up to 30%. Researchers who choose to openly share their data are significantly more likely to receive additional funding in the future (Piwowar & Harnad 2015). And in the past two years a number of e-Research projects to improve reliability, reproducibility, and data availability have been launched (and helped catalyze) the emergence as a pivotal norm for promoting data accessibility and accountability. Robust data citation practices and infrastructure will be a key part of their success is promoted (Altman et al. 2016).
Phases of Data Citation (1977-2009)

1. Support description and information retrieval: what should be included in a citation? (Libraries)

2. Support data access and persistence: if citations to data in publications, need methods to discover information about data

3. Support verification and reproducibility: allow verification of claims based on the data (wider integration into publishing)
Joint Declaration of Data Citation Principles

1. **Importance.** Data should be considered legitimate, citable products of research. Data citations should be accorded the same importance in the scholarly record as citations of other research objects, such as publications.

2. **Credit and Attribution.** Data citations should facilitate giving scholarly credit and normative and legal attribution to all contributors to the data, recognizing that a single style or mechanism of attribution may not be applicable to all data.

3. **Evidence.** In scholarly literature, whenever and wherever a claim relies upon data, the corresponding data should be cited.

4. **Unique Identification.** A data citation should include a persistent method for identification that is machine actionable, globally unique, and widely used by a community.
Joint Declaration of Data Citation Principles

5. **Access.** Data citations should facilitate access to the data themselves and to such associated metadata, documentation, code, and other materials, as are necessary for both humans and machines to make informed use of the referenced data.

6. **Persistence.** Unique identifiers, and metadata describing the data, and its disposition, should persist -- even beyond the lifespan of the data they describe.
Joint Declaration of Data Citation Principles

7. **Specificity and Verifiability**. Data citations should facilitate identification of, access to, and verification of the specific data that support a claim. Citations or citation metadata should include information about provenance and fixity sufficient to facilitate verifying that the specific timeslice, version and/or granular portion of data retrieved subsequently is the same as was originally cited.

8. **Interoperability and flexibility**. Data citation methods should be sufficiently flexible to accommodate the variant practices among communities, but should not differ so much that they compromise interoperability of data citation practices across communities.
Generic Data Citation

- Author(s), Year, Dataset Title, Global Persistent Identifier, Data Repository or Archive, version or subset
- Authors, repository → Principle 2
- Year and title → not related to principle but consistent with other citations
- Global Persistent Identifier: Principle 4 and 6
More Information

• Provide via the web
 - Metadata
 - Fixity and provenance information

• Community Indices:
 - CrossRef
 - DataCite

• Structured Identifiers (ORCID, ISNI) preferred over unstructured metadata
Example Repositories with Citations

- Dryad, Dataverse, Figshare
- Dataverse:
 - Draft citation automatically generated
 - Includes versioning information
Remaining Challenges

• Provenance: chain of ownership
• Identity: equivalence and derivation relationships
 - Equivalence: if not bitwise equal, can data still be interchangeable?
 - Versioning: if data is updated, how to find updated version?
 - Granularity: How to describe subsets of data (deep citation)
• Attribution: ensure that the correct people and institutions receive credit
DataCite

www.datacite.org
Why Data Citation is a Computational Problem

P. Buneman, S. Davidson, and J. Frew
Computational Data Citation

• Given a database D and a query Q, generate an appropriate citation.
• Automatic Citation requires the answers to two questions:
 - Does the citation depend on both Q and D or just on the data Q(D) extracted by Q from D?
 - If we have appropriate citations for some queries, can we use them to construct citations for other queries?
• If the data is an image or numbers, cannot expect the citation to live in that data
• If the query returns an empty dataset, we still may wish to cite that
• People know how to cite certain parts of a dataset but not all…

[Buneman et al., 2016]
Computational Data Citation (GtoPdb)

Figure 1. GtoPdb family and introductory pages with independent citations.

Figure 2. The MODIS grid, with highlighted tiles (red) of spatial extent for California (green), with citation.

