Advanced Data Management (CSCI 490/680)

Data Wrangling

Dr. David Koop
NumPy

- Fast **vectorized** array operations for data munging and cleaning, subsetting and filtering, transformation, and any other kinds of computations
- Common array algorithms like sorting, unique, and set operations
- Efficient descriptive statistics and aggregating/summarizing data
- Data alignment and relational data manipulations for merging and joining together heterogeneous data sets
- Expressing conditional logic as array expressions instead of loops with `if-elif-else` branches
- Group-wise data manipulations (aggregation, transformation, function application).

[W. McKinney, Python for Data Analysis]
Data

- What is this data?

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R011</td>
<td>42ND STREET & 8TH AVENUE</td>
<td>00228985</td>
<td>00008471</td>
<td>00000441</td>
<td>00001455</td>
<td>00000134</td>
</tr>
<tr>
<td>R170</td>
<td>14TH STREET-UNION SQUARE</td>
<td>00224603</td>
<td>00011051</td>
<td>00000827</td>
<td>00003026</td>
<td>00000660</td>
</tr>
<tr>
<td>R046</td>
<td>42ND STREET & GRAND CENTRAL</td>
<td>00207758</td>
<td>00007908</td>
<td>00000323</td>
<td>00001183</td>
<td>00003001</td>
</tr>
</tbody>
</table>

- Semantics: real-world meaning of the data
- Type: structural or mathematical interpretation
- Both often require metadata
 - Sometimes we can infer some of this information
 - Line between data and metadata isn’t always clear
Semantics

- The meaning of the data
- Example: 94023, 90210, 02747, 60115
Semantics

• The meaning of the data
• Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
Semantics

• The meaning of the data
• Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
 - Salaries?
Semantics

• The meaning of the data
• Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
 - Salaries?
 - Zip codes?
• Cannot always infer based on what the data looks like
• Often require semantics to better understand data, column names help
• May also include rules about data: a zip code is part of an address that
 uniquely identifies a residence
• Useful for asking good questions about the data
Data Terminology

• Items
 - An **item** is an individual discrete entity
 - e.g., a row in a table

• Attributes
 - An **attribute** is some specific property that can be measured, observed, or logged
 - a.k.a. variable, (data) dimension
 - e.g., a column in a table
Tables

Flat

- Data organized by rows & columns
 - row ~ item (usually)
 - column ~ attribute
 - label ~ attribute name
- Key: identifies each item (row)
 - Usually **unique**
 - Allows **join** of data from 2+ tables
 - Compound key: key split among multiple columns, e.g. (state, year) for population

Multidimensional

- Split compound key

[Munzner (ill. Maguire), 2014]
Attribute Types

- Categorical
 - +
 - ●
 - *
 - △

- Ordered
 - Team

- Ordinal
 - Size

- Quantitative
 - Scale

[Munzner (ill. Maguire), 2014]
Assignment 1

- Due today at 11:59pm
- Using Python for data analysis on Info Wanted ads
- Provided a1.ipynb file (right-click and download)
- Use basic python for now to demonstrate language knowledge
 - No pandas (for now)
- Use Anaconda or hosted Python environment
- Turn .ipynb file in via Blackboard
- Notes:
 - Bug in URL (https instead of http),
 - Bug in Problem 1 solution
Assignment 2

• Coming soon
• Similar to Assignment 1, now with pandas
Reading

- Wednesday
- Discussing paper:
 - "Wrangler: Interactive Visual Specification of Data Transformation Scripts"
 - Kandel et al.
- Read
- Come prepared with questions, thoughts
 - Compare with how things work in pandas
pandas

• Contains high-level data structures and manipulation tools designed to make data analysis fast and easy in Python
• Built on top of NumPy
• Requirements:
 - Data structures with labeled axes (aligning data)
 - Time series data
 - Arithmetic operations that include metadata (labels)
 - Handle missing data
 - Merge and relational operations
Series

- A one-dimensional array (with a type) with an index
- Index defaults to numbers but can also be text (like a dictionary)
- Allows easier reference to specific items
- \(\text{obj} = \text{pd.Series([7,14,-2,1])} \)
- Basically two arrays: \(\text{obj.values} \) and \(\text{obj.index} \)
- Can specify the index explicitly and use strings
- \(\text{obj2} = \text{pd.Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])} \)
- Kind of like fixed-length, ordered dictionary + can create from a dictionary
- \(\text{obj3} = \text{pd.Series({'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000})} \)
Series

- **Indexing:** `s[1]` or `s['Oregon']`
- **Can check for missing data:** `pd.isnull(s)` or `pd.notnull(s)`
- **Both index and values can have an associated name:**
 - `s.name = 'population'; s.index.name = 'state'`
- **Addition and NumPy ops work as expected and preserve the index-value link**
- **These operations align:**

```python
In [28]: obj3
Out[28]:
Ohio     35000
Oregon    16000
Texas     71000
Utah      5000
dtype: int64

In [29]: obj4
Out[29]:
California NaN
Ohio          35000
Oregon       16000
Texas        71000
dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio          70000
Oregon       32000
Texas       142000
Utah        NaN
dtype: float64
```

