Data Visualization (CSCI 627/490)

Data

Dr. David Koop
JavaScript in one slide

- Interpreted and Dynamically-typed Programming Language
- Statements end with semi-colons, normal blocking with brackets
- Variables: `var a = 0; let b = 2;`
- Operators: `+, -, *, /, []`
- Control Statements: `if (<expr>) {...} else {...}, switch`
- Loops: `for, while, do-while`
- Arrays: `var a = [1,2,3]; a[99] = 100; console.log(a.length);`
- Functions: `function myFunction(a,b) { return a + b; }`
- Objects: `var obj; obj.x = 3; obj.y = 5;`
 - Prototypes for instance functions
- Comments are `/* Comment */` or `// Single-line Comment`
Including JavaScript in HTML

• Use the script tag
• Can either inline JavaScript or load it from an external file

 - `<script type="text/javascript">
 a = 5, b = 8;
 c = a * b + b - a;
 </script>

 `<script type="text/javascript" src="script.js"/>

• Script tag can reference local or remote external javascript files
• The order the javascript is in is the order it is executed
• Example: in the above, `script.js` can access the variables `a`, `b`, and `c`
JavaScript Features

• Any object can serve as an associative array
 states = {"AZ": "Arizona", "MA": "Massachusetts"};

• Array functions: map, filter, reduce, forEach
 - Object.keys(states).filter(d => d.startsWith("A"));

• Function chaining is common (sometimes the original object is returned, others another object is returned)
 - $('#myElt').css("color", "blue").height(200).width(320)

• Closures are functions that "remember their environments" [MDN]
 - function makeAdder(x) {
 function adder(y) {
 return x + y;
 }
 var add5 = makeAdder(5);
JavaScript Objects

- var student = {name: "John Smith", id: "000012345", class: "Senior", hometown: "Peoria, IL, USA"};

- Objects contain multiple values: key-value pairs called **properties**
- Accessing properties via dot-notation: student.name
- Always works via bracket-notation: student["name"]
- May also contain functions:
 - var student = {firstName: "John", lastName: "Smith",
 fullName: function() { return this.firstName + " " + this.lastName; }};
 - student.fullName()
Functional Programming in JavaScript

• Functions are first-class objects in JavaScript
• You can pass a function to a method just like you can pass an integer, string, or object
• Instead of writing loops to process data, we can instead use a map/filter/reduce/forEach function on the data that runs our logic for each data item
 • map: transform each element of an array
 • filter: check each element of an array and keep only ones that pass
 • forEach: run the function for each element of the array
 • reduce: collapse an array to a single object
Using Array Functions

• var a = [2, 4, 7, 11, 22, 84];

• Named function:
 - function isEven(d) {
 return (d % 2 == 0);
 }
 a.filter(isEven);

• Anonymous function
 - a.filter(function(d) { return (d % 2 == 0); });

• Arrow function
 - a.filter(d => (d % 2 == 0));
Manipulating the DOM with JavaScript

- Key global variables:
 - `window`: Global namespace
 - `document`: Current document
- `document.getElementById(...)`: Get one element via its id
- `document.querySelector(...)`: Get one element via selector
- `document.querySelectorAll(...)`: Get all matching elements via selector
- HTML is parsed into an in-memory document (DOM)
- Can access and **modify** information stored in the DOM
- Can add information to the DOM
Example: JavaScript and the DOM

• Start with no real content, just divs:

```html
<div id="firstSection"></div>
<div id="secondSection"></div>
<div id="finalSection"></div>
```

• Get existing elements:
 - `document.querySelector`/`querySelectorAll`
 - `document.getElementById`

• Programmatically add elements:
 - `document.createElement`
 - `document.createTextNode`
 - `Element.appendChild`
 - `Element.setAttribute`

• Link

Bears

Chicago, IL

2018-2019 NFC North Champions

What will happen this year?
Example (continued): Using Data to Build Content

- We can loop through data to add content to a web page (schedule and results)

- Data: [{"date": "September 9", "opponent": "Green Bay Packers", "home": false, "win": false, "score": "23-24"}, ...]

