Advanced Data Management (CSCI 490/680)

Data Fusion

Dr. David Koop
Databases

• Databases:
 - Have been around for years
 - Organize data by tables, allow powerful queries
 - Most support concurrency: allowing multiple users to work with the database at once
 - Provide many features to ensure data integrity, security

• Database Management Systems (DBMS): software that manages databases and facilitates adding, updating, and removing data as well as queries over the data

• Main language used to interact with databases: Structured Query Language (SQL)
Football Game Data

- Have each game store the id of the home team and the id of the away team (one-to-one)
- Have each player store the id of the team he plays on (many-to-one)
Concatenation

- Take two data frames with the same columns and add more rows
- `pd.concat([data-frame-1, data-frame-2, ...])`
- Default is to add rows (`axis=0`), but can also add columns (`axis=1`)
- Can also concatenate Series into a data frame.
- `concat` preserves the index so this can be confusing if you have two default indices (0,1,2,3...)—they will appear twice
 - Use `ignore_index=True` to get a 0,1,2...
Merges (aka Joins)

- Want to join the two tables based on the location and date
- Location and date are the **keys** for the join
- Merges are **ordered**: there is a left and a right side

| Game | | | | |
|---|---|---|---|
| Id | Location | Date | Home | Away |
| 0 | Boston | 9/2 | 1 | 15 |
| 1 | Boston | 9/9 | 1 | 7 |
| 2 | Cleveland | 9/16 | 12 | 1 |
| 3 | San Diego | 9/23 | 21 | 1 |

<table>
<thead>
<tr>
<th>Weather</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>wId</td>
<td>City</td>
<td>Date</td>
<td>Temp</td>
</tr>
<tr>
<td>0</td>
<td>Boston</td>
<td>9/2</td>
<td>72</td>
</tr>
<tr>
<td>1</td>
<td>Boston</td>
<td>9/3</td>
<td>68</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>Boston</td>
<td>9/9</td>
<td>75</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>21</td>
<td>Boston</td>
<td>9/23</td>
<td>54</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>36</td>
<td>Cleveland</td>
<td>9/16</td>
<td>81</td>
</tr>
</tbody>
</table>

No data for San Diego
Types of Joins

- Inner: intersection of keys (match on both sides)
- Outer: union of keys (if there is no match on other side, still include with NaN to indicate missing data)
- Left: always have rows from left table (no unmatched right data)
- Right: like left, but with no unmatched left data
Data Merging in Pandas

- `pd.merge(left, right, ...)`
- Default merge: join on matching column names
- Better: specify the column name(s) to join on via `on` keyword
 - If column names differ, use `left_on` and `right_on`
 - Multiple keys: use a list
- `how` keyword specifies type of join ("inner", "outer", "left", "right")
- Can add suffixes to column names when they appear in both tables, but are not being joined on
- Can also merge using the index by setting `left_index` or `right_index` to True
Data Integration

```sql
select title, startTime
from Movie, Plays
where Movie.title=Plays.movie AND
location="New York" AND
director="Ava DuVernay"
```

Sources S1 and S3 are relevant, sources S4 and S5 are irrelevant, and source S2 is relevant but possibly redundant.

Movie: Title, director, year, genre
Actors: title, actor
Plays: movie, location, startTime
Reviews: title, rating, description

S1: Movies: name, actors, director, genre
S2: Cinemas: place, movie, start
S3: Cinemas in NYC: cinema, title, startTime
S4: Cinemas in SF: location, movie, startingTime
S5: Reviews: title, date grade, review

[AH Doan et al., 2012]
Data Integration

• Lots of data sources, how do we answer questions where we need to access data from more than one?
• Schema matching
• Problem of heterogeneity
• AI-Complete problem: difficulty is the same as making computers as intelligent as people
• Two techniques:
 - Mediation
 - Data Warehouses
Data Integration Application: Biomedical

OMIM
HUGO
GeneClinics
SwissProt
LocusLink
Entrez
GEO

Phenotype
Gene
Protein
Sequenceable Entity
Structured Vocabulary
Experiment
Nucleotide Sequence
Microarray Experiment

[D. Koop, CSCI 680/490, Spring 2021]
Data Warehouses: Offline Replication

- Determine physical schema
- Define a database with this schema
- Define procedural mappings in an “ETL tool” to import the data and clean it.
- Periodically copy all of the data from the data sources
 - Note that the sources and the warehouse are basically independent at this point

[A. Doan et al., 2012]
Virtual Data Warehouses

Query

Mediated Schema

Semantic Mappings

Independence of:
- source & location
- data model, syntax
- semantic variations
- ...

[A. Doan et al., 2012]
Integrated Schema Example

Movie (title, director, year, genre)

Actors (title, actor)

Plays (movie, location, startTime)

Reviews (title, rating, description)

Movies (name, actors, director, genre)

Cinemas (place, movie, start)

CinemasInNYC (cinema, title, startTime)

CinemasInSF (location, movie, startingTime)

Reviews (title, date, grade, review)

[A. Doan et al., 2012]
Why is Data Integration Hard?

