Programming Principles in Python (CSCI 503/490)

Arrays

Dr. David Koop
Modules and Packages

- Python allows you to import code from other files, even your own
- A **module** is a collection of definitions
- A **package** is an organized collection of modules
- Modules can be
 - a separate python file
 - a separate C library that is written to be used with Python
 - a built-in module contained in the interpreter
 - a module installed by the user (via conda or pip)
- All types use the same import syntax
What is the purpose of having modules or packages?

- Code reuse: makes life easier because others have written solutions to various problems
- Generally forces an organization of code that works together
- Standardizes interfaces; easier maintenance
- Encourages robustness, testing code

- This does take time so don't always create a module or package
 - If you're going to use a method once, it's not worth putting it in a module
 - If you're using the same methods over and over in (especially in different projects), a module or package makes sense
Importing modules

- `import <module>`
- `import <module> as <another-identifier>`
- `from <module> import <identifier-list>`
- `from <module> import <identifier> as <another-identifier>, ...`

- `import` imports from the top, `from ... import` imports "inner" names
- Need to use the qualified names when using `import` (foo.bar.mymethod)
- `as` clause **renames** the imported name
Namespaces

- Namespace is basically a dictionary with names and their values
- Accessing namespaces
 - __builtins__, globals(), locals()
- Examine contents of a namespace:
 - dir(<namespace>)
- Python checks for a name in the sequence: local, enclosing, global, builtins
- Each import <module> creates a namespace; access it through dot-syntax:
 - Examples: math.pi, collections.Counter
Using an imported module

- Import module, and call functions with **fully qualified** name (its namespace)
 - `import math`
 `math.log10(100)`
 `math.sqrt(196)`

- Import module into current namespace and use **unqualified** name
 - `from math import log10, sqrt`
 `log10(100)`
 `sqrt(196)`
Reloading a Module?

• If you re-import a module, what happens?
 - `import my_module`
 `my_module.SECRET_NUMBER` # 42
 - Change the definition of `SECRET_NUMBER` to 14
 `import my_module`
 `my_module.SECRET_NUMBER` # Still 42!

• Modules are **cached** so they are not reloaded on each import call

• Can reload a module via `importlib.reload(<module>)`

• Be careful because **dependencies** will persist! (Order matters)
Python Packages

• A package is basically a collection of modules in a directory subtree
• Structures a module namespace by allowing dotted names
• Example:

 - test_pkg/
 __init__.py
 foo.py
 bar.py
 baz/
 fun.py

• For packages that are to be executed as scripts, __main__.py can also be added
Example
Finding Packages

- Python Package Index (PyPI) is the standard repository (https://pypi.org) and pip (pip installs packages) is the official python package installer
 - Types of distribution: source (sdist) and wheels (binaries)
 - Each package can specify dependencies
 - Creating a PyPI package requires adding some metadata
- Anaconda is a package index, conda is a package manager
 - conda is language-agnostic (not only Python)
 - solves dependencies
 - conda deals with non-Python dependencies
 - has different channels: default, conda-forge (community-led)
Installing Packages

- `pip install <package-name>`
- `conda install <package-name>`

In Jupyter use:
- `%pip install <package-name>`
- `%conda install <package-name>`

- Arguments can be multiple packages
- Be careful! Security exploits using package installation and dependencies (e.g. Alex Birsan)
Environments

• Both pip and conda support environments
 - venv
 - conda env
• Idea is that you can create different environments for different work
 - environment for cs503
 - environment for research
 - environment for each project
Assignment 4

- Due Today
- USDA Food Price Data
- Reading & Writing Files
- Iterators
- Numeric Aggregation
- String Formatting
- CSCI 503 students compute and output two additional fields
Assignment 5

- Scripts, modules, packages
- Soon
Arrays

What is the difference between an array and a list (or a tuple)?
Arrays

- Usually a fixed size—lists are meant to change size
- Are mutable—tuples are not
- Store only one type of data—lists and tuples can store any combination
- Are faster to access and manipulate than lists or tuples
- Can be multidimensional:
 - Can have list of lists or tuple of tuples but no guarantee on shape
 - Multidimensional arrays are rectangles, cubes, etc.
Why NumPy?