Computational Data Citation (GtoPdb)

[Beneman et al., 2016]
Views and Citable Units

• Views describe "areas of responsibility" for parts of a database
• Use views to create "citable units"
• Determine which view V answers a particular query Q and generate a citation for the view
• What happens if two different views can answer the same query?
Citable Views and Partial Citations

The right-hand side of the rule is an introduction view, each value of which is a subview of view W. Each value of view W is a subview of view D. Therefore, each citable view in GtoPdb is a set $\{\text{Introduction view}, \text{Family view}, \text{Target view}\}$.

To specify simple views in a hierarchy that could be answered using the target view both directly and in this case easy—to determine whether a query can be answered using one or more candidate views, as in Figure 3, the problem is solvable, there may be more than one way to do it. Each citable view in GtoPdb is a set $\{\text{Introduction view}, \text{Family view}, \text{Target view}\}$.

Hierarchies of views. In spite of these issues, the formula to determine whether a query can be answered using one or more candidate views, as in Figure 3, the problem is solvable, there may be more than one way to do it. Each citable view in GtoPdb is a set $\{\text{Introduction view}, \text{Family view}, \text{Target view}\}$.

The right-hand side of the rule is an introduction view, each value of which is a subview of view W. Each value of view W is a subview of view D. Therefore, each citable view in GtoPdb is a set $\{\text{Introduction view}, \text{Family view}, \text{Target view}\}$.

To specify simple views in a hierarchy that could be answered using the target view both directly and in this case easy—to determine whether a query can be answered using one or more candidate views, as in Figure 3, the problem is solvable, there may be more than one way to do it. Each citable view in GtoPdb is a set $\{\text{Introduction view}, \text{Family view}, \text{Target view}\}$.

Each of them specifies a class of parameterized views.

Consider the Family and Introduction views. Each value of the Family view is a subview of the Target view both directly and in this case easy—to determine whether a query can be answered using one or more candidate views, as in Figure 3, the problem is solvable, there may be more than one way to do it. Each citable view in GtoPdb is a set $\{\text{Introduction view}, \text{Family view}, \text{Target view}\}$.

The right-hand side of the rule is an introduction view, each value of which is a subview of view W. Each value of view W is a subview of view D. Therefore, each citable view in GtoPdb is a set $\{\text{Introduction view}, \text{Family view}, \text{Target view}\}$.
Hierarchies of Views

• In GtoPdb, three classes of views
• Family view:
 - /Root/Family[FamilyName=\$f]
• Introduction view:
 - /Root/Family[FamilyName=\$f]/ Introduction
• Target view:
 - /Root/Family[FamilyName=\$f]/ Target[TargetName=\$t]
Citation Rule and Partial Result (GtoPdb)

• Rule:
 - { Title: “IUPHAR/BPS Guide to Pharmacology”, Version: $v,
 Family: $$f, Contributors: $a, URI: “www.iuphar.org” }
 ←
 /Root[VersionNumber: $v]/Family[FamilyName: $$f]/Introduction[Contributor-list: $a]

• Citation:

[Buneman et al., 2016]
Citation Rule and Sample Result (MODIS)

- { author: m_auth($p,$$v), m_year:($p,$$v), title: m_title($p), version: $v,
 bounding-box : [$$minlong, $$minlat, $$maxlong, $$maxlat],
 interval: [$$mint, $$maxt], organization: m_org($p), url: m_url($p),
 accessed: DATE(), doi = m_doi($p,$$v) }

←
/root/product[ProdName=$p]/version[vnum=$$v]/
/file[Lat ≥ $$minlat and Lat ≤ $$maxlat and
 Lon ≥ $$minlon and Lon ≤ $$maxlon and
 Time ≥ $$mint and Time ≤ $$maxt]

- { author: “E. Vermote”, title: “MOD09A1 ... SIN Grid”, version: 6,
 bounding-box: [-125, 32, -119, 42],
 interval: [2008-01-25, 2008-01-25],

[Buneman et al., 2016]