- Systems-level reasons:
 - Managing different platforms
 - SQL across multiple systems is not so simple
 - Distributed query processing
- Logical reasons:
 - Schema (and data) heterogeneity
- ‘Social’ reasons:
 - Locating and capturing relevant data in the enterprise.
 - Convincing people to share (data fiefdoms)
 - Security, privacy and performance implications

[A. Doan et al., 2012]
Assignment 3

• Same Info Wanted data
• Data wrangling with
 - Trifacta Wrangler
 - pandas
• For place, date extraction: 2 regexs, don't try to standardize anything, CS680 need to extract place details, date is EC
• Trifacta # of Rows Issue
• Due Wednesday, March 3
Quiz

- Login to Blackboard (webcourses.niu.edu)
- Quiz is under Tests & Quizzes
- Reading Quiz - 2021-02-24
- You have five (5) minutes to answer the five (5) multiple choice questions
Record Linkage Motivation

• Often data from different sources need to be integrated and linked
 - To allow data analyses that are impossible on individual databases
 - To improve data quality
 - To enrich data with additional information

• Lack of unique entity identifiers means that linking is often based on personal information

• When databases are linked across organisations, maintaining privacy and confidentiality is vital

• The linking of databases is challenged by data quality, database size, and privacy concerns

[P. Christen, 2019]
Motivating Example

• Preventing the outbreak of epidemics requires monitoring of occurrences of unusual patterns of symptoms, ideally in real time.

• Data from many different sources will need to be collected (including travel and immigration records; doctors, emergency and hospital admissions; drug purchases; social network and location data; and possibly even animal health data).

[Pharexia, Wikipedia]
Record Linkage

P. Christen
Record Linkage Process

Database A
- Data pre-processing
 - Indexing / Searching
 - Comparison

Database B
- Data pre-processing
 - Indexing / Searching
 - Classification

Matches
- Evaluation
- Non-matches
- Potential Matches
- Clerical Review
Record Linkage Techniques

• Deterministic matching
 - Rule-based matching (complex to build and maintain)

• Probabilistic record linkage [Fellegi and Sunter, 1969]
 - Use available attributes for linking (often personal information, like names, addresses, dates of birth, etc.)
 - Calculate match weights for attributes

• “Computer science” approaches
 - Based on machine learning, data mining, database, or information retrieval techniques
 - Supervised classification: Requires training data (true matches)
 - Unsupervised: Clustering, collective, and graph based

[Christen, 2019]
Data Matching & Data Fusion

- **Google Thinks I’m Dead**
 (I know otherwise.) [R. Abrams, NYTimes, 2017]

- Not only Google, but also Alexa:
 - "Alexa replies that Rachel Abrams is a sprinter from the Northern Mariana Islands (which is true of someone else)."
 - "He asks if Rachel Abrams is deceased, and Alexa responds yes, citing information in the Knowledge Graph panel."

D. Koop, CSCI 680/490, Spring 2021
Data Integration and Data Fusion

- Data Integration: focus on integrating data from different sources
- When sources are orthogonal, no problems
- What happens when two sources provide the same type of information and they **conflict**?
- Data Fusion: create a single object while resolving conflicting values
Data Fusion—
Resolving Data Conflicts in Integration

X. L. Dong and F. Naumann
Data Fusion Summary

• Conflict resolution strategies
• "Truth-discovery" techniques
 - Accuracy
 - Freshness
 - Dependence
• Fusion Issues
 - Accuracy
 - Efficiency
 - Usability
 - How fusion fits with the rest of data integration?
Data Conflicts

Integrated data

Schering CRM

Bayer CRM

[L. Dong and F. Naumann, 2009]
Information Integration

Source A

<pub>
<Titel> Federated Database Systems </Titel>
<Autoren>
<Autor> Amit Sheth </Autor>
<Autor> James Larson </Autor>
</Autoren>
</pub>

Source B

<publication>
<title> Federated Database Systems for Managing Distributed, Heterogeneous, and Autonomous Databases </title>
<author> Sheth & Larson </author>
<year> 1990 </year>
</publication>

Schema Mapping Data Transformation Duplicate Detection Data Fusion

[L. Dong and F. Naumann, 2009]
Information Integration

Source A

Source B

Preserve lineage

[pub]
<title> Federated Database Systems </title>
<Autoren>
<author> Amit Sheth </author>
<author> James Larson </author>
</Autoren>
</pub>

[pub]
<title> Federated Database Systems for Managing Distributed, Heterogeneous, and Autonomous Databases </title>
<Autoren>
<author> Amit Sheth </author>
<author> James Larson </author>
</Autoren>
<year> 1990 </year>
</pub>

[pub]
<title> Federated Database Systems for Managing Distributed, Heterogeneous, and Autonomous Databases </title>
<Autoren>
<author> Amit Sheth </author>
<author> James Larson </author>
</Autoren>
<year> 1990 </year>
</pub>

Schema Mapping

Data Transformation

Duplicate Detection

Data Fusion

[L. Dong and F. Naumann, 2009]
Data Fusion

• Problem: Given a duplicate, create a single object representation while resolving conflicting data values.

• Difficulties:
 - Null values: Subsumption and complementation
 - Contradictions in data values
 - Uncertainty & truth: Discover the true value and model uncertainty in this process
 - Metadata: Preferences, recency, correctness
 - Lineage: Keep original values and their origin
 - Implementation in DBMS: SQL, extended SQL, UDFs, etc.
Conflict Resolution Strategies

- Conflict Ignorance
 - Based on Instance
 - Pass It On
 - Based on Metadata
 - Take the Information No Gossiping

- Conflict Avoidance
 - Based on Instance
 - Deciding
 - Trust Your Friends
 - Based on Metadata
 - Mediating
 - Meet In The Middle

- Conflict Resolution
 - Based on Instance
 - Deciding
 - Cry With The Wolves
 - Based on Metadata
 - Mediating
 - Roll The Dice

L. Dong and F. Naumann, 2009
Integrating Conflicting Data: The Role of Source Dependence

X. L. Dong, L. Berti-Equille, and D. Srivastava