• Fast **vectorized** array operations for data munging and cleaning, subsetting and filtering, transformation, and any other kinds of computations
• Common array algorithms like sorting, unique, and set operations
• Efficient descriptive statistics and aggregating/summarizing data
• Data alignment and relational data manipulations for merging and joining together heterogeneous data sets
• Expressing conditional logic as array expressions instead of loops with `if-elif-else` branches
• Group-wise data manipulations (aggregation, transformation, function application).

[W. McKinney, Python for Data Analysis]
import numpy as np
Creating arrays

• data1 = [6, 7, 8, 0, 1]
 arr1 = np.array(data1)

• data2 = [[1.5, 2, 3, 4], [5, 6, 7, 8]]
 arr2 = np.array(data2)

• data3 = np.array([6, "abc", 3.57]) # !!! check !!!

• Can check the type of an array in dtype property

• Types:
 - arr1.dtype # dtype('int64')
 - arr3.dtype # dtype('<U21'), unicode plus # chars
Types

- "But I thought Python wasn't stingy about types..."
- numpy aims for speed
- Able to do array arithmetic
- int16, int32, int64, float32, float64, bool, object
- Can specify type explicitly
 - arr1_float = np.array(data1, dtype='float64')
- astype method allows you to convert between different types of arrays:
 - arr = np.array([1, 2, 3, 4, 5])
 - arr.dtype
 - float_arr = arr.astype(np.float64)
numpy data types (dtypes)

<table>
<thead>
<tr>
<th>Type</th>
<th>Type code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int8, uint8</td>
<td>i1, u1</td>
<td>Signed and unsigned 8-bit (1 byte) integer types</td>
</tr>
<tr>
<td>int16, uint16</td>
<td>i2, u2</td>
<td>Signed and unsigned 16-bit integer types</td>
</tr>
<tr>
<td>int32, uint32</td>
<td>i4, u4</td>
<td>Signed and unsigned 32-bit integer types</td>
</tr>
<tr>
<td>int64, uint64</td>
<td>i8, u8</td>
<td>Signed and unsigned 64-bit integer types</td>
</tr>
<tr>
<td>float16</td>
<td>f2</td>
<td>Half-precision floating point</td>
</tr>
<tr>
<td>float32</td>
<td>f4 or f</td>
<td>Standard single-precision floating point; compatible with C float</td>
</tr>
<tr>
<td>float64</td>
<td>f8 or d</td>
<td>Standard double-precision floating point; compatible with C double and Python float object</td>
</tr>
<tr>
<td>float128</td>
<td>f16 or g</td>
<td>Extended-precision floating point</td>
</tr>
<tr>
<td>complex64,</td>
<td>c8, c16,</td>
<td>Complex numbers represented by two 32, 64, or 128 floats, respectively</td>
</tr>
<tr>
<td>complex128,</td>
<td>c32</td>
<td></td>
</tr>
<tr>
<td>complex256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bool</td>
<td>?</td>
<td>Boolean type storing True and False values</td>
</tr>
<tr>
<td>object</td>
<td>0</td>
<td>Python object type; a value can be any Python object</td>
</tr>
<tr>
<td>string_</td>
<td>S</td>
<td>Fixed-length ASCII string type (1 byte per character); for example, to create a string dtype with length 10, use 'S10'</td>
</tr>
<tr>
<td>unicode_</td>
<td>U</td>
<td>Fixed-length Unicode type (number of bytes platform specific); same specification semantics as string_ (e.g., 'U10')</td>
</tr>
</tbody>
</table>
Array Shape

• Our normal way of checking the size of a collection is... \texttt{len}

• How does this work for arrays?

