Programming Principles in Python (CSCI 503/490)

Machine Learning

Dr. David Koop
Grammar of Graphics & Altair

- "Grammar of Graphics", L. Wilkinson
- "A Layered Grammar of Graphics" + ggplot, H. Wickham
- Vega: "Declarative language for creating, saving, and sharing interactive visualization designs"
- Vega-Lite: higher-level language than Vega, carefully crafted rules for defaults
- Altair: Python interface to Vega-Lite (J. VanderPlas)
 - "spend more time understanding your data and its meaning"
 - Specify the what, minimize the amount of code directing the how
 - Python can write JSON specification just as well as any other language
 - Bindings make it more Python-friendly, integrate with pandas, add support for Jupyter, etc.
Basic Example

- import altair as alt
- import pandas as pd
- data = pd.DataFrame({'x': [1,3,4,6,10], 'y': [1,5,2,7,3]})
- alt.Chart(data).mark_line().encode(x='x', y='y')

- Easiest to use data from a pandas data frame
 - Another option is a csv or json file
 - Can support geo_interface, too
- Chart is the basic unit
- Mark: .mark_*() indicates the geometry created for each data item
- Encode: .encode() allows visual properties to be set to data attributes
Visual Marks

- **Marks** are the basic graphical elements in a visualization
- Marks classified by dimensionality:
 - Points
 - Lines
 - Areas
- Also can have surfaces, volumes
- Think of marks as a mathematical definition, or if familiar with tools like Adobe Illustrator or Inkscape, the path & point definitions
- Altair: area, bar, circle, geoshape, image, line, point, rect, rule, square, text, tick
 - Also compound marks: boxplot, errorband, errorbar
Encode via Visual Channels

- **Position**
 - Horizontal
 - Vertical
 - Both

- **Color**

- **Shape**

- **Size**
 - Length
 - Area
 - Volume

[Munzner (ill. Maguire), 2014]
Data Attributes and Altair Types

- Categorical
- Ordered
 - Ordinal
- Quantitative

[Munzner (ill. Maguire), 2014]
Data Attributes and Altair Types

- Categorical data = Nominal (N)
- Ordinal data = Ordinal (O)
- Quantitative data = Quantitative (Q)
- Temporal data = Temporal (T)

[Munzner (ill. Maguire), 2014]
Different Channels for Different Attribute Types

Magnitude Channels: Ordered Attributes
- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes
- Spatial region
- Color hue
- Motion
- Shape

Altair will use its rules to pick whether to use color hue or saturation based on the type

[Munzner (ill. Maguire), 2014]
Altair Supports Concatenation, Layering, & Repetition

- **Layering:**
 - + Operator

- **Concatenation:**
 - Horizontal: | operator
 - Vertical: & operator

- **Repetition**
 - Use of .repeat for layout
 - Reference repeated variables in the encoding
Layering
Concatenation

[Improvise, Weaver, 2004]
Repetition
Seattle Weather: 2012-2015

Date

Maximum Daily Temperature (°C)

Count of Records

weather
- sun
- fog
- drizzle
- rain
- snow

precipitation
- 0
- 10
- 20
- 30
- 40
- 50

precipitation

Interaction

D. Koop, CSCI 503/490, Fall 2021
Weather Selection: Rain vs. Sun

Seattle Weather: 2012-2015

- Maximum Daily Temperature (C)
- Date
- Count of Records
- Weather Selection: Rain vs. Sun

D. Koop, CSCI 503/490, Fall 2021
Date Selection: July-September Sun
Assignment 8

- Energy Data
- Data Manipulation using pandas
- Visualization using matplotlib and altair
Final Exam

- Tuesday, December 7 at **12:00pm-1:50pm** in PM 153
- **More** comprehensive than Test 2
- Expect questions from topics covered on Test 1 and 2
- Expect questions from the last four weeks of class (concurrency, data, visualization, machine learning)
- Similar format
Machine Learning in Python
Tasks Machine Learning can Help With

- Identifying the zip code from handwritten digits on an envelope

![MNIST Image](https://www.fourmilab.ch/documents/mnist.png)

