Advanced Data Management (CSCI 490/680)

Data Wrangling

Dr. David Koop
Tables

Flat
- Data organized by rows & columns
 - row ~ item (usually)
 - column ~ attribute
 - label ~ attribute name
- Key: identifies each item (row)
 - Usually **unique**
 - Allows **join** of data from 2+ tables
 - Compound key: key split among multiple columns, e.g. (state, year) for population

Multidimensional
- Split compound key

[Munzner (ill. Maguire), 2014]
Attribute Types

- **Categorical**
- **Ordered**
 - **Ordinal**
 - **Quantitative**

[Muñzner (ill. Maguire), 2014]
Categorical, Ordinal, and Quantitative

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Order ID</td>
<td>Order Date</td>
<td>Order Priority</td>
<td>Product Size</td>
<td>Product Base Margin</td>
</tr>
<tr>
<td>3</td>
<td>10/14/06</td>
<td>5-Low</td>
<td>Large Box</td>
<td>0.8</td>
<td>10/21/06</td>
</tr>
<tr>
<td>6</td>
<td>2/21/08</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.55</td>
<td>2/22/08</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Small Pack</td>
<td>0.79</td>
<td>7/17/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Jumbo Box</td>
<td>0.72</td>
<td>7/17/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.6</td>
<td>7/18/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.65</td>
<td>7/18/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Wrap Bag</td>
<td>0.52</td>
<td>10/24/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Small Box</td>
<td>0.58</td>
<td>10/25/07</td>
</tr>
<tr>
<td>36</td>
<td>11/3/07</td>
<td>1-Urgent</td>
<td>Small Box</td>
<td>0.55</td>
<td>11/3/07</td>
</tr>
<tr>
<td>65</td>
<td>3/18/07</td>
<td>1-Urgent</td>
<td>Small Pack</td>
<td>0.49</td>
<td>3/19/07</td>
</tr>
<tr>
<td>66</td>
<td>1/20/05</td>
<td>5-Low</td>
<td>Wrap Bag</td>
<td>0.56</td>
<td>1/20/05</td>
</tr>
<tr>
<td>69</td>
<td>6/4/05</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.44</td>
<td>6/6/05</td>
</tr>
<tr>
<td>69</td>
<td>6/4/05</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.6</td>
<td>6/6/05</td>
</tr>
<tr>
<td>70</td>
<td>12/18/06</td>
<td>5-Low</td>
<td>0.59</td>
<td>12/23/06</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>12/18/06</td>
<td>5-Low</td>
<td>0.82</td>
<td>12/23/06</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>4/17/05</td>
<td>2-High</td>
<td>0.38</td>
<td>4/19/05</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>1/29/06</td>
<td>3-Medium</td>
<td>0.38</td>
<td>1/30/06</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>11/19/08</td>
<td>5-Low</td>
<td>0.37</td>
<td>11/28/08</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.37</td>
<td>5/9/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.38</td>
<td>5/10/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.6</td>
<td>5/11/08</td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>3-Medium</td>
<td>Medium Box</td>
<td>0.6</td>
<td>6/12/06</td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>3-Medium</td>
<td>Jumbo Box</td>
<td>0.69</td>
<td>6/14/06</td>
</tr>
<tr>
<td>134</td>
<td>5/1/08</td>
<td>4-Not Specified</td>
<td>Large Box</td>
<td>0.82</td>
<td>5/3/08</td>
</tr>
<tr>
<td>135</td>
<td>10/21/07</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.64</td>
<td>10/23/07</td>
</tr>
<tr>
<td>166</td>
<td>9/12/07</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.55</td>
<td>9/14/07</td>
</tr>
<tr>
<td>193</td>
<td>8/8/06</td>
<td>1-Urgent</td>
<td>Medium Box</td>
<td>0.57</td>
<td>8/10/06</td>
</tr>
<tr>
<td>194</td>
<td>4/5/08</td>
<td>3-Medium</td>
<td>Wrap Bag</td>
<td>0.42</td>
<td>4/7/08</td>
</tr>
</tbody>
</table>
Semantics

- The meaning of the data
- Example: 94023, 90210, 02747, 60115
Semantics

• The meaning of the data
• Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
Semantics

• The meaning of the data
• Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
 - Salaries?
Semantics

• The meaning of the data

• Example: 94023, 90210, 02747, 60115
 - Attendance at college football games?
 - Salaries?
 - Zip codes?