• \texttt{arr1 = np.array([1,2,3,6,9])}
 \texttt{len(arr1) \# 5}

• \texttt{arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])}
 \texttt{len(arr2) \# 2}

• All dimension lengths \(\rightarrow\) \texttt{shape: arr2.shape \# (2,4)}

• Number of dimensions: \texttt{arr2.ndim \# 2}

• Can also reshape an array:
 - \texttt{arr2.reshape(4,2)}
 - \texttt{arr2.reshape(-1,2) \# what happens here?}
Speed Benefits

• Compare random number generation in pure Python versus numpy

• Python:
 - import random
 %timeit rolls_list = [random.randrange(1,7)
 for i in range(0, 60_000)]

• With NumPy:
 - %timeit rolls_array = np.random.randint(1, 7, 60_000)

• Significant speedup (80x+)
Array Programming

- Lists:
 - c = []
 for i in range(len(a)):
 c.append(a[i] + b[i])

- How to improve this?
Array Programming

• Lists:
 - \(c = [] \)

 \[
 \text{for } i \text{ in range(len(a))}: \\
 \quad c.append(a[i] + b[i])
 \]
 - \(c = [aa + bb \text{ for } aa, bb \text{ in zip(a,b)}] \)

• NumPy arrays:
 - \(c = a + b \)

• More functional-style than imperative

• **Internal iteration** instead of external
Operations

• \(a = \text{np.array}([1, 2, 3]) \)
 \(b = \text{np.array}([6, 4, 3]) \)

• (Array, Array) Operations (**Element-wise**)
 - Addition, Subtraction, Multiplication
 - \(a + b \) \# array([7, 6, 6])

• (Scalar, Array) Operations (**Broadcasting**):
 - Addition, Subtraction, Multiplication, Division, Exponentiation
 - \(a ** 2 \) \# array([1, 4, 9])
 - \(b + 3 \) \# array([9, 7, 6])
More on Array Creation

- **Zeros**: `np.zeros(10)`
- **Ones**: `np.ones((4,5))` # shape
- **Empty**: `np.empty((2,2))`
- `_like versions`: pass an existing array and matches shape with specified contents
- **Range**: `np.arange(15)` # constructs an array, not iterator!
Indexing

- Same as with lists plus shorthand for 2D+
 - arr1 = np.array([6, 7, 8, 0, 1])
 - arr1[1]
 - arr1[-1]

- What about two dimensions?
 - arr2 = np.array([[1.5, 2, 3, 4], [5, 6, 7, 8]])
 - arr[1][1]
 - arr[1,1] # shorthand
2D Indexing

In multidimensional arrays, if you omit later indices, the returned object will be a lower dimensional ndarray consisting of all the data along the higher dimensions. So in the $2 \times 2 \times 3$ array $arr3d$:

```
In [76]:
arr3d = np.array([[[1, 2, 3], [4, 5, 6]],
                   [[7, 8, 9], [10, 11, 12]]])

Out [77]:
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]])
```

`arr3d[0]` is a 2×3 array:

```
In [78]:
arr3d[0]

Out [78]:
array([[1, 2, 3],
       [4, 5, 6]])
```

Both scalar values and arrays can be assigned to `arr3d[0]`:

```
In [79]:
old_values = arr3d[0].copy()

In [80]:
arr3d[0] = 42

In [81]:
arr3d

Out [81]:
array([[[42, 42, 42],
        [42, 42, 42]],
       [[ 7,  8,  9],
        [10, 11, 12]]])
```

```
In [82]:
arr3d[0] = old_values
```

[W. McKinney, Python for Data Analysis]
Slicing

• 1D: Similar to lists
 - `arr1 = np.array([6, 7, 8, 0, 1])`
 - `arr1[2:5] # np.array([8,0,1]), sort of`

• Can **mutate** original array:
 - `arr1[2:5] = 3 # supports assignment`
 - `arr1 # the original array changed`

• Slicing returns **views** (copy the array if original array shouldn't change)
 - `arr1[2:5] # a view`
 - `arr1[2:5].copy() # a new array`
Slicing

- 2D+: comma separated indices as shorthand:
 - arr2 = np.array([[1.5, 2, 3, 4], [5, 6, 7, 8]])
 - a[1:3, 1:3]
 - a[1:3, :] # works like in single-dimensional lists

- Can combine index and slice in different dimensions
 - a[1, :] # gives a row
 - a[:, 1] # gives a column
2D Array Slicing

How to obtain the blue slice from array \(arr \)?
2D Array Slicing

How to obtain the blue slice from array \(\text{arr} \)?

\[\text{arr}[:, 1:] \]