- Detecting fraudulent activity in credit card transactions
- Identifying topics in a set of blog posts
- Grouping customers with similar preferences

[A. Müller & S. Guido, Introduction to Machine Learning with Python, J. Steppan (MNIST image)]
Questions when building a machine learning solution

- What question(s) am I trying to answer? Do I think the data collected can answer that question?
- What is the best way to phrase my question(s) as a machine learning problem?
- Have I collected enough data to represent the problem I want to solve?
- What features of the data did I extract, and will these enable the right predictions?
- How will I measure success in my application?
Machine Learning

• Traditional Programming

Data → Computer → Output
Program →

• Machine Learning

Data → Computer → Program
Output →
Machine Learning

- Every machine learning algorithm has three components:
 - Representation
 - Evaluation
 - Optimization
Representation

- Decision trees
- Sets of rules / Logic programs
- Instances
- Graphical models (Bayes/Markov nets)
- Neural networks
- Support vector machines
- Model ensembles
- Etc.
Evaluation

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- Etc.
Optimization

- Combinatorial optimization
 - E.g.: Greedy search
- Convex optimization
 - E.g.: Gradient descent
- Constrained optimization
 - E.g.: Linear programming
Types of Learning

- **Supervised (inductive) learning**
 - Training data includes desired outputs
- **Unsupervised learning**
 - Training data does not include desired outputs
- **Semi-supervised learning**
 - Training data includes a few desired outputs
- **Reinforcement learning**
 - Rewards from sequence of actions
Areas of Machine Learning

- Supervised learning
 - Decision tree induction
 - Rule induction
 - Instance-based learning
 - Bayesian learning
 - Neural networks
 - Support vector machines
 - Model ensembles
 - Learning theory

- Unsupervised learning
 - Clustering
 - Dimensionality reduction

[P. Domingos]
Supervised & Unsupervised Tasks

• Identifying the zip code from handwritten digits on an envelope (supervised)

```
0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9
```

• Detecting fraudulent activity in credit card transactions (supervised)
• Identifying topics in a set of blog posts (unsupervised)
• Grouping customers with similar preferences (unsupervised)

[A. Müller & S. Guido, Introduction to Machine Learning with Python, J. Steppan (MNIST image)]
Supervised Learning
Supervised Learning: Learned Algorithm (Fit)
Supervised Learning: Prediction
Supervised Learning: Prediction
Unsupervised Learning: Input
Scikit-Learn

- Started as a Google Summer of Code project! (D. Cournapeau, 2007)
- Rewritten by scientists at INRIA (France) in 2010
- Written in Python using numpy, some optimizations using C (cython)
- The "gold standard" for machine learning in python
scikit-learn Principles

- Consistency: all objects share consistent, documented interface
- Inspection: parameters and parameter values determined by learning algorithms are stored and exposed as public attributes
- Non-proliferation of classes: only learning algos are classes, not datasets or parameters; easier to combine with other libraries
- Composition: create and reuse building blocks
- Sensible defaults: user-defined parameters should have meaningful defaults
scikit-learn entities

- Data: numpy matrices (also pandas series, data frames), process batches
- Estimators: all supervised & unsupervised algs implement \texttt{common} interface
 - estimator initialization does not do learning, only attaches parameters
 - \texttt{fit} does the learning, learned parameters exposed with trailing underscore
- Predictor: extends estimator with \texttt{predict} method
 - also provides \texttt{score} method to return value indicating prediction quality
- Transformer: help modify or filter data before learning
 - Preprocessing, feature selection, feature extraction, and dimensionality reduction via \texttt{transform} method
 - Can combine \texttt{fit} and \texttt{transform} via \texttt{fit_transform}

[L. Buitinck et al.]
Penguin Example
Deep Learning

• Deep learning is tied to neural networks, attempting to mimic how human neurons work together
• Hierarchical with multiple layers
• Usually takes advantage of GPUs
• Frameworks:
 - pytorch
 - TensorFlow
 - keras
 - theano