- Can use `forEach` to iterate through each game and build content

- Or, `for...of` loop: for (game of data)

- Link
Assignment 2

• Link
• Three parts: table, horizontal bar chart, vertical bar chart
 - data processing
 - highlighting (CSCI 627)
• Vertical chart can be tricky
• Start early!
• Questions?
Creating SVG figures via JavaScript

- SVG elements can be accessed and modified just like HTML elements
- Create a new SVG programmatically and add it into a page:

  ```javascript
  var divElt = document.getElementById("chart");
  var svg = document.createElementNS("http://www.w3.org/2000/svg", "svg");
  divElt.appendChild(svg);
  ```

- You can assign attributes:

  ```javascript
  svg.setAttribute("height", 400);
  svg.setAttribute("width", 600);
  svgCircle.setAttribute("r", 50);
  ```
Manipulating SVG via JavaScript

• SVG can be navigated just like the DOM

• Example:

```javascript
function addEltToSVG(svg, name, attrs) {
    var element = document.createElementNS(
        "http://www.w3.org/2000/svg", name);
    if (attrs === undefined) attrs = {};
    for (var key in attrs) {
        element.setAttribute(key, attrs[key]);
    }
    svg.appendChild(element);
}
mysvg = document.getElementById("mysvg");
addEltToSVG(mysvg, "rect", {
    "x": 50, "y": 50,
    "width": 40,"height": 40,
    "fill": "blue"});
```

• Notebook
SVG Manipulation Example

• Draw a horizontal bar chart
 - `var a = [6, 2, 6, 10, 7, 18, 0, 17, 20, 6];`

• Steps?
SVG Manipulation Example

• Draw a horizontal bar chart

 \[\text{var } a = [6, 2, 6, 10, 7, 18, 0, 17, 20, 6]; \]

• Steps:

 - Programmatically create SVG

 - Create individual rectangle for each item

• Link:

 - https://codepen.io/dakoop/pen/mdbxQKe
“Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.”

— T. Munzner
Data

• What is this data?

<table>
<thead>
<tr>
<th></th>
<th>42ND STREET & 8TH AVENUE</th>
<th>0228985</th>
<th>0008471</th>
<th>0000441</th>
<th>0001455</th>
<th>0000134</th>
<th>0033341</th>
<th>0071255</th>
</tr>
</thead>
<tbody>
<tr>
<td>R011</td>
<td>14TH STREET-UNION SQUARE</td>
<td>00224603</td>
<td>0011051</td>
<td>0000827</td>
<td>0003026</td>
<td>0000660</td>
<td>0089367</td>
<td>0199841</td>
</tr>
<tr>
<td>R046</td>
<td>42ND STREET & GRAND CENTRAL</td>
<td>00207758</td>
<td>0007908</td>
<td>0000323</td>
<td>0001183</td>
<td>0003001</td>
<td>0040759</td>
<td>0096613</td>
</tr>
</tbody>
</table>

• **Semantics:** real-world meaning of the data
• **Type:** structural or mathematical interpretation
• Both often require **metadata**
 - Sometimes we can infer some of this information
 - Line between data and metadata isn’t always clear
Semantics

• The meaning of the data
• Example: 94023, 90210, 52790, 02747
Semantics

• The meaning of the data
• Example: 94023, 90210, 52790, 02747
 - Attendance at college football games?
Semantics

• The meaning of the data
• Example: 94023, 90210, 52790, 02747
 - Attendance at college football games?
 - Salaries?
Semantics

• The meaning of the data
• Example: 94023, 90210, 52790, 02747
 - Attendance at college football games?
 - Salaries?
 - Zip codes?
• Cannot always infer based on what the data looks like
• Often require semantics to better understand data
• Column names help with semantics
• May also include rules about data: a zip code is part of an address that uniquely identifies a residence
• Useful for asking good questions about the data
Data