• Cannot always infer based on what the data looks like

• Often require semantics to better understand data

• Column names help with semantics

• May also include rules about data: a zip code is part of an address that uniquely identifies a residence

• Useful for asking good questions about the data
Data Model vs. Conceptual Model

- **Data Model:** raw data that has a specific data type (e.g. floats):
 - Temperature Example: \([32.5, 54.0, -17.3]\) (floats)

- **Conceptual Model:** how we think about the data
 - Includes semantics, reasoning
 - Temperature Example:
 - **Quantitative:** \([32.50, 54.00, -17.30]\)

[via A. Lex, 2015]
Data Model vs. Conceptual Model

- **Data Model**: raw data that has a specific data type (e.g. floats):
 - Temperature Example: \([32.5, 54.0, -17.3]\) (floats)

- **Conceptual Model**: how we think about the data
 - Includes semantics, reasoning
 - Temperature Example:
 - Quantitative: \([32.50, 54.00, -17.30]\)
 - Ordered: \([\text{warm}, \text{hot}, \text{cold}]\)
Data Model vs. Conceptual Model

• Data Model: raw data that has a specific data type (e.g. floats):
 - Temperature Example: [32.5, 54.0, -17.3] (floats)

• Conceptual Model: how we think about the data
 - Includes semantics, reasoning
 - Temperature Example:
 • Quantitative: [32.50, 54.00, -17.30]
 • Ordered: [warm, hot, cold]
 • Categorical: [not burned, burned, not burned]
Chicago Food Inspections Exploration

- Based on David Beazley's PyData Chicago talk
- YouTube video: https://www.youtube.com/watch?v=j6VSAsKAj98
- Our in-class exploration:
 - Python can give answers fairly quickly
 - Data analysis questions:
 - What is information is available
 - **Questions** are interesting about this dataset
 - How to decide on good follow-up questions
 - What the computations mean
Assignment 2

• Similar to Assignment 1, now with pandas
• Part 5:
 - CS 680 → Required
 - CS 490 → Extra Credit
• Due Friday, Feb. 7
pandas

• Contains high-level data structures and manipulation tools designed to make data analysis fast and easy in Python

• Built on top of NumPy

• Requirements:
 - Data structures with labeled axes (aligning data)
 - Time series data
 - Arithmetic operations that include metadata (labels)
 - Handle missing data
 - Merge and relational operations
🎉 pandas 1.0.0 🎉
Series

- A one-dimensional array (with a type) with an **index**
- Index defaults to numbers but can also be text (like a dictionary)
- Allows easier reference to specific items
- `obj = pd.Series([7, 14, -2, 1])`
- Basically two arrays: `obj.values` and `obj.index`
- Can specify the index explicitly and use strings
- `obj2 = pd.Series([4, 7, -5, 3],
 index=['d', 'b', 'a', 'c'])`
- Kind of like fixed-length, ordered dictionary + can create from a dictionary
- `obj3 = pd.Series({'Ohio': 35000, 'Texas': 71000,
 'Oregon': 16000, 'Utah': 5000})`
Series

- **Indexing:** `s[1]` or `s['Oregon']`
- **Can check for missing data:** `pd.isnull(s)` or `pd.notnull(s)`
- **Both index and values can have an associated name:**
 - `s.name = 'population'; s.index.name = 'state'`
- **Addition and NumPy ops work as expected and preserve the index-value link**
- **These operations align:**

  ```
  In [28]: obj3
  Out[28]:
  Ohio      35000
  Oregon    16000
  Texas     71000
  Utah       5000
  dtype: int64
  
  In [29]: obj4
  Out[29]:
  California NaN
  Ohio       35000
  Oregon    16000
  Texas     71000
  dtype: float64
  
  In [30]: obj3 + obj4
  Out[30]:
  California NaN
  Ohio       70000
  Oregon    32000
  Texas    142000
  Utah       NaN
  dtype: float64
  ```