[W. McKinney, *Python for Data Analysis*]
Data Frame

- A dictionary of Series (labels for each series)
- A spreadsheet with column headers
- Has an index shared with each series
- Allows easy reference to any cell
- `df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'],
 'pop': [1.5, 1.7, 3.6, 2.4]})`

- Index is automatically assigned just as with a series but can be passed in as well via `index` kwarg
- Can reassign column names by passing `columns` kwarg
DataFrame Constructor Inputs

<table>
<thead>
<tr>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D ndarray</td>
<td>A matrix of data, passing optional row and column labels</td>
</tr>
<tr>
<td>dict of arrays, lists, or tuples</td>
<td>Each sequence becomes a column in the DataFrame. All sequences must be the same length.</td>
</tr>
<tr>
<td>NumPy structured/record array</td>
<td>Treated as the “dict of arrays” case</td>
</tr>
<tr>
<td>dict of Series</td>
<td>Each value becomes a column. Indexes from each Series are unioned together to form the result’s row index if no explicit index is passed.</td>
</tr>
<tr>
<td>dict of dicts</td>
<td>Each inner dict becomes a column. Keys are unioned to form the row index as in the “dict of Series” case.</td>
</tr>
<tr>
<td>list of dicts or Series</td>
<td>Each item becomes a row in the DataFrame. Union of dict keys or Series indexes become the DataFrame’s column labels</td>
</tr>
<tr>
<td>List of lists or tuples</td>
<td>Treated as the “2D ndarray” case</td>
</tr>
<tr>
<td>Another DataFrame</td>
<td>The DataFrame’s indexes are used unless different ones are passed</td>
</tr>
<tr>
<td>NumPy MaskedArray</td>
<td>Like the “2D ndarray” case except masked values become NA/missing in the DataFrame result</td>
</tr>
</tbody>
</table>

[W. McKinney, Python for Data Analysis]
DataFrame Access and Manipulation

- `df.values` → 2D NumPy array
- Accessing a column:
 - `df["<column>"]`
 - `df.<column>`
 - Both return Series
 - Dot syntax only works when the column is a valid identifier
- Assigning to a column:
 - `df["<column>"] = <scalar>` # all cells set to same value
 - `df["<column>"] = <array>` # values set in order
 - `df["<column>"] = <series>` # values set according to match # between df and series indexes
DataFrame Index

- Similar to index for Series
- Immutable
- Can be shared with multiple structures (DataFrames or Series)
-
 in operator works with: 'Ohio' in df.index
Index methods and properties

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>append</td>
<td>Concatenate with additional Index objects, producing a new Index</td>
</tr>
<tr>
<td>diff</td>
<td>Compute set difference as an Index</td>
</tr>
<tr>
<td>intersection</td>
<td>Compute set intersection</td>
</tr>
<tr>
<td>union</td>
<td>Compute set union</td>
</tr>
<tr>
<td>isin</td>
<td>Compute boolean array indicating whether each value is contained in the passed collection</td>
</tr>
<tr>
<td>delete</td>
<td>Compute new Index with element at index (i) deleted</td>
</tr>
<tr>
<td>drop</td>
<td>Compute new index by deleting passed values</td>
</tr>
<tr>
<td>insert</td>
<td>Compute new Index by inserting element at index (i)</td>
</tr>
<tr>
<td>is_monotonic</td>
<td>Returns True if each element is greater than or equal to the previous element</td>
</tr>
<tr>
<td>is_unique</td>
<td>Returns True if the Index has no duplicate values</td>
</tr>
<tr>
<td>unique</td>
<td>Compute the array of unique values in the Index</td>
</tr>
</tbody>
</table>

[W. McKinney, Python for Data Analysis]
Reindexing

- `reindex` creates a new object with the data conformed to new index
- `obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])`

- Missing values: handle with kwargs
 - `fill_value`: fill any missing value with a specific value
 - `method='ffill'`: fill values forward
 - `method='bfill'`: fill values backward

- Data Frames:
 - reindex rows as with series
 - reindex columns using columns kwarg
Dropping entries

• Can drop one or more entries
• Series:
 - `new_obj = obj.drop('c')`
 - `new_obj = obj.drop(['d', 'c'])`

• Data Frames:
 - `axis` keyword defines which axis to drop (default 0)
 - `axis=0` → rows, `axis=1` → columns
 - `axis = 'columns'`
Indexing

- Same as with NumPy arrays but can use Series's index labels

- Slicing with labels: NumPy is exclusive, Pandas is inclusive!
 - s = Series(np.arange(4))
 s[0:2] # gives two values like numpy
 - s = Series(np.arange(4), index=['a', 'b', 'c', 'd'])
 s['a':'c'] # gives three values, not two!