<table>
<thead>
<tr>
<th>REMOTE</th>
<th>STATION</th>
<th>FF</th>
<th>SEN/DIS</th>
<th>7-D AFAS UNL</th>
<th>D AFAS/RFM</th>
<th>JOINT RR TKT</th>
<th>7-D UNL</th>
<th>30-D UNL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R011 42ND STREET & 8TH AVENUE</td>
<td>00228985</td>
<td>00008471</td>
<td>00000441</td>
<td>00001455</td>
<td>00000134</td>
<td>00033341</td>
<td>00071255</td>
</tr>
<tr>
<td>2</td>
<td>R170 14TH STREET-UNION SQUARE</td>
<td>00224603</td>
<td>0011051</td>
<td>00000827</td>
<td>00003026</td>
<td>00000660</td>
<td>00089367</td>
<td>00199841</td>
</tr>
<tr>
<td>3</td>
<td>R046 42ND STREET & GRAND CENTRAL</td>
<td>00207758</td>
<td>00007908</td>
<td>00000323</td>
<td>00001183</td>
<td>00003001</td>
<td>00040759</td>
<td>00096613</td>
</tr>
<tr>
<td>4</td>
<td>R012 34TH STREET & 8TH AVENUE</td>
<td>00188311</td>
<td>00006490</td>
<td>00000498</td>
<td>00001279</td>
<td>00003622</td>
<td>00035527</td>
<td>00067483</td>
</tr>
<tr>
<td>5</td>
<td>R293 34TH STREET - PENN STATION</td>
<td>00168768</td>
<td>00006155</td>
<td>00000523</td>
<td>00001065</td>
<td>00005031</td>
<td>00030645</td>
<td>00054376</td>
</tr>
<tr>
<td>6</td>
<td>R033 42ND STREET/TIMES SQUARE</td>
<td>00159382</td>
<td>00005945</td>
<td>00000378</td>
<td>00001205</td>
<td>00000690</td>
<td>00058931</td>
<td>00078644</td>
</tr>
<tr>
<td>7</td>
<td>R022 34TH STREET & 6TH AVENUE</td>
<td>00156008</td>
<td>00006276</td>
<td>00000487</td>
<td>00001543</td>
<td>00000712</td>
<td>00058910</td>
<td>00110466</td>
</tr>
<tr>
<td>8</td>
<td>R084 59TH STREET/COLUMBUS CIRCLE</td>
<td>00155262</td>
<td>00009484</td>
<td>00000589</td>
<td>00002071</td>
<td>00000542</td>
<td>00053397</td>
<td>00113966</td>
</tr>
<tr>
<td>9</td>
<td>R020 47-50 STREETS/ROCKEFELLER</td>
<td>00143500</td>
<td>00006402</td>
<td>00000384</td>
<td>00001159</td>
<td>00000723</td>
<td>00037978</td>
<td>00090745</td>
</tr>
<tr>
<td>10</td>
<td>R179 86TH STREET-LEXINGTON AVE</td>
<td>00142169</td>
<td>00010367</td>
<td>00000470</td>
<td>00001839</td>
<td>00000271</td>
<td>00050328</td>
<td>00125250</td>
</tr>
<tr>
<td>11</td>
<td>R023 34TH STREET & 6TH AVENUE</td>
<td>00134052</td>
<td>00005005</td>
<td>00000348</td>
<td>00001112</td>
<td>00000649</td>
<td>00031531</td>
<td>00075040</td>
</tr>
<tr>
<td>12</td>
<td>R029 PARK PLACE</td>
<td>00121614</td>
<td>00004311</td>
<td>00000287</td>
<td>00000931</td>
<td>00000792</td>
<td>00025404</td>
<td>00065362</td>
</tr>
<tr>
<td>13</td>
<td>R047 42ND STREET & GRAND CENTRAL</td>
<td>00100742</td>
<td>00004273</td>
<td>00000185</td>
<td>00000704</td>
<td>00001241</td>
<td>00022808</td>
<td>00068216</td>
</tr>
</tbody>
</table>
Data Terminology

• Items
 - An item is an individual discrete entity
 - e.g. row in a table, node in a network

• Attributes
 - An attribute is some specific property that can be measured, observed, or logged
 - a.k.a. variable, (data) dimension
 - e.g. a column in a table
Items & Attributes