 [W. McKinney, Python for Data Analysis]
Data Frame

- A dictionary of Series (labels for each series)
- A spreadsheet with column headers
- Has an index shared with each series
- Allows easy reference to any cell
- df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'],
 'pop': [1.5, 1.7, 3.6, 2.4]})

- Index is automatically assigned just as with a series but can be passed in as well via index kwarg
- Can reassign column names by passing columns kwarg
DataFrame Constructor Inputs

<table>
<thead>
<tr>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D ndarray</td>
<td>A matrix of data, passing optional row and column labels</td>
</tr>
<tr>
<td>dict of arrays, lists, or tuples</td>
<td>Each sequence becomes a column in the DataFrame. All sequences must be the same length.</td>
</tr>
<tr>
<td>NumPy structured/record array</td>
<td>Treated as the “dict of arrays” case</td>
</tr>
<tr>
<td>dict of Series</td>
<td>Each value becomes a column. Indexes from each Series are unioned together to form the result’s row index if no explicit index is passed.</td>
</tr>
<tr>
<td>dict of dicts</td>
<td>Each inner dict becomes a column. Keys are unioned to form the row index as in the “dict of Series” case.</td>
</tr>
<tr>
<td>list of dicts or Series</td>
<td>Each item becomes a row in the DataFrame. Union of dict keys or Series indexes become the DataFrame’s column labels</td>
</tr>
<tr>
<td>List of lists or tuples</td>
<td>Treated as the “2D ndarray” case</td>
</tr>
<tr>
<td>Another DataFrame</td>
<td>The DataFrame’s indexes are used unless different ones are passed</td>
</tr>
<tr>
<td>NumPy MaskedArray</td>
<td>Like the “2D ndarray” case except masked values become NA/missing in the DataFrame result</td>
</tr>
</tbody>
</table>

[W. McKinney, Python for Data Analysis]
DataFrame Access and Manipulation

- **df.values** → 2D NumPy array

- **Accessing a column:**
 - `df["<column>"]`
 - `df.<column>`
 - Both return Series
 - Dot syntax only works when the column is a valid identifier

- **Assigning to a column:**
 - `df["<column>"] = <scalar>` # all cells set to same value
 - `df["<column>"] = <array>` # values set in order
 - `df["<column>"] = <series>` # values set according to match
 # between df and series indexes
DataFrame Index

- Similar to index for Series
- Immutable
- Can be shared with multiple structures (DataFrames or Series)
- `in` operator works with: 'Ohio' in df.index
Index methods and properties

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>append</td>
<td>Concatenate with additional Index objects, producing a new Index</td>
</tr>
<tr>
<td>diff</td>
<td>Compute set difference as an Index</td>
</tr>
<tr>
<td>intersection</td>
<td>Compute set intersection</td>
</tr>
<tr>
<td>union</td>
<td>Compute set union</td>
</tr>
<tr>
<td>isin</td>
<td>Compute boolean array indicating whether each value is contained in the passed collection</td>
</tr>
<tr>
<td>delete</td>
<td>Compute new Index with element at index i deleted</td>
</tr>
<tr>
<td>drop</td>
<td>Compute new index by deleting passed values</td>
</tr>
<tr>
<td>insert</td>
<td>Compute new Index by inserting element at index i</td>
</tr>
<tr>
<td>is_monotonic</td>
<td>Returns True if each element is greater than or equal to the previous element</td>
</tr>
<tr>
<td>is_unique</td>
<td>Returns True if the Index has no duplicate values</td>
</tr>
<tr>
<td>unique</td>
<td>Compute the array of unique values in the Index</td>
</tr>
</tbody>
</table>

In [78]: obj = Series([4.5, 7.2, -5.3, 3.6], index=['d', 'b', 'a', 'c'])

In [79]: obj
Out[79]:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>4.5</td>
</tr>
<tr>
<td>b</td>
<td>7.2</td>
</tr>
<tr>
<td>a</td>
<td>-5.3</td>
</tr>
<tr>
<td>c</td>
<td>3.6</td>
</tr>
<tr>
<td>dtype: float64</td>
<td></td>
</tr>
</tbody>
</table>