- Obtaining data subsets
 - []: get columns by label
 - loc: get rows/cols by label
 - iloc: get rows/cols by position (integer index)
 - For single cells (scalars), also have at and iat
Indexing

- \(s = \text{Series}(\text{np.arange}(4.), \text{index}=[4,3,2,1]) \)
- \(s[3] \)
- \(s.loc[3] \)
- \(s.iloc[3] \)
- \(s2 = \text{pd.Series}(\text{np.arange}(4), \text{index}=['a','b','c','d']) \)
- \(s2[3] \)
Filtering

• Same as with numpy arrays but allows use of column-based criteria
 - data[data < 5] = 0
 - data[data['three'] > 5]
 - data < 5 → boolean data frame, can be used to select specific elements
Arithmetic

- Add, subtract, multiply, and divide are element-wise like numpy
- ...but use labels to align
- ...and missing labels lead to NaN (not a number) values

```
In [28]: obj3
Out[28]:
Ohio    35000
Oregon  16000
Texas   71000
Utah    5000
dtype: int64

In [29]: obj4
Out[29]:
California    NaN
Ohio            35000
Oregon          16000
Texas           71000
Utah             5000
dtype: float64

In [30]: obj3 + obj4
Out[30]:
Ohio      35000
Oregon    16000
Texas     71000
Utah      5000
California   NaN

dtype: float64
```

- also have .add, .subtract, ... that allow fill_value argument
- obj3.add(obj4, fill_value=0)
Arithmetic between DataFrames and Series

• Broadcasting: e.g. apply single row operation across all rows

• Example:

  ```
  In [148]: frame
  Out[148]:
  b   d   e
  Utah 0   1   2
  Ohio 3   4   5
  Texas 6   7   8
  Oregon 9   10  11

  In [149]: series
  Out[149]:
  b   d
  Utah 1
  Ohio 4
  Texas 7
  Oregon 10

  In [150]: frame - series
  Out[150]:
  b   d   e
  Utah 0   0   0
  Ohio 3   3   3
  Texas 6   6   6
  Oregon 9   9   9
  ```

• To broadcast over **columns**, use methods (`.add, ...`)

  ```
  In [154]: frame
  Out[154]:
  b   d   e
  Utah 0   1   2
  Ohio 3   4   5
  Texas 6   7   8
  Oregon 9   10  11

  In [155]: series3
  Out[155]:
  Name: d, dtype: float64

  In [156]: frame.sub(series3, axis=0)
  Out[156]:
  b   d   e
  Utah -1  0   1
  Ohio -1  0   1
  Texas -1  0   1
  Oregon -1  0   1
  ```
Sorting by Index (sort_index)

- Sort by index (lexicographical):

  ```python
  In [168]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])
  
  In [169]: obj.sort_index()
  Out[169]:
  a    1
  b    2
  c    3
  d    0
  dtype: int64
  ```

- DataFrame sorting:

  ```python
  In [170]: frame = DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'],
                           columns=['d', 'a', 'b', 'c'])
  
  In [171]: frame.sort_index()        In [172]: frame.sort_index(axis=1)
  Out[171]:                           Out[172]:
  d  a  b  c                          a  b  c  d
  one    4  5  6  7                   three  1  2  3  0
  three  0  1  2  3                   one    5  6  7  4
  ```

- The data is sorted in ascending order by default, but can be sorted in descending order, too:

  ```python
  In [173]: frame.sort_index(axis=1, ascending=False)
  Out[173]:
  d  c  b  a
  three  0  3  2  1
  one    4  7  6  5
  ```

- To sort a Series by its values, use its `order` method:

  ```python
  In [174]: obj = Series([4, 7, -3, 2])
  In [175]: obj.order()
  Out[175]:
  2   -3
  3    2
  0    4
  1    7
  dtype: int64
  ```

- Any missing values are sorted to the end of the Series by default:

  ```python
  In [176]: obj = Series([4, np.nan, 7, np.nan, -3, 2])
  In [177]: obj.order()
  Out[177]:
  4    -3
  5     2
  0     4
  ```
Sorting by Value (sort_values)

- **sort_values** method on series
 - `obj.sort_values()`
- **Missing values** (`NaN`) are at the end by default (`na_position` controls, can be first)
- **sort_values** on DataFrame:
 - `df.sort_values(<list-of-columns>)`
 - `df.sort_values(by=['a', 'b'])`
 - Can also use `axis=1` to sort by index labels
Reading

• Wednesday
• Discussing paper:
 - "Wrangler: Interactive Visual Specification of Data Transformation Scripts"
 - Kandel et al.
• Read
• Come prepared with questions, thoughts
 - Compare with how things work in pandas