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order ID</td>
<td>Order Date</td>
<td>Order Priority</td>
<td>Product Container</td>
<td>Product Base Margin</td>
<td>Ship Date</td>
</tr>
<tr>
<td>3</td>
<td>10/14/06</td>
<td>5-Low</td>
<td>Large Box</td>
<td>0.8</td>
<td>10/21/06</td>
</tr>
<tr>
<td>6</td>
<td>2/21/08</td>
<td>4-Not Specified</td>
<td>Small Box</td>
<td>0.55</td>
<td>2/22/08</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Small Pack</td>
<td>0.79</td>
<td>7/17/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Jumbo Box</td>
<td>0.77</td>
<td>7/17/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.71</td>
<td>7/18/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.69</td>
<td>7/18/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Wrap Bag</td>
<td>0.52</td>
<td>10/24/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Small Box</td>
<td>0.58</td>
<td>10/25/07</td>
</tr>
<tr>
<td>36</td>
<td>11/3/07</td>
<td>1-Urgent</td>
<td>Small Box</td>
<td>0.55</td>
<td>11/3/07</td>
</tr>
<tr>
<td>65</td>
<td>3/18/07</td>
<td>1-Urgent</td>
<td>Small Pack</td>
<td>0.49</td>
<td>3/19/07</td>
</tr>
<tr>
<td>66</td>
<td>5/20/05</td>
<td>5-Low</td>
<td>Wrap Bag</td>
<td>0.56</td>
<td>1/20/05</td>
</tr>
<tr>
<td>69</td>
<td>5/20/05</td>
<td>5-Not Specified</td>
<td>Small Pack</td>
<td>0.44</td>
<td>6/6/05</td>
</tr>
<tr>
<td>69</td>
<td>5/20/05</td>
<td>5-Not Specified</td>
<td>Wrap Bag</td>
<td>0.61</td>
<td>6/6/05</td>
</tr>
<tr>
<td>70</td>
<td>12/18/06</td>
<td>5-Low</td>
<td>Small Box</td>
<td>0.59</td>
<td>12/23/06</td>
</tr>
<tr>
<td>70</td>
<td>12/18/06</td>
<td>5-Low</td>
<td>Wrap Bag</td>
<td>0.82</td>
<td>12/23/06</td>
</tr>
<tr>
<td>96</td>
<td>4/17/05</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.55</td>
<td>4/19/05</td>
</tr>
<tr>
<td>97</td>
<td>1/29/06</td>
<td>3-Medium</td>
<td>Small Box</td>
<td>0.38</td>
<td>1/30/06</td>
</tr>
<tr>
<td>129</td>
<td>11/19/08</td>
<td>5-Low</td>
<td>Small Box</td>
<td>0.37</td>
<td>11/28/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.37</td>
<td>5/9/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.38</td>
<td>5/10/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.60</td>
<td>5/11/08</td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>3-Medium</td>
<td>Medium Box</td>
<td>0.6</td>
<td>6/12/06</td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>3-Medium</td>
<td>Jumbo Box</td>
<td>0.69</td>
<td>6/14/06</td>
</tr>
<tr>
<td>134</td>
<td>5/1/08</td>
<td>4-Not Specified</td>
<td>Large Box</td>
<td>0.82</td>
<td>5/3/08</td>
</tr>
<tr>
<td>135</td>
<td>10/21/07</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.64</td>
<td>10/23/07</td>
</tr>
<tr>
<td>166</td>
<td>9/12/07</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.55</td>
<td>9/14/07</td>
</tr>
<tr>
<td>193</td>
<td>8/8/06</td>
<td>1-Urgent</td>
<td>Medium Box</td>
<td>0.57</td>
<td>8/10/06</td>
</tr>
<tr>
<td>194</td>
<td>4/5/08</td>
<td>3-Medium</td>
<td>Wrap Bag</td>
<td>0.42</td>
<td>4/7/08</td>
</tr>
</tbody>
</table>
Data Types

• Nodes
 - Synonym for item but in the context of networks (graphs)

• Links
 - A **link** is a relation between two items
 - e.g. social network friends, computer network links
Items & Links
Data Types

- **Positions:**
 - A *position* is a location in space (usually 2D or 3D)
 - May be subject to projections
 - e.g. cities on a map, a sampled region in an CT scan

- **Grids:**
 - A *grid* specifies how data is sampled both geometrically and topologically
 - e.g. how CT scan data is stored
Positions and Grids
Dataset Types

- **Tables**
 - Attributes (columns)
 - Items (rows)
 - Cell containing value

- **Networks**
 - Link
 - Node (item)

- **Fields (Continuous)**
 - Grid of positions
 - Attributes (columns)
 - Value in cell