In [80]: obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])

In [81]: obj2
Out[81]:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>None</td>
</tr>
<tr>
<td>b</td>
<td>None</td>
</tr>
<tr>
<td>c</td>
<td>None</td>
</tr>
<tr>
<td>d</td>
<td>None</td>
</tr>
<tr>
<td>e</td>
<td>None</td>
</tr>
<tr>
<td>dtype: float64</td>
<td></td>
</tr>
</tbody>
</table>

[W. McKinney, Python for Data Analysis]
Reindexing

- `reindex` creates a new object with the data conformed to new index
- `obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])`

- Missing values: handle with kwargs
 - `fill_value`: fill any missing value with a specific value
 - `method='ffill'`: fill values forward
 - `method='bfill'`: fill values backward

- Data Frames:
 - reindex rows as with series
 - reindex columns using columns kwarg
Dropping entries

- Can drop one or more entries
- Series:
 - `new_obj = obj.drop('c')`
 - `new_obj = obj.drop(['d', 'c'])`
- Data Frames:
 - `axis` keyword defines which axis to drop (default 0)
 - `axis==0` → rows, `axis==1` → columns
 - `axis = 'columns'`
Indexing

• Same as with NumPy arrays but can use Series's index labels
• Slicing with labels: NumPy is **exclusive**, Pandas is **inclusive**!

 - s = Series(np.arange(4))
 s[0:2] # gives two values like numpy
 - s = Series(np.arange(4), index=['a', 'b', 'c', 'd'])
 s['a':'c'] # gives three values, not two!

• Obtaining data subsets
 - []: get columns by label
 - loc: get rows/cols by label
 - iloc: get rows/cols by position (integer index)
 - For single cells (scalars), also have at and iat
Indexing

• \(s = \text{Series}(\text{np.arange}(4.), \text{index}=[4, 3, 2, 1]) \)
• \(s[3] \)
• \(\text{s.loc}[3] \)
• \(\text{s.iloc}[3] \)
• \(\text{s2} = \text{pd.Series}(\text{np.arange}(4), \text{index}=['a', 'b', 'c', 'd']) \)
• \(\text{s2}[3] \)
Filtering

- Same as with numpy arrays but allows use of column-based criteria
 - `data[data < 5] = 0`
 - `data[data['three'] > 5]`
 - `data < 5` → boolean data frame, can be used to select specific elements
Arithmetic

- Add, subtract, multiply, and divide are element-wise like numpy
- ...but use labels to align
- ...and missing labels lead to NaN (not a number) values

In [28]: obj3
Out[28]:
Ohio 35000
Oregon 16000
Texas 71000
Utah 5000
 dtype: int64

In [29]: obj4
Out[29]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
Utah 5000
 dtype: float64

In [30]: obj3 + obj4
Out[30]:
Ohio 35000
Oregon 16000
Texas 71000
Utah 5000
California NaN
 dtype: float64

- also have .add, .subtract, ... that allow fill_value argument
- obj3.add(obj4, fill_value=0)
Arithmetic between DataFrames and Series

• Broadcasting: e.g. apply single row operation across all rows

• Example:

 In [148]: frame
 Out[148]:
 b d e
 Utah 0 1 2
 Ohio 3 4 5
 Texas 6 7 8
 Oregon 9 10 11

 In [149]: series
 Out[149]:
 b 0
d 1
e 2

 In [150]: frame - series
 Out[150]:
 Utah 1
 Ohio 2
 Texas 2
 Oregon 9

• To broadcast over **columns**, use methods (*.add, ...)
Sorting by Index (sort_index)

• Sort by index (lexicographical):

```python
In [168]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])

In [169]: obj.sort_index()
Out[169]:
   a    1
   b    2
   c    3
   d    0
   dtype: int64
```

• DataFrame sorting:

```python
In [170]: frame = DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'],
                       columns=['d', 'a', 'b', 'c'])

In [171]: frame.sort_index()        In [172]: frame.sort_index(axis=1)
Out[171]:                           Out[172]:
   d  a  b  c                          a  b  c  d
  one   4  5  6  7                   three  1  2  3  0
  three  0  1  2  3                   one   5  6  7  4
```

• axis controls sort rows (0) vs. sort columns (1)
Sorting by Value (sort_values)

- `sort_values` method on series
 - `obj.sort_values()`

- Missing values (`NaN`) are at the end by default (`na_position` controls, can be first)

- `sort_values` on DataFrame:
 - `df.sort_values(<list-of-columns>)`
 - `df.sort_values(by=['a', 'b'])`
 - Can also use `axis=1` to sort by index labels
Ranking

- **rank() method:**

  ```python
  In [182]: obj = Series([7, -5, 7, 4, 2, 0, 4])
  In [183]: obj.rank()
  Out[183]:
  0    6.5
  1    1.0
  2    6.5
  3    4.5
  4    3.0
  5    2.0
  6    4.5
  dtype: float64
  ```

- **ascending and method arguments:**

  ```python
  In [185]: obj.rank(ascending=False, method='max')
  Out[185]:
  0    2
  1    7
  2    2
  3    4
  4    5
  5    6
  6    4
  dtype: float64
  ```

- **Works on data frames, too**

```python
In [178]: frame = DataFrame({'b': [4, 7, -3, 2], 'a': [0, 1, 0, 1]})
In [179]: frame.sort_index(by='b')
Out[179]:
   a  b
0  0  4
1  1  7
2  0 -3
3  1  2

In [180]: frame.sort_index(by=['a', 'b'])
Out[180]:
   a  b
1  1  7
2  0 -3
3  1  2
0  0  4

In [181]: frame = DataFrame({'b': [4.3, 7, -3, 2], 'a': [0, 1, 0, 1],
                       'c': [-2, 5, 8, -2.5]})
In [182]: frame.sort_index(axis=1)
Out[182]:
   a    b    c
0  0  4.3 -2.0
1  1  7.0  5.0
2  0 -3.0  8.0
3  1  2.0 -2.5
```

Method Description

- **average**: Default: assign the average rank to each entry in the equal group.
- **min**: Use the minimum rank for the whole group.
- **max**: Use the maximum rank for the whole group.
- **first**: Assign ranks in the order the values appear in the data.
Statistics

- **sum**: column sums (axis=1 gives sums over rows)
- missing values are excluded unless the whole slice is NaN
- idxmax, idxmin are like argmax, argmin (return index)
- **describe**: shortcut for easy stats!

```python
In [204]: df.describe()
Out[204]:
   one       two
count  3.000000  2.000000
mean   3.083333 -2.900000
std    3.493685  2.262742
min    0.750000 -4.500000
25%    1.075000 -3.700000
50%    1.400000 -2.900000
75%    4.250000 -2.100000
max    7.100000 -1.300000
```

```python
In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)
In [206]: obj.describe()
Out[206]:
   count  16
  unique   3
     top    a
    freq   8
dtype: object
```

Method Description
- **count**: Number of non-NA values
- **describe**: Compute set of summary statistics for Series or each DataFrame column
- **min, max**: Compute minimum and maximum values
- **argmin, argmax**: Compute index locations (integers) at which minimum or maximum value obtained, respectively
- **idxmin, idxmax**: Compute index values at which minimum or maximum value obtained, respectively
- **quantile**: Compute sample quantile ranging from 0 to 1
- **sum**: Sum of values
- **mean**: Mean of values
- **median**: Arithmetic median (50% quantile) of values
- **mad**: Mean absolute deviation from mean value
- **var**: Sample variance of values
- **std**: Sample standard deviation of values
Statistics