- **Geometry (Spatial)**
 - Position

- **Multidimensional Table**
 - Key 1
 - Key 2
 - Attributes
 - Value in cell

- **Trees**

[Munzner (ill. Maguire), 2014]
Tables

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order ID</td>
<td>Order Date</td>
<td>Order Priority</td>
<td>Product Container</td>
<td>Product Base Margin</td>
<td>Ship Date</td>
</tr>
<tr>
<td>3</td>
<td>10/14/06</td>
<td>S-Low</td>
<td>Large Box</td>
<td>0.8</td>
<td>10/21/06</td>
</tr>
<tr>
<td>6</td>
<td>2/21/08</td>
<td>4-Not Specified</td>
<td>Small Box</td>
<td>0.55</td>
<td>2/22/08</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Small Pack</td>
<td>0.79</td>
<td>7/17/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Jumbo Box</td>
<td>0.63</td>
<td>7/17/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.58</td>
<td>7/18/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.65</td>
<td>7/18/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Wrap Bag</td>
<td>0.52</td>
<td>10/24/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Small Box</td>
<td>0.58</td>
<td>10/25/07</td>
</tr>
<tr>
<td>65</td>
<td>3/18/07</td>
<td>1-Urgent</td>
<td>Small Box</td>
<td>0.55</td>
<td>11/3/07</td>
</tr>
<tr>
<td>69</td>
<td>3/18/07</td>
<td>1-Urgent</td>
<td>Small Pack</td>
<td>0.49</td>
<td>3/19/07</td>
</tr>
<tr>
<td>66</td>
<td>5/29/05</td>
<td>S-Low</td>
<td>Wrap Bag</td>
<td>0.56</td>
<td>1/20/05</td>
</tr>
<tr>
<td>69</td>
<td>5/29/05</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.44</td>
<td>6/6/05</td>
</tr>
<tr>
<td>70</td>
<td>12/18/06</td>
<td>5-Low</td>
<td>Small Box</td>
<td>0.59</td>
<td>12/23/06</td>
</tr>
<tr>
<td>70</td>
<td>12/18/06</td>
<td>5-Low</td>
<td>Wrap Bag</td>
<td>0.82</td>
<td>12/23/06</td>
</tr>
<tr>
<td>96</td>
<td>4/17/05</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.55</td>
<td>4/19/05</td>
</tr>
<tr>
<td>97</td>
<td>1/29/06</td>
<td>3-Medium</td>
<td>Small Box</td>
<td>0.38</td>
<td>1/30/06</td>
</tr>
<tr>
<td>129</td>
<td>11/19/08</td>
<td>5-Low</td>
<td>Small Box</td>
<td>0.37</td>
<td>11/28/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.37</td>
<td>5/9/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.38</td>
<td>5/10/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.6</td>
<td>5/11/08</td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>3-Medium</td>
<td>Medium Box</td>
<td>0.6</td>
<td>6/12/06</td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>3-Medium</td>
<td>Jumbo Box</td>
<td>0.69</td>
<td>6/14/06</td>
</tr>
<tr>
<td>134</td>
<td>5/1/08</td>
<td>4-Not Specified</td>
<td>Large Box</td>
<td>0.82</td>
<td>5/3/08</td>
</tr>
<tr>
<td>135</td>
<td>10/21/07</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.64</td>
<td>10/23/07</td>
</tr>
<tr>
<td>166</td>
<td>9/12/07</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.55</td>
<td>9/14/07</td>
</tr>
<tr>
<td>193</td>
<td>8/8/06</td>
<td>1-Urgent</td>
<td>Medium Box</td>
<td>0.57</td>
<td>8/10/06</td>
</tr>
<tr>
<td>194</td>
<td>4/5/08</td>
<td>3-Medium</td>
<td>Wrap Bag</td>
<td>0.42</td>
<td>4/7/08</td>
</tr>
</tbody>
</table>
Tables

- **Data organized by rows & columns**
 - row ~ item (usually)
 - column ~ attribute
 - label ~ attribute name
- **Key:** identifies each item (row)
 - Usually **unique**
 - Allows **join** of data from 2+ tables
 - Compound key: key split among multiple columns, e.g. (state, year) for population
- **Multidimensional**:
 - Split compound key: data cube with (state, year)

[Munzner (ill. Maguire), 2014]
Table Visualizations

<table>
<thead>
<tr>
<th>economy (mpg)</th>
<th>cylinders</th>
<th>displacement (cc)</th>
<th>power (hp)</th>
<th>weight (lb)</th>
<th>0-60 mph (s)</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>8.0</td>
<td>450</td>
<td>220</td>
<td>5,000</td>
<td>24</td>
<td>82</td>
</tr>
<tr>
<td>40</td>
<td>4.0</td>
<td>350</td>
<td>180</td>
<td>1,500</td>
<td>22</td>
<td>81</td>
</tr>
<tr>
<td>35</td>
<td>3.0</td>
<td>300</td>
<td>120</td>
<td>1,000</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>30</td>
<td>2.5</td>
<td>250</td>
<td>90</td>
<td>750</td>
<td>18</td>
<td>79</td>
</tr>
<tr>
<td>25</td>
<td>2.0</td>
<td>200</td>
<td>60</td>
<td>500</td>
<td>16</td>
<td>78</td>
</tr>
<tr>
<td>20</td>
<td>1.5</td>
<td>150</td>
<td>45</td>
<td>250</td>
<td>12</td>
<td>77</td>
</tr>
<tr>
<td>15</td>
<td>1.0</td>
<td>100</td>
<td>30</td>
<td>100</td>
<td>12</td>
<td>76</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>74</td>
</tr>
</tbody>
</table>

[M. Bostock, 2011]