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>Number of non-NA values</td>
</tr>
<tr>
<td>describe</td>
<td>Compute set of summary statistics for Series or each DataFrame column</td>
</tr>
<tr>
<td>min, max</td>
<td>Compute minimum and maximum values</td>
</tr>
<tr>
<td>argmin, argmax</td>
<td>Compute index locations (integers) at which minimum or maximum value obtained, respectively</td>
</tr>
<tr>
<td>idxmin, idxmax</td>
<td>Compute index values at which minimum or maximum value obtained, respectively</td>
</tr>
<tr>
<td>quantile</td>
<td>Compute sample quantile ranging from 0 to 1</td>
</tr>
<tr>
<td>sum</td>
<td>Sum of values</td>
</tr>
<tr>
<td>mean</td>
<td>Mean of values</td>
</tr>
<tr>
<td>median</td>
<td>Arithmetic median (50% quantile) of values</td>
</tr>
<tr>
<td>mad</td>
<td>Mean absolute deviation from mean value</td>
</tr>
<tr>
<td>var</td>
<td>Sample variance of values</td>
</tr>
<tr>
<td>std</td>
<td>Sample standard deviation of values</td>
</tr>
<tr>
<td>skew</td>
<td>Sample skewness (3rd moment) of values</td>
</tr>
<tr>
<td>kurt</td>
<td>Sample kurtosis (4th moment) of values</td>
</tr>
<tr>
<td>cumsum</td>
<td>Cumulative sum of values</td>
</tr>
<tr>
<td>cummin, cummax</td>
<td>Cumulative minimum or maximum of values, respectively</td>
</tr>
<tr>
<td>cumprod</td>
<td>Cumulative product of values</td>
</tr>
<tr>
<td>diff</td>
<td>Compute 1st arithmetic difference (useful for time series)</td>
</tr>
<tr>
<td>pct_change</td>
<td>Compute percent changes</td>
</tr>
</tbody>
</table>

[W. McKinney, Python for Data Analysis]
Unique Values and Value Counts

- **unique** returns an array with only the unique values (no index)

 - `s = Series(['c','a','d','a','a','b','b','c','c'])`

 - `s.unique()` # array(['c', 'a', 'd', 'b'])

- Data Frames use **drop_duplicates**

- **value_counts** returns a Series with index frequencies:

 - `s.value_counts()` # Series({'c': 3,'a': 3,'b': 2,'d': 1})
Handling Missing Data

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dropna</td>
<td>Filter axis labels based on whether values for each label have missing data, with varying thresholds for how much missing data to tolerate.</td>
</tr>
<tr>
<td>fillna</td>
<td>Fill in missing data with some value or using an interpolation method such as 'ffill' or 'bfill'.</td>
</tr>
<tr>
<td>isnull</td>
<td>Return like-type object containing boolean values indicating which values are missing / NA.</td>
</tr>
<tr>
<td>notnull</td>
<td>Negation of isnull.</td>
</tr>
</tbody>
</table>

Argument Description

dropna
Filter axis labels based on whether values for each label have missing data, with varying thresholds for how much missing data to tolerate.

fillna
Fill in missing data with some value or using an interpolation method such as 'ffill' or 'bfill'.

isnull
Return like-type object containing boolean values indicating which values are missing / NA.

notnull
Negation of isnull.

[W. McKinney, Python for Data Analysis]
Back to the Food Inspections Example
Reading & Writing Data
Reading Data in Python

• Use the `open()` method to open a file for reading
  ```python
  f = open('huck-finn.txt')
  ```

• Usually, add an `'r'` as the second parameter to indicate "read"

• Can iterate through the file (think of the file as a collection of lines):
  ```python
  f = open('huck-finn.txt', 'r')
  for line in f:
    if 'Huckleberry' in line:
      print(line.strip())
  ```

• Using `line.strip()` because the read includes the newline, and print
 writes a newline so we would have double-spaced text

• Closing the file: `f.close()`
With Statement: Improved File Handling

• With statement does "enter" and "exit" handling (similar to the finally clause):
• In the previous example, we need to remember to call `f.close()`
• Using a with statement, this is done automatically:
 - `with open('huck-finn.txt', 'r') as f:
 for line in f:
 if 'Huckleberry' in line:
 print(line.strip())`
• This is more important for writing files!
 - `with open('output.txt', 'w') as f:
 for k, v in counts.items():
 f.write(k + ': ' + v + '\n')`
• Without `with`, we need `f.close()`